Notes on Obstfeld-Rogoff Ch. 1

- Open Economy = domestic economy trading with ROW
- Macro level: focus on intertemporal issues (not: multiple good, added later)

OR 1.1-1.2: Small economy = Easiest setting to convey basic ideas

- Two periods $t=1$ (now) and $t=2$ (future)
- Representative agents in each country; given incomes.
- Small economy: takes international prices are given; incl. interest rate r .
$1 /(1+r)=$ relative price of period- 2 consumption
- Individual problem (person i):

$$
\begin{align*}
& U_{1}^{i}=u\left(c_{1}^{i}\right)+\beta u\left(c_{2}^{i}\right), \quad 0<\beta<1 . \tag{1}\\
& c_{1}^{i}+\frac{c_{2}^{i}}{1+r}=y_{1}^{i}+\frac{y_{2}^{i}}{1+r} . \tag{2}
\end{align*}
$$

- Problem:

$$
\begin{align*}
& \max _{c_{1}^{i}} u\left(c_{1}^{i}\right)+\beta u\left[(1+r)\left(y_{1}^{i}-c_{1}^{i}\right)+y_{2}^{i}\right] . \\
& u^{\prime}\left(c_{1}^{i}\right)=(1+r) \beta u^{\prime}\left(c_{2}^{i}\right), \tag{3}\\
& \frac{\beta u^{\prime}\left(c_{2}^{i}\right)}{u^{\prime}\left(c_{1}^{i}\right)}=\frac{1}{1+r} . \tag{4}
\end{align*}
$$

- Indifference curve diagram: MRS $=$ relative price.
- Special case of $\beta=1 /(1+r)=>c_{1}=c_{2}$.
- Macroeconomics: Solution to country problem with identical individuals
= Solution to individual problem.
- Notation: Capital letters for country
(in per capita units, or normalize population $=1$)
- Definition of Current Account $=$ income - consumption $=$ net lending.

$$
\begin{equation*}
C A_{t}=B_{t+1}-B_{t}=Y_{t}+r_{t} B_{t}-C_{t}, \tag{6}
\end{equation*}
$$

with $B_{t}=$ foreign assets

- Decompose: Trade balance + Net factor incomes from abroad.
- Application to the two period model:

$$
\begin{aligned}
& \qquad C A_{2}=Y_{2}+r B_{2}-C_{2}=Y_{2}+r\left(Y_{1}-C_{1}\right)-C_{2} \\
& =-\left(Y_{1}-C_{1}\right)=-B_{2}=-C A_{1}, \\
& \text { because } \mathrm{B}_{1}=0, \mathrm{~B}_{2}=\mathrm{Y}_{1}-\mathrm{C}_{1}, \mathrm{~B}_{3}=0 .
\end{aligned}
$$

- Distinction: GDP vs. GNP (Data: See Table 1, p.7)
- Here: GDP $=Y_{2}$ vs. GNP $=Y_{2}+r B_{2}$
- Comparison to Autarchy (Key graph: Fig.1.1, p.8)
- Define the autarchy rate $\mathrm{r}^{\mathrm{A}}=$ equilibrium rate in closed economy $\left(\mathrm{Y}_{\mathrm{t}}=\mathrm{C}_{\mathrm{t}}\right)$

$$
\begin{equation*}
\frac{\beta u^{\prime}\left(Y_{2}\right)}{u^{\prime}\left(Y_{1}\right)}=\frac{1}{1+r^{\mathrm{A}}} \tag{7}
\end{equation*}
$$

- Special case of $\beta=1 /(1+r)$ with $r=$ world interest rate.

$$
\frac{u^{\prime}\left(Y_{2}\right)}{u^{\prime}\left(Y_{1}\right)}=\frac{1+r}{1+r^{A}}
$$

- If $\mathrm{r}^{\mathrm{A}}>\mathrm{r}$, then current resources are scarce $=>$ borrow; if $\mathrm{r}^{\mathrm{A}}<\mathrm{r}$, lend.
- Variations in endowments: Y_{1} up or Y_{2} down $=>r^{A}$ down, borrow less Find $r^{A}=r$, iff $Y_{1}=Y_{2}$. Only output fluctuations motivate $C A<>0$.

- Principle of comparative advantage:

- "import" goods that have a relatively high domestic price (here C_{1} if $\mathrm{r}^{\mathrm{A}}>\mathrm{r}$)
- welfare gain if $\mathrm{r}^{\mathrm{A}}<>\mathrm{r}$, regardless of sign.

Figure 1.1
Consumption over time and the current account

- Extension to government consumption G:
- Assume balanced budget, lump-sum taxes, Ricardian neutrality.
- G exogenous or separable in utility

$$
\begin{align*}
& C_{1}+\frac{C_{2}}{1+r}=Y_{1}-G_{1}+\frac{Y_{2}-G_{2}}{1+r} \tag{8}\\
& C A_{t}=B_{t+1}-B_{t}=Y_{t}+r_{t} B_{t}-C_{t}-G_{t}
\end{align*}
$$

- Effects of variations in G like reductions in Y.
- Caveat: effects differ if $u(C, G)$ is non-separable
- Extension to production model
$\mathrm{Y}=\mathrm{F}(\mathrm{K})$, holding labor input constant. Ignore depreciation.

$$
\begin{equation*}
K_{t+1}=K_{t}+I_{t} \tag{11}
\end{equation*}
$$

- Budget equation:

$$
\begin{align*}
& B_{t+1}+K_{t+1}-\left(B_{t}+K_{t}\right)=Y_{t}+r_{t} B_{t}-C_{t}-G_{t} \\
& C A_{t}=B_{t+1}-B_{t}=Y_{t}+r_{t} B_{t}-C_{t}-G_{t}-I_{t} \tag{12}
\end{align*}
$$

- Define national savings:

$$
\begin{align*}
& S_{t} \equiv Y_{t}+r_{t} B_{t}-C_{t}-G_{t} \tag{13}\\
& C A_{t}=S_{t}-I_{t} \tag{14}
\end{align*}
$$

- Two period model (See Figure 1.3, p.20)

$$
\begin{align*}
& B_{2}=Y_{1}-C_{1}-G_{1}-I_{1} \\
& -B_{2}=Y_{2}+r B_{2}-C_{2}-G_{2}-I_{2} \\
& C_{1}+I_{1}+\frac{C_{2}+I_{2}}{1+r}=Y_{1}-G_{1}+\frac{Y_{2}-G_{2}}{1+r} . \tag{15}\\
& I_{2}=K_{3}-K_{2}=0-K_{2}=-K_{2} . \\
& \max _{C_{1}, I_{1}} u\left(C_{1}\right)+\beta u\left\{(1+r)\left[F\left(K_{1}\right)-C_{1}-G_{1}-I_{1}\right]\right. \\
& \left.\quad+F\left(I_{1}+K_{1}\right)-G_{2}+I_{1}+K_{1}\right\} . \tag{16}
\end{align*}
$$

- Optimality condition:

$$
F^{\prime}\left(K_{2}\right)=r
$$

$=>$ separation of consumption and investment choices!

Figure 1.3
Investment and the current account

- Comparison to Autarchy:

$$
\begin{aligned}
& C_{2}=F\left[K_{1}+F\left(K_{1}\right)-C_{1}\right]+K_{1}+F\left(K_{1}\right)-C_{1} \\
& \frac{\mathrm{~d} C_{2}}{\mathrm{~d} C_{1}}=-\left[1+F^{\prime}\left(K_{2}\right)\right]
\end{aligned}
$$

- Autarchy point: MRS = marginal product of capital.
- Characterization of optimal CA: Borrow iff $\mathrm{r}^{\mathrm{A}}>\mathrm{r}$!
- New motive to borrow: whenever $F^{\prime}(\mathrm{K})$ is high.

OR 1.3: World economy with two region

- both "large" - meaning domestic changes affect world prices
- Assume savers in both regions take r as given $=>$ Competitive behavior
- Endowment economy without government. (Foreign variables $=*$)
- Goods market equilibrium: $\quad \mathrm{CA}+\mathrm{CA}^{*}=0$.

$$
Y_{t}+Y_{t}^{*}=C_{t}+C_{t}^{*} . \quad S_{t}+S_{t}^{*}=0 .
$$

- Example in Figure 1.5: $\mathrm{S}=\mathrm{S}(\mathrm{r}), \mathrm{S}^{*}=\mathrm{S}^{*}(\mathrm{r})=>$ Equilibrium r .

Example with $\mathrm{r}^{\mathrm{A}}>\mathrm{r}^{\mathrm{A}^{*}}$: Home $\mathrm{S}=\mathrm{CA}>0$.

Figure 1.5
Global exchange equilibrium

- Behavior of savings functions depends on the elasticity of intertemporal substitution (σ).

$$
\mathrm{d} \log \left(\frac{C_{2}}{C_{1}}\right)=\sigma \mathrm{d} \log (1+r) . \quad \sigma(C)=-\frac{u^{\prime}(C)}{C u^{\prime \prime}(C)}
$$

- CES preferences:

$$
u(C)=\frac{C^{1-\frac{1}{\sigma}}}{1-\frac{1}{\sigma}}, \quad \sigma>0
$$

- Impact of changes in r on consumption: Income + substitution effect

$$
\frac{\mathrm{d} C_{1}}{\mathrm{~d} r}=\frac{\left(Y_{1}-C_{1}\right)-\sigma C_{2} /(1+r)}{1+r+\left(C_{2} / C_{1}\right)}
$$

- OR discuss wealth effect = Impact of r on PV of income
- commonly included in income effect
- Extension to production model

$$
Y=A F(K), \quad Y^{*}=A^{*} F^{*}\left(K^{*}\right)
$$

- Market equilibrium:

$$
\begin{aligned}
& Y_{1}+Y_{1}^{*}=C_{1}+C_{1}^{*}+I_{1}+I_{1}^{*} \\
& S_{1}+S_{1}^{*}=I_{1}+I_{1}^{*} \\
& C A_{1}+C A_{1}^{*}=0
\end{aligned}
$$

- Figure 1.7: Savings - investment diagrams in two countries.

$$
\frac{\mathrm{d} C_{1}}{\mathrm{~d} r}=\frac{\left(Y_{1}-C_{1}-I_{1}\right)-\sigma C_{2} /(1+r)}{1+r+\left(C_{2} / C_{1}\right)}
$$

- Impact of productivity changes:

$$
\left.\frac{\mathrm{d} I_{1}}{\mathrm{~d} A_{2}}\right|_{r \text { constant }}=-\frac{F^{\prime}\left(K_{2}\right)}{A_{2} F^{\prime \prime}\left(K_{2}\right)}>0
$$

Example with CA surplus in home country

Figure 1.7
Global intertemporal equilibrium with investment

- Application 1: Lower discount factor in Home: SS shifts left.
- Application 2: Higher current output in Home: SS shifts right.
- Application 3: Higher future productivity in Home: SS->left; II->right.

Figure 1.8
A rise in future Home productivity

- Application 4: Higher discount factor in Foreign: $S * S *$ shifts right.
- Broader question \#1: What may explain the U.S. current account deficit?
- Bernanke's hypothesis: "The Global Savings Glut"

Current account balance as a percent of GDP, 1960-2005

- Context: Growing international trade. Growing financial integration

- Potentially relevant disturbances to the current account:
- Slow economic growth in Japan \& Europe: Low consumption, high savings.

Low foreign demand for U.S. goods.

- Relatively good investment opportunities in the U.S.?
(Problem: Substantial share went into housing)
- Higher oil prices: More saving by oil exporters.
- Increased saving by developing countries:

A puzzle: LDCs with low capital should have high MPK!
Risk aversion ("precautionary saving")? Political risk?

- Observation: Interest rates were unusually low in early 2000s
- Bernanke's conclusion: "A World Saving Glut"
- Shift right in foreign supply of savings $=>$ low world interest rate.

Real Interest Rates

- Implication of CA deficit: Declining net asset position.

Has the US net asset position declined at an exponential rate?
Find: Surprising stability - until 2008.

Data Analysis

$$
\underline{2006}=\text { typical year } \quad(\text { vintage data })
$$

$\underline{2008}=$ exception or break?

Dec. 2006	US Assets	US Liabilities	Net Position
Private	12,284	12,346	-62
FDI	2,856	2,099	756
Portfolio Equity	4,252	2,539	1,713
Portfolio Other	5,177	7,708	$-2,530$
Official	292	2,770	$-2,478$
Total	12,576	15,116	$-2,540$

Dec. 2008	US Assets	US Liabilities	Net Position
Private	12,505	13,021	-516
FDI	3,699	2,647	1,052
Portfolio Equity	2,851	1,838	1,014
Portfolio Other	5,955	8,537	$-2,581$
Official	918	3,871	$-2,954$
Total	13,423	16,892	$-3,469$

Net Position Dec. 2005			$\mathbf{- 2 , 2 3 8}$
US assets	10,444		
US liabilities	$-12,683$		-812
Current account balance	$\mathbf{- 8 5 5}$		
Everything but asset incomes	647	6.2%	
Income on US assets	-604	4.8%	
Income paid on US liabiities			532
Changes in Valuation, net:	1,106	10.6%	
On US assets	-574	4.5%	
On US liabilities			$\mathbf{- 2 1}$
Statistical Discrepancy\&Capital Balance			$\mathbf{- 2 , 5 4 0}$

Net Position Dec. 2007			$\mathbf{- 2 , 1 4 0}$
US assets	15,791		
US liabilities	$-17,931$		$\mathbf{- 7 0 6}$
Current account balance	-832		
Everything but asset incomes	762	4.8%	
Income on US assets	-636	3.5%	
Income paid on US liabiities	$-2,397$	-15.2%	-824
Changes in Valuation, net:	1,573	-8.8%	
On US assets			201
On US liabilities			$\mathbf{- 3 , 4 6 9}$
Statistical Discrepancy\&Capital Balance		-10.4%	
Net Position Dec.2008	-5.2%		
Memo: Total return on US assets			
\quad Total return on US liabilities			

- Applied question \#2: To what extent is capital investment financed abroad?
- The Feldstein-Horioka puzzle:

The Relaton betwen Domath Saving Rabier and
Dotedtic Frevitudy Rates

Sample periad	Gross saving and ünestment			Net saving and invetment		
	Cotatint	$3 / T$	E	Camestrt	SY	$\underline{S N}^{2}$
1960-74	$\begin{aligned} & 0 \cdot 095 \\ & (02018) \end{aligned}$	$\frac{099_{7}}{(0.324)}$	4911	$\begin{aligned} & a \cdot n y \\ & n+3 \end{aligned}$	$\begin{gathered} 9.938 \\ 4095 \end{gathered}$	687
4960-64	$\begin{gathered} 6029 \\ (4015) \end{gathered}$	6geg (006to	094	$\begin{aligned} & 00 t 7 \\ & \text { [00tit } \end{aligned}$	$\begin{aligned} & 0.14 \\ & 50674 \end{aligned}$	691
495-59	$4+098$	$\begin{aligned} & 4672 \\ & \{0 \mathrm{cos}\} \end{aligned}$	063	$\begin{aligned} & 0+02 a \\ & (0+020) \end{aligned}$	$\begin{gathered} 0+9 \mathrm{~B} \\ \cos 133 \end{gathered}$	45
1989-74		- 017 (aroget	-18	$\begin{gathered} \text { and } \\ \text { (oven } \end{gathered}$	$\begin{gathered} 0+3^{2} \\ (0-c a y) \end{gathered}$	083

- OR 1.4: Optimal taxation in a "large" economy

Home period 2 consumption, C_{2}

Figure 1.11
The optimal tax on foreign borrowing

- Supply of foreign savings:

$$
S_{1}^{*}(r)=Y_{1}^{*}-C_{1}^{*}(r)=\frac{\beta^{*}}{1+\beta^{*}} Y_{1}^{*} \frac{1}{\left(1+\beta^{*}\right)(1+r)} Y_{2}^{*}
$$

- Offer curve:

$$
1+r=\frac{Y_{2}^{*}}{\left(1+\beta^{*}\right)\left(Y_{1}-C_{1}\right)+\beta^{*} Y_{1}^{*}}
$$

- Welfare problem is to maximize:

$$
C_{2}=Y_{2}+\frac{Y_{2}^{*}}{\left(1+\beta^{*}\right)\left(Y_{1}-C_{1}\right)+\beta^{*} Y_{1}^{*}}\left(Y_{1}-C_{1}\right)
$$

- Optimal strategy of borrower: Reduce borrowing relative to competitive amount => Borrow at reduced interest rates. Welfare gain. Loss abroad. Implementation: Tax.
- OR 1.5: Factor price equalization via labor mobility
- Savings decision in period 1; labor allocation in period 2

$$
\begin{aligned}
& C_{1}=Y_{1}-K_{2} \\
& C_{2}=L_{2} f\left(K_{2} / L_{2}\right)-w\left(L_{2}-L^{\mathrm{H}}\right)+K_{2}
\end{aligned}
$$

- Constant returns to scale: international wage w determines $K / L=k$.
- FOC:

$$
u^{\prime}\left(C_{1}\right)=\beta\left[1+f^{\prime}\left(k_{2}\right)\right] u^{\prime}\left(C_{2}\right)
$$

- Autarchy line:

$$
C_{2}=F\left(Y_{1}-C_{1}, L^{\mathrm{H}}\right)+Y_{1}-C_{1} .
$$

- With mobility:

$$
C_{2}=[1+r(w)]\left(Y_{1}-C_{1}\right)+w L^{\mathrm{H}}
$$

Period 2 consumption, C_{2}

Period 1 consumption, C_{1}

Figure 1.12
Trade in labor services

Table 1: The Impact of Capital and Labour Mobility on Taxes - A Numerical Example

Mobility of capital: Mobility of labour:	Fixed Fixed		Mobile Fixed		Mobile Mobile	
Externality:	1%	2%	1%	2%	1%	2%
	Elasticities with respect to (l- τ)					
Capital tax	0.38	0.38	1.64	1.64	44.30	22.90
Labour tax	0.12	0.12	0.50	0.50	100.00	50.00
Labour force						
Capital tax	0.05	0.05	0.21	0.21	42.90	21.30
Labour tax	0.45	0.45	0.50	0.50	100.00	50.00
Capital-labour ratio						
Capital tax	0.33	0.33	1.43	1.43	1.43	1.43
Labour tax	-0.33	-0.33	0.00	0.00	0.00	0.00
Output						
Capital tax	0.15	0.15	0.64	0.64	42.70	21.60
Labour tax	0.35	0.34	0.49	0.49	98.60	49.30

Note: Values >1 are highlighted in bold.
Source: author's calculations

- Example (Bohn 2006): Small economy with congestion effect
- TFP depends on absolute population with elasticity ε
- Compute responses to tax changes

