## Notes on Obstfeld-Rogoff Ch.1

- Open Economy = domestic economy trading with ROW
- Macro level: focus on intertemporal issues (not: multiple good, added later)

**OR 1.1-1.2: Small economy** = Easiest setting to convey basic ideas

- Two periods t=1 (now) and t=2 (future)
- Representative agents in each country; given incomes.
- Small economy: takes international prices are given; incl. interest rate r.

1/(1+r) = relative price of period-2 consumption

• Individual problem (person i):

$$\begin{split} U_1^i &= u(c_1^i) + \beta u(c_2^i), & 0 < \beta < 1. \end{split}$$
(1) 
$$c_1^i + \frac{c_2^i}{1+r} &= y_1^i + \frac{y_2^i}{1+r}. \end{aligned}$$
(2)

• Problem:

$$\max_{\substack{c_1^i \\ c_1^i}} u(c_1^i) + \beta u[(1+r)(y_1^i - c_1^i) + y_2^i].$$

$$u'(c_1^i) = (1+r)\beta u'(c_2^i), \qquad (3)$$

$$\frac{\beta u'(c_2^i)}{u'(c_1^i)} = \frac{1}{1+r}.$$
(4)

- Indifference curve diagram: MRS = relative price.
  - Special case of  $\beta = 1/(1+r) \Longrightarrow c_1 = c_2$ .
- Macroeconomics: Solution to country problem with identical individuals

= Solution to individual problem.

• Notation: Capital letters for country

(in per capita units, or normalize population = 1)

• Definition of **Current Account** = income – consumption = net lending.

$$CA_t = B_{t+1} - B_t = Y_t + r_t B_t - C_t,$$
 (6)

with  $B_t$  = foreign assets

- Decompose: Trade balance + Net factor incomes from abroad.
- Application to the two period model:

$$CA_2 = Y_2 + rB_2 - C_2 = Y_2 + r(Y_1 - C_1) - C_2$$
  
=  $-(Y_1 - C_1) = -B_2 = -CA_1$ ,

because 
$$B_1 = 0$$
,  $B_2 = Y_1 - C_1$ ,  $B_3 = 0$ .

• Distinction: GDP vs. GNP (Data: See Table 1, p.7)

- Here:  $GDP = Y_2$  vs.  $GNP = Y_2 + r B_2$ 

- Comparison to Autarchy (Key graph: Fig.1.1, p.8)
  - Define the autarchy rate  $r^{A}$  = equilibrium rate in closed economy (Y<sub>t</sub>=C<sub>t</sub>)

$$\frac{\beta u'(Y_2)}{u'(Y_1)} = \frac{1}{1+r^{\mathbf{A}}}.$$
<sup>(7)</sup>

- Special case of  $\beta = 1/(1+r)$  with r = world interest rate.

$$\frac{u'(Y_2)}{u'(Y_1)} = \frac{1+r}{1+r^{A}}$$

- If  $r^A > r$ , then current resources are scarce => borrow; if  $r^A < r$ , lend.
- Variations in endowments:  $Y_1$  up or  $Y_2$  down => r<sup>A</sup> down, borrow less Find  $r^A = r$ , iff  $Y_1 = Y_2$ . Only output fluctuations motivate CA<>0.

#### • Principle of comparative advantage:

- "import" goods that have a relatively high domestic price (here  $C_1$  if  $r^A > r$ )
- welfare gain if  $r^A <> r$ , regardless of sign.



Figure 1.1 Consumption over time and the current account

- Extension to government consumption G:
  - Assume balanced budget, lump-sum taxes, Ricardian neutrality.
  - G exogenous or separable in utility

$$C_1 + \frac{C_2}{1+r} = Y_1 - G_1 + \frac{Y_2 - G_2}{1+r}.$$
(8)

$$CA_t = B_{t+1} - B_t = Y_t + r_t B_t - C_t - G_t.$$

- Effects of variations in G like reductions in Y.
- Caveat: effects differ if u(C,G) is non-separable

• Extension to production model

Y = F(K), holding labor input constant. Ignore depreciation.

$$K_{t+1} = K_t + I_t. (11)$$

- Budget equation:

$$B_{t+1} + K_{t+1} - (B_t + K_t) = Y_t + r_t B_t - C_t - G_t.$$
  
$$CA_t = B_{t+1} - B_t = Y_t + r_t B_t - C_t - G_t - I_t.$$
 (12)

- Define **national savings**:

$$S_t \equiv Y_t + r_t B_t - C_t - G_t. \tag{13}$$

$$CA_t = S_t - I_t. (14)$$

• Two period model (See Figure 1.3, p.20)

$$\begin{split} B_2 &= Y_1 - C_1 - G_1 - I_1 \\ &-B_2 = Y_2 + rB_2 - C_2 - G_2 - I_2 \\ C_1 &+ I_1 + \frac{C_2 + I_2}{1 + r} = Y_1 - G_1 + \frac{Y_2 - G_2}{1 + r}. \ ^{(15)} \\ I_2 &= K_3 - K_2 = 0 - K_2 = -K_2. \\ &\max_{C_1, I_1} u(C_1) + \beta u \left\{ (1 + r) \left[ F(K_1) - C_1 - G_1 - I_1 \right] \\ &+ F(I_1 + K_1) - G_2 + I_1 + K_1 \right\}. \end{split}$$

• Optimality condition:

$$F'(K_2) = r,$$

=> separation of consumption and investment choices!



Figure 1.3 Investment and the current account

• Comparison to Autarchy:

$$C_{2} = F \left[ K_{1} + F(K_{1}) - C_{1} \right] + K_{1} + F(K_{1}) - C_{1}.$$
$$\frac{dC_{2}}{dC_{1}} = -[1 + F'(K_{2})].$$

- Autarchy point: MRS = marginal product of capital.
- Characterization of optimal CA: Borrow iff  $r^A > r!$
- New motive to borrow: whenever F'(K) is high.

#### OR 1.3: World economy with two region

- both "large" meaning domestic changes affect world prices
  - Assume savers in both regions take r as given => Competitive behavior
- Endowment economy without government. (Foreign variables = \*)
  - Goods market equilibrium:  $CA + CA^* = 0$ .

$$Y_t + Y_t^* = C_t + C_t^*$$
.  $S_t + S_t^* = 0$ .

- Example in Figure 1.5: S = S(r),  $S^* = S^*(r) =>$  Equilibrium r.

Example with  $r^A > r^{A^*}$ : Home S = CA > 0.



Figure 1.5 Global exchange equilibrium

• Behavior of savings functions depends on the elasticity of intertemporal substitution ( $\sigma$ ).

$$d \log\left(\frac{C_2}{C_1}\right) = \sigma d \log(1+r). \qquad \sigma(C) = -\frac{u'(C)}{Cu''(C)}.$$

• CES preferences:

$$u(C) = \frac{C^{1-\frac{1}{\sigma}}}{1-\frac{1}{\sigma}}, \qquad \sigma > 0.$$

• Impact of changes in r on consumption: Income + substitution effect

$$\frac{\mathrm{d}C_1}{\mathrm{d}r} = \frac{(Y_1 - C_1) - \sigma C_2 / (1+r)}{1 + r + (C_2 / C_1)}$$

• OR discuss wealth effect = Impact of r on PV of income

- commonly included in income effect

• Extension to production model

$$Y = AF(K), \qquad Y^* = A^*F^*(K^*)$$

• Market equilibrium:

$$Y_1 + Y_1^* = C_1 + C_1^* + I_1 + I_1^*$$
  

$$S_1 + S_1^* = I_1 + I_1^*.$$
  

$$CA_1 + CA_1^* = 0.$$

• Figure 1.7: Savings – investment diagrams in two countries.

$$\frac{\mathrm{d}C_1}{\mathrm{d}r} = \frac{(Y_1 - C_1 - I_1) - \sigma C_2 / (1+r)}{1 + r + (C_2 / C_1)}$$

• Impact of productivity changes:

$$\left. \frac{\mathrm{d}I_1}{\mathrm{d}A_2} \right|_{r \text{ constant}} = -\frac{F'(K_2)}{A_2 F''(K_2)} > 0.$$

### Example with CA surplus in home country





Global intertemporal equilibrium with investment

- Application 1: Lower discount factor in Home: SS shifts left.
- Application 2: Higher current output in Home: SS shifts right.

• Application 3: Higher future productivity in Home: SS->left; II->right.





A rise in future Home productivity

• Application 4: Higher discount factor in Foreign: S\*S\* shifts right.

- Broader question #1: What may explain the U.S. current account deficit?
- Bernanke's hypothesis: "The Global Savings Glut"



• Context: Growing international trade. Growing financial integration



- Potentially relevant disturbances to the current account:
  - Slow economic growth in Japan & Europe: Low consumption, high savings. Low foreign demand for U.S. goods.
  - Relatively good investment opportunities in the U.S.? (Problem: Substantial share went into housing)
  - Higher oil prices: More saving by oil exporters.
  - Increased saving by developing countries:

A puzzle: LDCs with low capital should have high MPK! Risk aversion ("precautionary saving")? Political risk?

- Observation: Interest rates were unusually low in early 2000s
  - Bernanke's conclusion: "A World Saving Glut"
  - Shift right in foreign supply of savings => low world interest rate.

#### **Real Interest Rates**



• Implication of CA deficit: Declining net asset position.

### Has the US net asset position declined at an exponential rate?

Find: Surprising stability – until 2008.



# **Data Analysis**

2006 = typical year (vintage data)

## <u>2008 = exception or break?</u>

| US Assets | US Liabilities                                                  | Net Position                                                                                                                                                                                                           |
|-----------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12,284    | 12,346                                                          | -62                                                                                                                                                                                                                    |
| 2,856     | 2,099                                                           | 756                                                                                                                                                                                                                    |
| 4,252     | 2,539                                                           | 1,713                                                                                                                                                                                                                  |
| 5,177     | 7,708                                                           | -2,530                                                                                                                                                                                                                 |
| 292       | 2,770                                                           | -2,478                                                                                                                                                                                                                 |
| 12,576    | 15,116                                                          | -2,540                                                                                                                                                                                                                 |
|           | US Assets<br>12,284<br>2,856<br>4,252<br>5,177<br>292<br>12,576 | US Assets         US Liabilities           12,284         12,346           2,856         2,099           4,252         2,539           5,177         7,708           292         2,770           12,576         15,116 |

| Net Posit  | tion Dec.2005                  |         |       | -2,238 | N |
|------------|--------------------------------|---------|-------|--------|---|
| US ass     | ets                            | 10,444  |       |        |   |
| US liab    | ilities                        | -12,683 |       |        |   |
| Current a  | account balance                |         |       | -812   | C |
| Everyth    | ning but asset incomes         | -855    |       |        |   |
| Income     | e on US assets                 | 647     | 6.2%  |        |   |
| Income     | e paid on US liabiities        | -604    | 4.8%  |        |   |
| Changes    | in Valuation, net:             |         |       | 532    | C |
| On US      | assets                         | 1,106   | 10.6% |        |   |
| On US      | liabilities                    | -574    | 4.5%  |        |   |
| Statistica | I Discrepancy&Capital Balance  |         |       | -21    | S |
| Net Posit  | tion Dec.2006                  |         |       | -2,540 | N |
| Memo:      | Total return on US assets      |         | 16.8% |        | N |
|            | Total return on US liabilities |         | 9.3%  |        |   |

| Dec.2008                 | US Assets         | US Liabil | ities  | Net Position |
|--------------------------|-------------------|-----------|--------|--------------|
| Private                  | 12,505            |           | 13,021 | -516         |
| FDI                      | 3,699             |           | 2,647  | 1,052        |
| Portfolio Equity         | 2,851             |           | 1,838  | 1,014        |
| Portfolio Other          | 5,955             |           | 8,537  | -2,581       |
| Official                 | 918               |           | 3,871  | -2,954       |
| Total                    | 13,423            |           | 16,892 | -3,469       |
|                          |                   |           |        |              |
|                          |                   |           |        | 0.4.40       |
| Net Position Dec.2007    |                   | 45 304    |        | -2,140       |
| US assets                |                   | 15,791    |        |              |
| US liabilities           |                   | -17,931   |        |              |
| Current account balance  | ;                 |           |        | -706         |
| Everything but asset ir  | ncomes            | -832      |        |              |
| Income on US assets      |                   | 762       | 4      | .8%          |
| Income paid on US lial   | biities           | -636      | 3      | .5%          |
| Changes in Valuation, no | et:               |           |        | -824         |
| On US assets             |                   | -2,397    | -15    | .2%          |
| On US liabilities        |                   | 1,573     | -8     | .8%          |
| Statistical Discrepancy& | Capital Balance   |           |        | 201          |
| Net Position Dec.2008    |                   |           |        | -3,469       |
| Memo: Total return       | on US assets      |           | -10    | .4%          |
| Total return             | on US liabilities |           | -5     | .2%          |

- Applied question #2: To what extent is capital investment financed abroad?
- The Feldstein-Horioka puzzle:

|               | Gross saving and investment |                  |      | Net saving and investment |                     |      |  |
|---------------|-----------------------------|------------------|------|---------------------------|---------------------|------|--|
| Sample period | Constant                    | S/Y              | Ra   | Constant                  | 8/ Y                | Ra   |  |
| 1960-74       | 0-035<br>(0-018)            | 0-887<br>(0-074) | 0.81 | 0-017<br>(0-014)          | 0-938<br>(20-93 t.) | 087  |  |
| 1960-64       | 0-029<br>(0-015)            | 0.909<br>(0.060) | o.94 | 0.017                     | 0-936<br>(0-079)    | 0.81 |  |
| 1905-69       | 0-039<br>(0-025)            | 0.872<br>(0.101) | 0.83 | `0=029<br>(020=0)         | 0-908<br>(0-133)    | 0.75 |  |
| 1970-74       | 0.039<br>(0.024)            | 0-87:<br>(0-032) | a·B5 | 810-0<br>(810-0)          | 0-932<br>(0-107)    | 0.83 |  |

The Relation between Domestic Saving Ratios and Domestic Investment Ratios

 $\mathbb{R}^{2}$ 

• OR 1.4: Optimal taxation in a "large" economy

Slope =  $-(1 + r^A)$ Slope =  $-(1 + r^{A*})$ Α  $Y_2$ Laissez-faire budget line, slope =  $-(1 + r^L)$ в т Υ<sub>1</sub> Home period 1 consumption, C1

Home period 2 consumption, C2

Figure 1.11 The optimal tax on foreign borrowing

• Supply of foreign savings:

$$S_1^*(r) = Y_1^* - C_1^*(r) = \frac{\beta^*}{1+\beta^*} Y_1^* \frac{1}{(1+\beta^*)(1+r)} Y_2^*$$

• Offer curve:

$$1 + r = \frac{Y_2^*}{(1 + \beta^*)(Y_1 - C_1) + \beta^* Y_1^*}.$$

• Welfare problem is to maximize:

$$C_2 = Y_2 + \frac{Y_2^*}{(1+\beta^*)(Y_1 - C_1) + \beta^* Y_1^*} (Y_1 - C_1).$$

 Optimal strategy of borrower: Reduce borrowing relative to competitive amount => Borrow at reduced interest rates. Welfare gain. Loss abroad. Implementation: Tax.

- OR 1.5: Factor price equalization via labor mobility
  - Savings decision in period 1; labor allocation in period 2

$$C_1 = Y_1 - K_2,$$
  
 $C_2 = L_2 f(K_2/L_2) - w(L_2 - L^{H}) + K_2.$ 

- Constant returns to scale: international wage w determines K/L=k.
- FOC:

$$u'(C_1) = \beta [1 + f'(k_2)] u'(C_2),$$

• Autarchy line:

$$C_2 = F(Y_1 - C_1, L^{H}) + Y_1 - C_1.$$

• With mobility:

$$C_2 = [1 + r(w)](Y_1 - C_1) + wL^{\mathrm{H}}$$



Figure 1.12 Trade in labor services

| Mobility of capital:<br>Mobility of labour: | Fiz<br>Fiz | Fixed<br>Fixed |              | Mobile<br>Fixed |          | Mobile<br>Mobile |  |
|---------------------------------------------|------------|----------------|--------------|-----------------|----------|------------------|--|
| Externality:                                | 1%         | 2%             | 1%           | 2%              | 1%       | 2%               |  |
|                                             |            | Elast          | icities with | 1 respect t     | to (1-t) |                  |  |
| Capital stock                               |            |                |              | -               |          |                  |  |
| Capital tax                                 | 0.38       | 0.38           | 1.64         | 1.64            | 44.30    | 22.90            |  |
| Labour tax                                  | 0.12       | 0.12           | 0.50         | 0.50            | 100.00   | 50.00            |  |
| Labour force                                |            |                |              |                 |          |                  |  |
| Capital tax                                 | 0.05       | 0.05           | 0.21         | 0.21            | 42.90    | 21.30            |  |
| Labour tax                                  | 0.45       | 0.45           | 0.50         | 0.50            | 100.00   | 50.00            |  |
| Capital-labour ratio                        |            |                |              |                 |          |                  |  |
| Capital tax                                 | 0.33       | 0.33           | 1.43         | 1.43            | 1.43     | 1.43             |  |
| Labour tax                                  | -0.33      | -0.33          | 0.00         | 0.00            | 0.00     | 0.00             |  |
| Output                                      |            |                |              |                 |          |                  |  |
| Capital tax                                 | 0.15       | 0.15           | 0.64         | 0.64            | 42.70    | 21.60            |  |
| Labour tax                                  | 0.35       | 0.34           | 0.49         | 0.49            | 98.60    | 49.30            |  |

#### Table 1: The Impact of Capital and Labour Mobility on Taxes – A Numerical Example

Note: Values >1 are highlighted in bold.

Source: author's calculations

- Example (Bohn 2006): Small economy with congestion effect
  - TFP depends on absolute population with elasticity  $\boldsymbol{\epsilon}$
  - Compute responses to tax changes