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8.1 Appendix to section 3.1 Foreign Born Population & Immigration

Using the CPS, the education levels of the foreign born population 25-years and older entering the

US each decade since 1980 is shown in table 8. The data is also put in the form of percentages

of the respective immigration flows. For example, for the decade of 2000-2009, out of the 8.66

millions of (net) people entering the US, 31.6% were individuals with less than a high school

degree, 34.7% had a high-school degree or some college (either education in their home country or

some of it in the US) and 33.7% had an advanced degree (BA and above). These flows remained

relatively stable since 1980 (with an exception for the 2010-2013 period).

Table 9 displays the shares of the US population 25-years and older by education for the

same period as the foreign born population. The percentage of medium-skilled agents is very

stable (high school diploma or some college), fluctuating between 54% and 58% for the 1980-2013

period. The shares of people with less than a high-school diploma has been decreasing, with 26.8%

of the population in 1980-89, while the share of the population without a high-school diploma is

12.4% in 2010-2013. The share of the US population with a BA degree or above increased from

19% in 1980-89 to 30.7% in 2010-2013.

Accurate estimates of the net annual flow of immigrants (without conditioning by education)

to the US are presented in Blau and Mackie, editors (2017). Table 8 also present the estimates

for the same periods discussed (estimates available until 2013). Using those estimates, together

with the rest of the information in tables 7 and 8 we are able to compute the estimates by decade

presented in table 1.

Table 8. Number of Foreign people entering the US by decade, by education level (in

1000’s), 1980-2013

2010-13a (%) 2000-09 (%) 1990-99 (%) 1980-89 (%)

Less than High School 1917.5 21.1 2503 31.6 2831 32.7 2204 31.5

High School & Some College 4160 45.8 2743 34.7 3519 40.6 2849 40.7

BA degree & Above 3002.5 33.1 2665 33.7 2314 26.7 1951 27.9

Total 9080 100 7911 100 8664 100 7004 100
Source: U.S. Census Bureau, Current Population Survey, Annual Social and Economic Supplement,

2009 and 2013. Table 2.5.

Notes (a) Flow put in the form of flow/decade
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Table 9. US average population shares by education and decade, 1980-2013

2010-13 2000-09 1990-99 1980-89

Less than High School 12.4 14.8 19.2 26.8

High School & Some College 56.9 57.5 58.0 54.2

BA degree & Above 30.7 27.7 22.8 19.0

Total 100 100 100 100

Annual immigration/1000 nativesa 3.1 3.29 4.8 2.8
Source population shares: U.S. Census Bureau, Current Population Survey, Annual Social and

Economic Supplement. Table A-1, 2013 . Source net annual immigration to the US: Blau, Francine and

Christopher Mackie, editors (2017). The Economic and Fiscal Consequences of Immigration.

Washington, DC:The National Academies Press. doi: https://doi.org/10.17226/23550.

8.2 Appendix to section 2.2. Ruling out negative wage premiums

All agents works at their own (highest) skill level if the resulting ”unconstrained” wages satisfy

w1 ≤ w2 ≤ w3. Otherwise, it is efficient (both output maximizing and individually rational) for

some agents to take jobs at a lower skill level.

(Note to readers: The appendix is lengthy because we feel obliged to cover all theoretically

possible cases. Readers interested in the cases discussed in the text may focus on labor supply

ratios Z in the unconstrained set Ωu
Z , both defined below.)

To model job assignment in general, we distinguish labor supplies Li = Ni(1 + θi) from actual

labor inputs L̂i, i = 1, 2, 3. Let L̂ij ≥ 0 denote labor supplied by workers with skill i at skill level

j < i. (Throughout, i, j = 1, 2, 3 unless noted.) Then L̂1 = L1 + L̂21 + L̂31, L̂2 = L2 − L̂21 + L̂32,

and L̂3 = L3 − L̂31 − L̂32. Note that L̂31 is redundant because any set of labor inputs (L̂1, L̂2, L̂3)

obtained with L̂31 > 0 can also be obtained with L̂31 = 0 if L̂32 and L̂21 are increased by the

original amount of L̂31. Hence we set L̂31 = 0 without loss of generality.

Assuming CES production, output is Y = [
∑

i φi(L̂i)
ρ]

1
ρ . The resulting wages can be written

as

wi =
∂Y

∂L̂i
= Y 1−ρ ·

(
L̂i/φ

1
1−ρ
i

)ρ−1

(A.1)

For given (L1, L2, L3), maximizing Y by choice of (L̂32, L̂21) ≥ 0 implies the Kuhn-Tucker condi-

tions L̂32 · (w3 − w2) = 0, L̂21 · (w2 − w1) = 0, and w3 ≥ w2 ≥ w1. With two sets of Kuhn-Tucker

conditions, the solutions divide into four cases: (1) L̂32 = 0 and L̂21 = 0, which is the case of

”unconstrained” wages; (2) L̂32 > 0 and L̂21 = 0, which implies w2 = w3; (3) L̂32 = 0 and L̂21 > 0,

which implies w2 = w1; (4) L̂32 > 0 and L̂21 > 0, which implies w1 = w2 = w3.

Wages depend naturally on labor supplies but can be written more compactly in terms of the

ratios z1 = L1/L2 and z3 = L3/L2, exploiting constant returns to scale. The latter is also useful
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because

z1 =
x1 (1 + θ1)

(1 + θ2)
and z3 =

x3 (1 + θ3)

(1 + θ2)

are functions of the state (X, θ), whereas Li depends on native population Ni, which is not part

of the Markov state.

Define the vector of labor supply ratios

Z = (z1, z3) = Z(X, θ),

total labor L = L1 + L2 + L3, constants φ12 = (φ
1

1−ρ
1 + φ

1
1−ρ
2 )1−ρ, φ23 = (φ

1
1−ρ
2 + φ

1
1−ρ
3 )1−ρ, and

φ123 = (φ
1

1−ρ
1 + φ

1
1−ρ
2 + φ

1
1−ρ
3 )1−ρ, the dummy variable z2 ≡ 1, and the sets

Ωu
Z = {Z : z3 ≤ z̄3, z1 ≥ z

¯1}, where z
¯1 = (φ1/φ2)

1
1−ρ , z̄3 = (φ3/φ2)

1
1−ρ

Ω23
Z = {Z : z3 > z̄3, z1 ≥ z

¯13(1 + z3)}, where z
¯13 = (φ1/φ23)

1
1−ρ ,

Ω12
Z = {Z : z3 ≤ z̄31(1 + z1), z1 < z

¯1}, where z̄31 = (φ3/φ12)
1

1−ρ ,

Ω123
Z = {Z : z3 > z̄31(1 + z1), z1 < z

¯13(1 + z3)}.

Note that z
¯

13(1 + z̄3) =z
¯

1 and z̄31(1+z
¯

1) = z̄3. Hence the closures of the four sets above intersect

at (z
¯

1, z̄3), where Li/φ
1

1−ρ
i = L/φ

1
1−ρ
123 for all i, so unconstrainted wages satisfy w3 = w2 = w1

without job reassignments. Wage differentials arise if high skills are relatively more scarce; job

reassigments must occur if high skills are in relatively greater supply. Specifically:

Lemma 2.2A (Four Cases): Exactly one of the following four cases applies for all Z:

(1) If Z ∈ Ωu
Z , wages are unconstrained, Y = [

∑
i φi (Li)

ρ]
1
ρ , and L̂21 = L̂32 = 0. Moreover,

z3 < z̄3 implies w2 < w3, and z1 >z
¯

1 implies w1 < w2.

(2) If Z ∈ Ω23
Z , then w2 = w3, Y = [φ1 (L1)ρ + φ23(L2 + L3)ρ]

1
ρ , L̂21 = 0, and L̂32 > 0.

Moreover, z1 >z
¯

13(1 + z3) implies w2 < w3.

(3) If Z ∈ Ω12
Z , then w1 = w2, Y = [φ12(L1 + L2)ρ + φ3 (L3)ρ]

1
ρ , L̂21 > 0 and L̂32 = 0. Moreover,

z3 < z̄31(1 + z1) implies w1 < w2.

(4) If Z ∈ Ω123
Z , then w1 = w2 = w3, Y = (φ123)

1
ρ L, L̂21 > 0, and L̂32 > 0.

Proof: Since the four sets partition the space {Z : z1 ≥ 0, z3 ≥ 0}, exactly one applies for any

Z. (1) From (A.1), wi = wj iff L̂i/φ
1

1−ρ
i = L̂j/φ

1
1−ρ
j . Since ρ−1 < 0, wi ≥ wj iff L̂i/φ

1
1−ρ
i ≤ L̂j/φ

1
1−ρ
j .

If z3 ≤ (φ3/φ2)
1

1−ρ = z̄3 and z1 ≥ (φ1/φ2)
1

1−ρ =z
¯

1, then L3/φ
1

1−ρ
3 ≤ L2/φ

1
1−ρ
2 ≤ L1/φ

1
1−ρ
1 , so L̂i = Li

is consistent with w3 ≥ w2 ≥ w1. By analogous reasoning, strict inequalities z3 < z̄3 and/or z1 >z
¯

1

imply the corresponding strict inequalities for wages.

(2) If z3 > z̄3, then L3/φ
1

1−ρ
3 > L2/φ

1
1−ρ
2 and L̂3/φ

1
1−ρ
3 ≤ L̂2/φ

1
1−ρ
2 imply L̂32 > 0, so w2 = w3. In

turn, w2 = w3 implies (L3 − L̂32)/φ
1

1−ρ
3 = (L2 + L̂32 − L̂21)/φ

1
1−ρ
2 , so L̂32

L2
=

φ
1

1−ρ
2 z3−φ

1
1−ρ
3 +φ

1
1−ρ
3

L̂21
L2

φ
1

1−ρ
2 +φ

1
1−ρ
3

≥

( φ2

φ23
)

1
1−ρ · z3 − ( φ3

φ23
)

1
1−ρ and L̂3

L2
= z3 − L̂32

L2
≤ (φ3/φ23)

1
1−ρ · (1 + z3).
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Suppose for contradiction that L̂21 > 0. Then L̂1

L2
= z1 + L̂21

L2
> z1, and L̂32

L2
≥ ( φ2

φ23
)

1
1−ρ · z3 −

( φ3

φ23
)

1
1−ρ would imply L̂3

L̂1
= L̂3

L2
/ L̂1

L2
< (φ3/φ1)

1
1−ρ and hence w1 < w3 = w2, violating the Kuhn-

Tucker condition. By contradiction, L̂21 = 0, which implies L̂3

L2
= (φ3/φ23)

1
1−ρ (1 + z3) and L̂2

L2
=

(φ2/φ23)
1

1−ρ (1+z3). With these labor inputs L̂i, Y = [
∑

i φi (Li)
ρ]

1
ρ = [φ1 (L1)ρ + φ23 (L2 + L3)ρ]

1
ρ .

(3) The proof for z1 <z
¯

1 and z3 ≤ z̄31(1+z1) is analogous to case (2), with analogous steps, first

showing that z1 <z
¯

1 implies L̂21 > 0, and then showing that L̂32 > 0 would lead to a contradition,

so L̂32 = 0.

(4) Conditions z3 > z̄31(1 + z1) and z1 <z
¯

13(1 + z3) imply z3/z1 = L3/L1 > φ
1

1−ρ
3 /φ

1
1−ρ
1 . Since

L̂3/φ
1

1−ρ
3 ≤ L̂1/φ

1
1−ρ
1 one cannot have L̂32 = L̂21 = 0. By similar reasoning z3

1+z1
= L3

L1+L2
> z̄31

rules out L̂32 = 0 and z1
1+z3

= L1

L3+L2
<z

¯
13 rules out L̂12 = 0. Thus L̂32 > 0 and L̂21 > 0, hence

w1 = w2 = w3. Equality of L̂i/φ
1

1−ρ
i for all i then implies L̂i/φ

1
1−ρ
i = L/φ

1
1−ρ
123 , L̂i = φ

1
1−ρ
i /φ

1
1−ρ
123 · L,

and Y = (φ123)
1
ρ L. QED.

Lemma 2.2B (Wages): (1) For Z ∈ Ωu
z : w2 = φ2 {φ1z

ρ
1 + φ2 + φ3z

ρ
3}

1−ρ
ρ , w1 = w2 · φ1

φ2
·zρ−1

1 ≤
w2, and w3 = w2 · φ3

φ2
· zρ−1

3 ≥ w2.

(2) For Z ∈ cl(Ω23
z ), where the closure covers cases with w2 = w3 in Ωu

z : Define z13 ≡ z1
1+z3

,

then w2 = w3 = φ23 {φ1 (z13)ρ + φ23}
1−ρ
ρ and w1 = w2 · φ1

φ23
· (z13)ρ−1 ≤ w2.

(3) For Z ∈ cl(Ω12
z ), where the closure covers cases with w1 = w2 in Ωu

z : Define z31 ≡ z3
1+z1

,

then w2 = w1 = φ12 {φ3 (z31)ρ + φ12}
1−ρ
ρ and w3 = w2 · φ3

φ12
· (z31)ρ−1 ≥ w2.

(4) For Z ∈ cl(Ω123
z ): w1 = w2 = w3 = (φ123)

1
ρ .

Proof: Follows from differentiating the equations for Y in Lemma 2.2A and verifying that

wages are continous at boundaries between cases. QED.

8.3 Appendix to section 2.6. The model without dynamic effects.

Proofs and generalizations

8.3.1 Cases discussed in the text

We prove the claims in section 2.6 first for w1 < w2 < w3 and w2 ≤ w̄, and then generalize. The

wages w2 and w̄ that determines voter consumption c2 have the following properties:

Lemma 2.6A (Derivatives of w2): (1) For Z ∈ int(Ωu
z ):

∂w2

∂z1
= (1 − ρ)w2w1

y
> 0 and

∂w2

∂z3
= (1 − ρ)w2w3

y
> 0, where y = Y/L2 = {φ1z

ρ
1 + φ2 + φ3z

ρ
3}

1
ρ . Moreover, ∂w2

∂θ1
, ∂w2

∂θ3
> 0 and

∂w2

∂θ2
< 0.

(2) For Z ∈ int(Ω23
z ): ∂w2

∂z13
= (1− ρ)w2w1

y
> 0, ∂w2

∂θ1
> 0, and ∂w2

∂θ2
, ∂w2

∂θ3
< 0.

(3) For Z ∈ int(Ω12
z ): ∂w2

∂z31
= (1− ρ)w2w3

y
> 0, ∂w2

∂θ3
> 0, and ∂w2

∂θ1
, ∂w2

∂θ2
< 0.

(4) For Z ∈ int(Ω123
z ): ∂w2

∂z1
= ∂w2

∂z3
= 0 and ∂w2

∂θi
= 0 for all i.

Proof: Derivatives with respect to zi follow from differentiating the equations for w2 in Lemma

2.2B. Derivatives with respect to θi follow, using ∂zi
∂θ2

= −Li
L2

2

∂L2

∂θ2
= −N2Li

L2
2
< 0, ∂zi

∂θi
= 1

L2

∂Li
∂θi

= Ni
L2
> 0
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for i = 1, 3,∂z13

∂z1
= 1

1+z3
> 0, ∂z13

∂z3
= − z13

1+z3
< 0, ∂z31

∂z3
= 1

1+z1
> 0, ∂z31

∂z1
= − z31

1+z1
> 0, and applying

the chain rule. QED.

Remark: Since the derivatives differ across cases, w2 is generally not differentable at the

boundaries. For example, ∂z13

∂z1
= 1

1+z3
in Ω23

z implies ∂w2

∂z1
= (1− ρ) w2w1

y(1+z3)
which differs by a scale

factor from ∂w2

∂z1
in Ωu

z .

Lemma 2.6B (Average wage w̄): The average wage w̄ =
∑

i
Li
L
wi can be expressed as

w̄ =
∑
i

zi
1 + z1 + z3

wi =
y

1 + z1 + z3

=
1

1 + z1 + z3

{φ1z
ρ
1 + φ2 + φ3z

ρ
3}

1
ρ ,

and its derivatives are

∂w̄

∂zi
=

wi − w̄
1 + z1 + z3

for i = 1, 3, and
∂w̄

∂θi
=
Ni

L
(wi − w̄) for all i

Proof: w̄ = 1
L

∑
i Liwi = Y

L
by Euler’s law; w̄ =

∑
i
Li/L2

L/L2
wi =

∑
i

zi
1+z1+z3

wi and Y
L

= y
1+z1+z3

follow. Differentiating w̄ = 1
L

∑
j Ljwj with respect to wi yields ∂w̄

∂Li
= wi

L
+ 1

L

∑
j Lj

∂wj
∂Li
−

1
L2

∑
j Ljwj = 1

L
(wi− w̄) because

∑
j Lj

∂wj
∂Li

= 0 by constant returns to scale and 1
L2

∑
j Ljwj = w̄

L
.

Differentiating y
1+z1+z3

yields ∂w̄
∂zi

= 1
1+z1+z3

∂y
∂zi
− y

(1+z1+z3)2 = wi−w̄
1+z1+z3

since ∂y
∂zi

= wi. Finally,
∂w̄
∂θi

= Ni
∂w̄
∂Li

since Li = Ni(1 + θi). QED.

Remark: Lemma 2.6B shows that ∂w
∂θi

> 0 iff wi > w, as claimed in the text.

Lemma 2.6C: Suppose w1 < w2 < w3 and w2 ≤ w̄. Then (a) ∂c2
∂θ3

> 0, (b) ∂c2
∂θ2

< 0, and (c)
∂c2
∂θ1

> 0 for τ in a neighborhood of zero and ∂c2
∂θ1

< 0 for τ in a neighborhood of one.

Proof: Differentiating c2(Z) = (1− τ)w2+ τw̄ as function of Z = Z(X, θ), one obtains

∂c2

∂θi
= (1− τ)

∂w2

∂θi
+ τ

∂w̄

∂θi
,

where Lemma 2.6A implies ∂w2

∂θ1
, ∂w2

∂θ3
> 0 and ∂w2

∂θ2
< 0, since Z ∈ int(Ωu

z ) from w1 < w2 < w3. For

w2 ≤ w̄, Lemma 2.6B implies ∂w̄
∂θ1

< 0, ∂w̄
∂θ2
≤ 0 and ∂w̄

∂θ3
> 0. Combining terms, (a) follows from

∂w2

∂θ3
> 0 and w3 > w̄; (b) follows from ∂w2

∂θ2
< 0 and assumption w2 ≤ w̄; and ∂c2

∂θ1
is a weighted

average of ∂w2

∂θ1
> 0 and Ni

L
(w1 − w̄) < 0 with weights (1 − τ, τ). Hence ∂c2

∂θ1
> 0 as τ → 0 and

∂c2
∂θ1

< 0 as τ → 1, proving (c). QED.

Corollary to 2.6C: Suppose w1 < w2 < w3 and w2 ≤ w̄ for given X and for all θ ∈ Ωθ, and

β = 0. Then all optimal policies θ∗ satisfy θ∗2 = 0 and θ∗3 = θmax
3 ; and Ortega’s (2005) tie-breaking

convention to minimize population selects a unique policy (i.e., unique θ∗1).

Proof: For β = 0, problem (11) reduces to finding θ∗ ∈ arg maxΘ∈ΩΘ
{u2 (X, θ)}, which further

reduces to finding θ∗ ∈ arg maxΘ∈ΩΘ
{c2}. Since Lemma 2.6C implies ∂c2

∂θ3
> 0 and ∂c2

∂θ2
< 0,

arg maxΘ∈ΩΘ
{c2} is attained at the corners θ∗2 = 0 and θ∗3 = θmax

3 . Since optimal policies vary only

by θ∗1, Ortega’s convention selects the unique minimum of θ∗1. QED.

Remark: Since θ∗3 = θmax
3 and w1 < w2 < w3 requires z3 < z̄3, the corollary can only apply if
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x3(1 + θmax
3 ) < z̄3, i.e., if θmax

3 is sufficiently small.

Lemma 2.6D: Suppose w1 < w2 < w3 and w2 ≤ w̄ for all θ ∈ Ωθ, given X and assuming

β = 0. Consider a range of tax rates (τ−, τ+) ⊂ [0, 1] and the associated optimal policies θ∗(τ),

where in case of multiple solutions, θ∗(τ) is selected by Ortega’s (2001) tie-breaking convention

to minimize population. Then θ∗1 = θ∗1(τ) is decreasing in τ ; and strictly decreasing at interior

solutions θ∗1(τ) ∈ (0, θmax
1 ).

Proof: The Corollary to 2.6C implies θ∗2 = 0 and θ∗3 = θmax
3 for all τ ∈ (τ−, τ+). Let c2(θ1, τ)

denote consumption implied by immigration θ = (θ1, 0, θ
max
3 ). By the theorem of the maximum,

θ̃∗1(τ) ≡ arg maxθ1∈[0,θmax
1 ]{c2(θ1, τ)} is a non-empty u.h.c. correspondence.

Consider any pair τa < τb and any θ1a ∈ θ̃∗1(τa), θ1b ∈ θ̃∗1(τb). Optimality implies c2(θ1b, τb) ≥
c2(θ1a, τb) and c2(θ1a, τa) ≥ c2(θ1b, τa). Since c2 is continuous and differentiable,

c2(θ1b, τb)− c2(θ1a, τb)− c2(θ1b, τa) + c2(θ1a, τa)

=

∫ τb

τa

∫ θ1b

θ1a

∂2c2(θ1, τ)

∂τ∂θ1

dθ1dτ =
∂2c2(θ1m, τm)

∂τ∂θ1

· (θ1b − θ1a) · (τb − τa) ≥ 0

where τm ∈ (τa, τb) and θ1m is between θ1a and θ1b, using the mean value theorem. Differentiating
∂c2
∂θ1

in Lemma 2.6C, ∂2c2(θ1,τ)
∂τ∂θ1

= −∂w2

∂θ1
+ ∂w̄

∂θ1
< 0 for all (θ1, τ). Since τb − τa > 0, ∂2c2(θ1m,τm)

∂τ∂θ1
< 0

implies θ1b ≤ θ1a, proving that θ∗1(τ) is decreasing.

Note that ∂c2
∂θ

(θ1b, τb) = ∂c2
∂θ

(θ1b, τa) +
∫ τb
τa

∂2c2(θ1b,τ)
∂τ∂θ1

dτ < ∂c2
∂θ

(θ1b, τa). Hence θ1b = θ1a would be

inconsistent with the first order condition ∂c2
∂θ

= 0 for interior solutions. Hence θ1b < θ1a unless

θ1a = θ1b = 0 or θ1a = θ1b = θmax
1 . Finally, uniqueness of θ∗2 = 0 and θ∗3 = θmax

3 implies that if θ̃∗1(τ)

has multiple values, population is minimized by setting θ∗1(τ) = min θ̃∗1(τ). QED.

Lemmas 2.6A-D prove claims (a)-(c) in Section 2.6. Note that Lemma 2.6D would be much

easier to prove if ∂2c2/∂θ
2
1 < 0, using the implicit function theorem; but ∂2c2/∂θ

2
1 < 0 may

not always hold. Note also that since the proof uses θ̃∗1(τ), the tie-breaking convention θ∗1(τ) =

min θ̃∗1(τ) is without loss of generality.

8.3.2 Generalizations

Now consider the static model without assumptions w1 < w2 < w3 and w2 ≤ w̄. (Note to readers:

We provide this analysis mainly to motivate our focus on small θmax
3 in settings (II) and (III). That

is, this appendix section is meant to show that while it is possible to prove results for high θmax
3 ,

the analysis is much more complicated and does not provide significant new insights. Readers may

skip this subsection without loss of continuity.)

(1) Regarding w2 ≶ w̄, note that w2 ≤ w̄ was invoked only in the proof of Lemma 2.6C to sign
∂c2
∂θ2

< 0. If w2 > w̄ for some (X, θ), the sign of ∂c2
∂θ2

becomes ambiguous and hence θ∗2 > 0 cannot

be ruled out. However, θ∗1 and θ∗2 cannot both be positive, i.e., θ∗1θ
∗
2 = 0. The proof is implied by

a more general insight:
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Lemma 2.6E: Derivatives of ci = (1− τ)wi+ τw̄ satisfy
∑

j LjNj
∂ci
∂θj

= 0 whenever wages are

differentiable.

Proof: Consider
∑

j
∂ci
∂Lj

Lj = (1− τ)
∑

j
∂wi
∂Lj

Lj + τ
∑

j
∂w̄
∂Lj

Lj. Constant returns to scale imply∑
i
∂w2

∂Li
Li = 0. From Lemma 2.6B,

∑
i
∂w̄
∂Li
Li =

∑
i

1
L

(wi − w̄)Li =
∑

i
Li
L
wi − w̄ = 0. Hence∑

j
∂ci
∂Lj

Lj = 0. Since ∂ci
∂Lj

= Nj
∂ci
∂θj

,
∑

j LjNj
∂ci
∂θj

= 0. QED.

Corollary to 2.6E: Suppose w2 < w3 for given X and for all θ ∈ Ωθ, and β = 0. Then all

θ∗ = P (X) satisfty θ∗3 = θmax
3 and θ∗1θ

∗
2 = 0.

Proof: Since w2 < w3 implies w3 > w̄, ∂w2

∂θ3
> 0, ∂w̄

∂θ3
> 0 follow from Lemmas 2.6A-B. Hence

∂c2
∂θ3

> 0 and θ∗3 = θmax
3 . Then from Lemma 2.6E, either ∂c2

∂θ1
< 0, which implies θ∗1 = 0, or ∂c2

∂θ2
< 0

which implies θ∗2 = 0, or both, which combines to θ∗1θ
∗
2 = 0. QED.

Intuitively, θ∗2 > 0 is possible for w2 > w̄ because medium skilled immigrants then generate

net taxes that reduce the tax burden on native medium skilled agents. However, medium-skilled

immigrants also reduce w2. Hence θ∗2 > 0 occurs only when the tax rate and initial value of x1

are so high that the fiscal benefits outweigh the reduction in wages; and under these conditions,

low-skilled immigrants would greatly reduce c2. This provides an intuition why θ∗1 = 0 when

θ∗2 > 0.

(2) Consider wage equalization. This is straightforward but requires multiple case distinctions

and new notation, because immigration has wage effects that differs across cases in Lemma 2.6A.

For given X, Z must be in the feasible set

ΩZ(X) ≡ {Z : z1 =
x1(1 + θ1)

1 + θ2

, z3 =
x3(1 + θ3)

1 + θ2

for some Θ ∈ ΩΘ}.

which may overlap with some or all of the sets in Lemma 2.6A. Note that ΩZ(X) is compact and

convex and that any Z ∈ ΩZ(X) can be implemented by the immigration policy

θo2 = max{x1

z1

− 1,
x3

z3

− 1, 0}, θo1 =
z1(1 + θo2)

x1

− 1, θo3 =
z3(1 + θo2)

x3

.

Moreover:

Lemma 2.6F: (a) The feasible set ΩZ(X) is equivalently to z1 ∈ [zmin
1 , zmax

1 ] and z3 ∈[
zmin

3 , zmax
3 (z1)

]
, where zmin

1 = x1

1+θmax
2

, zmax
1 = x1 · (1 + θmax

1 ), zmin
3 = x3

1+θmax
2

, and zmax
3 (z1) =

x3(1+θmax
3 )

max(1,x1/z1)
.

(b) For any Z ∈ ΩZ(X), policy θo is the unique policy that satisfies Ortega’s (2001) tie-breaking

convention to minimize population. If z3 > x3, then θo1θ
o
2 = 0.

Proof: (a) By construction, Z ∈ ΩZ(X) implies z1 ∈ Ωz1 and z3 ∈ Ωz3(z1). Conversely, for any

z1 ∈ Ωz1 and z3 ∈ Ωz3(z1), the policy defined in (b) satisfies Θ ∈ ΩΘ, hence Z ∈ ΩZ(X).

(b) Any policy θ′ that implements Z must satisfy (1 + θ′2)z1 = x1(1 + θ′1) and (1 + θ′2)z3 =

x3(1 + θ′3). Minimizing population L = N2

∑
i xi(1 + θ′i) subject to these constraints implies

θ′2 = 0 if z1 ≥ x1(1 + θ′1) and z3 ≥ x3(1 + θ′3), implies θ′2 = x1

z1
− 1 > 0 if z1 < x1(1 + θ′1) and
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(1 + x1

z1
)z3 ≥ x3(1 + θ′3), and θ′2 = x3

z3
− 1 > 0 if z3 < x3(1 + θ′3) and (1 + θ′2)z1 ≥ x1(1 + θ′1). Hence

θ′2 = θo2. Then θo1, θ
o
3 follow from the constraints. Moreover, z3 > x3 implies x3

z3
− 1 < 0, hence

θo2 = max{x1

z1
− 1, 0} and θo1 =

z1(1+θo2)

x1
− 1 = max{ z1

x1
− 1, 0}, which implies θo1θ

o
2 = 0. QED.

Remark: Part (a) facilitates sequential choice of z3 followed by z1, which useful because ∂c2
∂θ3

is easy to sign in all cases. Part (b) shows that Ortega’s (2005) tie-breaking convention yields a

unique policy in the static model whenever the set

Ω∗Z ≡ arg max{c2(Z) : Z ∈ ΩZ(X)}

is single valued.

(3) To focus the analysis, suppose w1 < w2 < w3 applies at least at X, the starting point

without immigration; that is, Z(X, 0) = (x1, x3) ∈ int(Ωu
Z). Also assume θmax

3 ≤ θmax
2 , as implied

by the notion that high skilled immigrants are relatively scarce.16 One finds:

Lemma 2.6G: Suppose X ∈ int(Ωu
Z). Then:

(a) If θmax
3 ≤ z̄3/x3−1, all optimal policies satisfy θ∗3 = θmax

3 , θ∗1θ
∗
2 = 0, all imply unconstrained

wages, and Ortega’s (2001) tie-breaking convention generically selects a unique policy.

(b) If θmax
3 > z̄3/x3− 1, there exists an optimal policy θ∗ with unconstrained wages (Z∗ ∈ Ωu

Z).

It is characterized by either:

(i) θ∗3 = z̄3/x3 − 1, θ∗1 ≥ 0, θ∗2 = 0, and w1 < w2 = w3, or

(ii) θ∗3 = z̄3/x3 − 1, θ∗1 = 0, θ∗2 > 0, and w1 < w2 = w3, or

(iii) θ∗3 = θmax
3 , θ∗1 = 0, θ∗2 >

x3

z3
(1 + θmax

3 )− 1, and w1 < w2 < w3.

Moreover, Ortega’s (2001) tie-breaking convention generically selects a unique θ∗ in Ωu
Z .

(c) If cases (b-i) or (b-ii) apply, Ω∗Z also includes a line segment in Ω23
Z consisting of all Z ∈

ΩZ(X) such that z∗13 = z1
1+z3

is the same as for Z∗ ∈ Ωu
Z ; all such policies imply the same wages.

In case (b-i), all policies in Ω23
Z are eliminated by Ortega’s (2001) tie-breaking convention; in case

(b-ii), policies in Ω23
Z are not eliminated, but all are economically equivalent to Z∗ ∈ Ωu

Z in the

sense that they imply the same wages and the same job assignments L̂i.

Proof: (a) If X ∈ int(Ωu
Z) and θmax

3 ≤ z̄3/x3 − 1, then ΩZ(X) ⊂ Ωu
Z ∪ Ω12

Z .

Suppose for contradiction that Z ∈ Ω12
Z is optimal: Since x1 >z

¯
1 whereas z1 <z

¯
1, θ2 >

x1/z
¯

1 − 1 > 0 for any policy θ that implement Z. Note that ∂c2
∂θ2

< 0 on Z ∈ int(Ω12
Z ) because

∂w2

∂θ2
< 0 from Lemma 2.6A and ∂w̄

∂θ2
≤ 0 from Lemma 2.6B with w1 = w2 < w3. Hence c2(Z) is

strictly less than c2 under the feasible policy θ′ that replaces θ2 by θ′2 = x1/z
¯

1− 1 and implements

Z ′ ∈ Ωu
Z (on the boundary to Ω12

Z ), contradicting optimality of Z ∈ Ω12
Z and proving Ω∗Z ⊂ Ωu

Z .

Considering Z ∈ ΩZ(X) ∩ Ωu
Z : If θmax

3 < z̄3/x3 − 1, then w2 < w3, so θ∗3 = θmax
3 and θ∗1θ

∗
2 = 0

from Corollary 2.6E. If θmax
3 = z̄3/x3−1, ∂c2

∂θ3
> 0 for Z ∈ int(Ωu

Z) implies θ∗3 = θmax
3 , and hence z∗3 =

16Cases with X /∈ int(Ωu
Z) would require numerous case distinctions that are utterly irrelevant in the context of

the main model, where X is generated by transition matrices that tend to have x3/z̄3 << 1 and x1/z
¯
1 >> 1, which

means X is far from the boundaries of Ωu
Z . If θmax

2 < θmax
3 , optimal policy could be technically in Ω23

Z though
economically equivalent to policies in Ωu

Z , requiring needless elaboration.
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zmax
3 (z∗1). Hence the problem of maximizing c2(Z) on Ωu

Z reduces to maximizing c2(z1, z
max
3 (z1))

by choice of z1. Since [max{zmin
1 , z

¯1}, zmax
1 ] is compact, z∗1 = arg max{c2(z1, z

max
3 (z1))} is non-

empty, showing existence of Z∗ ∈ Ωu
Z . Moreover, z∗1 = z∗1(τ) is strictly decreasing in τ for z∗1 ∈

(max{zmin
1 ,z

¯
1}, zmax

1 ) by arguments analogous to the proof of Lemma 2.6D (hence details omitted),

which implies uniqueness of (z∗1 , z
∗
3) except for a countable number of tax rates, i.e. generic

uniqueness. Then Lemma 2.6F implies generic uniqueness of θ∗ with tie-breaking convention, and

θ∗1θ
∗
2 = 0.

(b) For θmax
3 > z̄3/x3 − 1, ΩZ(X) may overlap with Ω123

Z and Ω23
Z .

Suppose for contradiction that Z ∈ cl(Ω123
Z ) is optimal: Since x1

1+x3
>z

¯
13 for X ∈ int(Ωu

Z),

whereas z13 ≤z
¯

13 on cl(Ω123
Z ), implementing Z requires θ3 > 0 and/or θ2 > 0 and implies existence

of a feasible alternative θ′ with θ3 > θ′3 and/or θ2 > θ′2 that implements Z ′ ∈ Ω23
Z ∩ cl(Ω123

Z ). As

c2 is constant on cl(Ω123
Z ), c2(Z) = c2(Z ′). Note that ∂w2

∂θ2
, ∂w2

∂θ3
< 0 in Ω23

Z and that ∂w̄
∂θi

= 0 at Z ′.

Hence ∂c2
∂θ2
, ∂c2
∂θ3

< 0 a neighborhood of Z ′ inside Ω23
Z , which means there is a feasible Z” ∈ Ω23

Z for

which c2(Z”) > c2(Z ′) = c2(Z), contradicting optimality of Z ∈ cl(Ω123
Z ). Analogous reasoning

rules out optimal Z ∈ Ω12
Z , because there are superior alternatives either on the boundary between

Ωu
Z and Ω12

Z or on the boundary between Ω23
Z and Ω123

Z .

Thus Ω∗Z ⊂ Ωu
Z ∪ Ω23

Z .

For Z ∈ cl(Ω23
Z ), Lemma 2.2B implies that w2 and w̄ are univariate functions of z13. Note

that Z ∈ ΩZ(X) ∩ cl(Ω23
Z ) implies z3 ≥ z̄3 and z1 ≤ x1 · (1 + θmax

1 ), so z13 ≤ x1

1+z̄3
· (1 + θmax

1 ) ≡
zmax

13 ; also, , z13 ≥z
¯

13, and z3 ≥ z̄3 further implies x3(1+θ3)
1+θ2

≥ z̄3, 1 + θ2 ≤ x3

z̄3
(1 + θmax

3 ), and

z13 ≥ x1

1+θ2+x3(1+θ3)
≥ x1

(1+θmax
3 )(x3/z̄3+x3)

. Thus, using zmin
13 ≡ max{z

¯
13, x1

(1+θmax
3 )(x3/z̄3+x3)

}, one finds

ΩZ(X) ∩ cl(Ω23
Z ) ⊂ {Z : z3 ≥ z̄3, z

min
13 ≤ z13 ≤ zmax

13 }.
Conversely, note that Zu = (z13(1 + z̄3), z̄3) ∈ ΩZ(X) ∩ cl(Ω23

Z ) for all z13 ∈
[
zmin

13 , zmax
13

]
,

and Zu ∈ Ωu
Z . Define Ω∗13 ≡ arg max{c2(Zu), z13 ∈

[
zmin

13 , zmax
13

]
}, which is non-empty because[

zmin
13 , zmax

13

]
is compact, and generically single-valued by arguments analogous to the proof of

Lemma 2.6D. Since w2 and w̄ are univariate functions of z13 on cl(Ω23
Z ), c2(Z) is constant for all

Z ∈ cl(Ω23
Z ) with common ratio z1

1+z3
= z13. Hence for any z∗13 ∈ Ω∗13, Zu∗ = (z∗13(1 + z̄3), z̄3)

maximizes c2(Z) on {Z : z3 ≥ z̄3, z
min
13 ≤ z13 ≤ zmax

13 }, and hence on the subset ΩZ(X) ∩ cl(Ω23
Z ).

The set of policies that maximize c2(Z) on ΩZ(X) ∩ cl(Ω23
Z ) therefore consist of Zu∗ and the

corresponding line segment(s) in Ω23
Z with z13 = z∗13.

Now consider all Z ∈ ΩZ(X)∩Ωu
Z . Since Zu∗ ∈ Ωu

Z , max{c2(Z) : Z ∈ ΩZ(X)∩Ωu
Z} ≥ c2(Zu∗),

which leaves two possibilities:

If max{c2(Z) : Z ∈ ΩZ(X) ∩ Ωu
Z} = c2(Zu∗), Zu∗ ∈ Ωu

Z and the line segments in Ω23
Z with

z13 = z∗13 are optimal. In addition, argmax{c2(Z) : Z ∈ ΩZ(X) ∩ Ωu
Z} may include policies

with z3 < z̄3. Since ∂c2
∂θ3

> 0 on int(Ωu
Z), z∗3 = min{zmax

3 (z∗1), z̄3}, which maxizes z3 within Ωu
Z , and

θ∗1θ
∗
2 = 0 follows as in (a). This allows for three cases: (i) if z∗3 = z̄3 and θ∗2 = 0, then θ∗3 = z̄3/x3−1

and θ∗1 ≥ 0; (ii) if z∗3 = z̄3 and θ∗2 > 0, then θ∗3 = z̄3/x3 − 1 and θ∗1 = 0; (iii) if z∗3 < z̄3, then

z∗3 = zmax
3 (z∗1), so θ∗3 = θmax

3 and θ∗2 > x3

z3
(1 + θmax

3 ) − 1 > 0; the latter implies θ∗1 = 0. Also,
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z∗3 < z̄3 implies Z∗ ∈ int(Ωu
Z), so w1 < w2 < w3. This proves the properties claimed in (i-iii).

Alternatively, if max{c2(Z) : Z ∈ ΩZ(X) ∩ Ωu
Z} > c2(Zu∗), then all optimal policies must satisfy

z3 < z̄3, and by the arguments above, they have properties (iii).

Note that all optimal policies in ΩZ(X)∩Ωu
Z must maximize c2 by choice of z1 ∈ [max{z

¯
1, z

min
1 }, zmax

1 ]

with implied z3 = min{z̄3, z
max
3 (z1)}. For this univariate choice problem, arguments analogous to

the proof of Lemma 2.6D imply that z∗1(τ) is strictly decreasing in τ , hence generically unique,

which means Ortega’s (2001) tie-breaker selects a unique θ∗.

(c) The claimed line segments are defined in the proof of (b) above. In case (i), constant z∗13

on a line segment requires that θ∗1 and θ∗3 are increasing in z3. Hence Ortega’s tie breaker selects

(z∗13(1 + z̄3), z̄3), which is in Ωu
Z . In case (ii), constant z∗13 on a line segment requires that θ∗3 is

increasing in z3 whereas θ∗3 is decreasing. Since θ∗1 = 0, L1 = N1 is given, and constant z∗13 = N1

L2+L3

implies common values for L2 + L3, for wages, and hence the same job assignments L̂i. Ortega’s

tie breaker is unhelpful because N1 + L2 + L3 is common. In case (iii), z3 < z̄3 rules out policies

in Ω23
Z . QED.

Remarks: Lemma 2.6G generalizes 2.6F and shows that there is always an optimal policy

with unconstrained wages. The multiplicity of optimal policies is largely resolved by Ortega’s tie-

breaking convention, except for non-generic cases with multiple solutions and in subcase (b)(ii),

when high-skilled immigrants are assigned to medium-skilled job. The latter is economically

irrelevant (not affecting the skill mix actually used (L̂i)), an artifact of labeling immigrants by

innate skills in a scenario that assignes them to the same job regardles of skill. A natural tie breaker

is to assume that immigrants are admitted at the skill level at which they are employed–then all

optimal policies have unconstrained wages.

8.4 Appendix to Section 3.2. Details on Mobility Matrices

We describe in more detail the analysis done in the text and present some robustness checks.

We use individuals whose interview was obtained during the period 1977-2012, who were aged

25-55 and born at least since 1945. Then we consider some subsamples. The total number of

observations used in the main text includes 18999 observations for children of natives, and 1447

observations for children of immigrants. Among natives, 8476 are men and 10523 are women.

Among immigrants, 636 are men and 811 are women. In what follows, we label ”children of

immigrants” as ”immigrants” for simplicity. We show in this section that the conclusions remain

even if use only sons or daughters, as well as controlling by white race.

Table 10 shows the estimated intergenerational (transition) matrices for immigrants. Matrix

#1′ is the transition matrix of men (sons of immigrants), matrix #2′ is the same concept for

women, while matrix #3′ is for both men and women (used in main text). Table 10 shows the

different matrices estimated for natives: matrix #1 is for men, matrix #2 is for white men, matrix

#3 is for women, matrix #4 is for white women and matrix #5 is for all men and women (used
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in text).

Table 10. Estimated Transition Matrix for Children of Immigrants

Transition Matrix (QI) Men/Women Race Age

1′
.240 .544 .216 N1= 171

.068 .647 .285 N2= 323

.021 .338 .641 N3= 142

Men All 25-55

2′
.192 .628 .180 N1= 250

.067 .622 .311 N2= 389

.023 .314 .663 N3= 172

Women All 25-55

3′
.211 .594 .195 N1= 421

.067 .633 .299 N2= 712

.022 .325 .653 N3= 314

Both All 25-55

We test whether the probability distributions for natives and children of immigrants are sta-

tistically the same, first at the row level and then at the matrix level. At the row level the null

hypothesis is given by H0 : qij = qIij for all j=1, 2, 3, given row [i].

Let the parameters q̃ij be the overall population parameters (for both natives and immigrants);

when they are unknown (as in this case) they are estimated with the sample counterpart. Define

also nim be the total counts of row i (in transition matrix) of sample m. Under the null, the statistic
2∑

m=1

nim
k∑
j=1

(qij−q̃ij)2

q̃ij
is distributed chi-square with (k − 1) degrees of freedom (k = 3), where nim is

the number of counts of row i of sample m. The statistic for each row is to be compared with χ2
(2),

which is 5.99 (9.21) at the 5% (1%) level of significance. For example, for the main matrices used

in the paper (Q[#5] and QI [#3′]) the statistics are 58.74 for the first row, 18.63 for the second

and 10.16 for the third, thus rejecting equality between natives and immigrants at each skill level.

We can also test for the equality of both matrices. The test (see Amemiya Pp. 417 and Mood-

Graybill-Boes Pp. 449) is given by summing over rows, with the null hypothesis that qij = qIij for

all i = 1, 2, 3 and j = 1, 2, 3. Then the null is rejected if
k∑
i=1

2∑
m=1

nim
k∑
j=1

(qij−q̃ij)2

q̃ij
> χ2

(k(k−1)) where

the degrees of freedom are in this case (k − 1) k = 3 (2) = 6. The test produces a statistic of 87.52,

which is significant at the 1% level (where thresholds are 16.81 at the 1% level and 12.59 at the

5% level). Hence, the test rejects that children of natives and those of first generation immigrants

have the same transition matrix.

The results that low-skilled mobility of immigrants is higher for immigrants, as well as similar

mobility in the high-skilled category are very robust across subsamples, while for medium-skilled

men there’s no statistical difference in the mobility of immigrants and natives (native matrix

Q [#1] and immigrant matrix QI [#1′], with a row statistic of 3.47, less than 5.99 which is the

5% significance level), and there’s still significant difference for women (Q [#3] and Q [#2′], with

a statistic of 17.45 > 5.99). For the test at the matrix level for these same subsamples of men
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or women, we reject that they are statistically equal at the 1% significance level. Similar results

for white men vs immigrant men (Q [#2] and QI [#1′]) and white women vs immigrant women

(Q [#4] and QI [#2′]). The tests are reported in table 12.

Table 11. Estimated Transition Matrices for Natives
# Transition Matrix (Q) Men/Women Race Age

1

.281 .628 .091 N1= 1538

.068 .692 .240 N2= 4985

.008 .401 .590 N3= 1953

Men All 25-55

2

.282 .622 .096 N1= 1094

.064 .685 .251 N2= 4318

.007 .384 .609 N3= 1806

Men White 25-55

3

.239 .687 .075 N1= 2317

.057 .719 .224 N2= 6091

.011 .394 .595 N3= 2115

Women All 25-55

4

.232 .690 .078 N1= 1465

.047 .713 .231 N2= 4984

.009 .381 .610 N3= 1901

Women White 25-55

5

.256 .663 .081 N1= 3855

.062 .707 .231 N2= 11076

.010 .397 .593 N3= 4068

Both All 25-55

6

.253 .661 .086 N1= 2559

.055 .700 .245 N2= 9302

.008 .382 .609 N3= 3707

Both White 25-55

Table 12. Tests with 5% critical values (χ2)

H0 (Null

Hypothesis)

Row1 Test

CV=5.99

Row2 Test

CV=5.99

Row3 Test

CV=5.99

Matrix Test

CV=12.59

Q[#1] = QI [#1] 26.05∗∗ 3.47 5.80 33.87∗∗

Q[#2] = QI [#1] 21.53∗∗ 2.12 5.21 27.69∗∗

Q[#3] = QI [#2] 32.72∗∗ 17.45∗∗ 5.03 56.06∗∗

Q[#4] = QI [#2] 26.78∗∗ 14.68∗∗ 4.26 46.89∗∗

Q[#2] = Q[#4] 12.03∗∗ 19.83∗∗ 3.42 34.89∗∗

QI [#1] = QI [#2] 3.00 0.58 0.55 3.79

Q[#1] = Q[#3] 14.28∗∗ 11.27∗∗ 1.95 26.49∗∗

Q[#5] = QI [#3] 58.74∗∗ 18.63∗∗ 9.34∗∗ 87.52∗∗

Notes: The 1% critical value (CV) of the test for equality of matrices is 16.81 (6 degrees of freedom).

The 1% CV (∗∗) for tests of row equality is 9.21.
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We also look at differences between men and women transition matrices, for natives-only and

immigrants-only. Comparing the transition matrices for native men and women (native matrix #1

vs native matrix #3), the first two rows suggest that men have slightly more extreme outcomes

than women. The row tests show that the probability distributions for sons of low-skilled and

medium-skilled parents are different to those of daughters, with statistics of 14.28 (low-skilled

parents) and 11.27 (medium-skilled), while we cannot reject that the probability distribution of

sons and daughters of high-skilled parents is the same (statistic=0.95 < 5.99). The matrix test

rejects that men and women have the same transition matrices, with an statistic of 26.49 > 12.59.

In the case of immigrants (immigrant matrix #1 and immigrant matrix #2), we cannot reject that

the rows and the whole matrices are statistically the same. The differences are similar to those of

natives, but in this case the lower number of observations is the cause that we can’t reject the null

of matrix equality. When we restrict the men-women comparison to native whites, the matrices

and tests results remain essentially unchanged.

8.4.1 Transition Matrices under an Alternative Definition of 2nd Generation Immi-

grants

Table 13 presents the transition matrices when second generation immigrant are defined as indi-

viduals whose both parents were born outside the US under the same filters as described in the

main text. The sample size across all skills categories is only 530 observations (as opposed to 1447

used in the main analysis).

Table 13. Transition Matrices of children of immigrants:

both parents born outside US

Transition Matrix (QI) Men/Women Race Age

1′′
.286 .464 .250 N1= 84

.085 .606 .309 N2= 94

.043 .391 .565 N3= 46

Men All 25-55

2′′
.165 .617 .218 N1= 133

.058 .545 .397 N2= 121

.019 .288 .692 N3= 52

Women All 25-55

3′′
.212 .558 .230 N1= 217

.070 .572 .358 N2= 215

.031 .337 .633 N3= 98

Both All 25-55

With the new definition, we also test whether matrix #3′′ is statistically different from matrix

#3′, which considers whether the mobility matrix obtained for immigrants when these are defined

as children of at least one foreign-born parent is statistically different from the same matrix

obtained for children of two foreign-born parents. The row tests yield 1.89, 3.79 and 0.41 for low-

skilled, medium-skilled and skilled parents respectively, which are all lower than the 5.99 threshold
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for rejection. The matrix test yields 6.10, lower than the 12.59 threshold at the 5% level. Thus

confirming that these matrices are statistically the same.

8.4.2 Average Schooling Years by Cohort in the GSS

The average number of schooling years for individuals born in the US and aged between 25 and

55 years old at the time of the interview ranges from 11.03 for those born in the period 1915-1924

to 13.86 for the cohort 1975-1984. We use individuals born on or after 1945 because the average

schooling years by cohort are roughly constant since then, while the average schooling years trend

upward for previous cohorts.

Table 14. Average schooling years by GSS cohort∗

Cohort born 1915-24 1925-34 1935-44 1945-54 1955-64 1965-74 1975-84

Mean 11.03 12.01 12.93 13.65 13.64 13.87 13.86

Std Dev 3.33 3.20 2.95 2.74 2.52 2.55 2.74

Sample (N) 115 1193 3342 7157 7277 3561 996
∗Individuals born in the US, age 25-55 at the time of interview. Men and Women.

8.5 Appendix to Section 3.3. Estimation of TFR’s for Native and

Foreign Born Women in the US

We estimate total fertility rates (TFR) by education level and nativity, starting from the fertility

rates by education level that can be computed from birth and census data. Since birth data

available at the VitalStats website doesn’t distinguish whether the mother was US-born or foreign-

born, we construct estimates with census information as well as with the help of the American

Community Survey (ACS), which identifies the place where the mother was born and which can

be used to estimate TFR′s. The estimators are derived for each specific level of skill levels as

defined in this paper. We first estimate TFR’s for all US women for years 1990, 2000 and the CPS

for 2005. The results are in table 15.

Table 15.TFR’s for all women in US by education

Year Less than HS HS + Some College BA+Beyond

2005 2.73 1.95 1.85

2000 2.26 2.00 1.84

1990 2.43 2.04 1.61

Average 2.47 2.00 1.77
Sources: Census 1990, 2000. CPS-2005.

Now we show how we estimate TFR′s by nativity from the levels in table 15 which are for

all women. For the particular estimates, we keep notation simple by not including a particular

skill level (but calculations are done for each education level defined in the paper). Define Xk
i =
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Number of children born during year to women type k in age-group i; Yk
i =total # of women

type k in age-group i; k = {N,F} , where N=US-born and F=foreign-born; n = # of age-groups

(5-year groups); TFRk =Total fertility rate of women type k ; TFR =Total fertility rate of all

women living in the US.

The goal is to obtain estimates for TFRN and TFRF as all data for their direct estimation

is not available. So we construct estimators of TFRN and TFRF from our estimates for TFR

for all women. The TFR can be written as TFR = 5Σn
i

[(
XN
i +XF

i

)
/
(
Y N
i + Y F

i

)]
. It can

then be rewritten as TFR = TFRF − 5Σn
i

(
1− wFi

)
mi, with weights wFi = Y F

i /
(
Y N
i + Y F

i

)
,

and where mi =
[(
XF
i /Y

F
i

)
−
(
XN
i /Y

N
i

)]
is the difference in births per foreign–born women and

births per US-born women in age group i (for a given level of education). Hence an estimate of

TFRF is obtained by computing TFRF = TFR+ 5Σn
imi

(
1− wFi

)
. Similar algebra yields native

fertiliy as TFRN = TFR− 5Σn
imiw

F
i .

Table 16.Estimated weights (wF
i )

Census 1990, 2000 and CPS-2005 by skill level (L, M, H)*

1990 2000 2005

Age Group L M H L M H L M H

15-19 .082 .068 .250 .092 .083 .256 .078 .089 .209

20-24 .209 .079 .091 .296 .113 .135 .263 .109 .107

25-29 .229 .077 .106 .394 .127 .160 .383 .133 .157

30-34 .248 .075 .111 .400 .122 .161 .476 .148 .189

35-39 .257 .070 .096 .360 .107 .155 .452 .142 .177

40-44 .241 .075 .099 .339 .097 .135 .386 .117 .159

45-49 .208 .074 .101 .345 .087 .115 .348 .099 .141

50-54 .185 .077 .106 .303 .088 .106 .345 .090 .116

* L= Low-Skilled, M=Medium-Skilled, H=High-Skilled

The estimates for the weights wi come from the census of 1990, 2000 and the 2005 CPS.

However, data is not available for the differences mi for these exact years. Thus we estimate the

average difference mi for each age-education group for years 2001 − 2008 from ACS data. Using

these numbers, we arrive at the fertility rates by skill level and nativity shown in the text.

Table 17. Estimates of differences in births per women

(foreign - natives : mi =
[(
XF
i /Y

F
i

)
−
(
XN
i /Y

N
i

)]
)∗

15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54

Low .014 .002 .042 .051 .036 .015 .000 .000

Medium .002 .000 .0016 .037 .030 .012 .003 .000

High -.003 .010 .005 -.004 .012 .009 .003 .001
∗averages for 2001-2008 (ACS).

A-15



8.6 Appendix to section 4.1. Steady State Composition of the Native

Population in absence of Immigration

In the absence of immigration we have that St is time invariant, so we drop the time subscript.

Thus in this case we have that S = Q′η and the scalar given by
(
St[2]Xt

)
=
∑3

i xitηiqi2. Therefore

the evolution of the native population is given by

Xt+1 = Q′ηXt/
(∑3

i
xitηiqi2

)
.

Multiply both sides of the above expression by the scalar
(∑3

i xitηiqi2
)
, and evaluate the product

Q′ηXt in order to writex1t+1

(∑3
i xitηiqi2

)∑3
i xitηiqi2

x3t+1

(∑3
i xitηiqi2

)
 ≡ Xt+1

(∑3

i
xitηiqi2

)
= Q′ηXt ≡


∑3

i xitηiqi1∑3
i xitηiqi2∑3
i xitηiqi3

 .
Substracting Q′ηXt on both sides yields the [3x1] system of equations

Xt+1

(∑3

i
xitηiqi2

)
−Q′ηXt = 0.

At a steady state, this system is given byx
0
1

(∑3
i x

0
i ηiqi2

)
−
∑3

i x
0
i ηiqi1

0

x0
3

(∑3
i x

0
i ηiqi2

)
−
∑3

i x
0
i ηiqi3

 =

0

0

0

 (A.2)

which is a quadratic system of 2 equations in the 2 unknowns (x0
1, x

0
3) , where one of the solutions

is the steady state composition of the population in the absence of immigration.

8.7 Appendix to sections 4.4 - 6.2: Numerical Analysis and Optimal

Policies

This section explains the algorithm used for the numerical analysis, including comments on the

choice of technical parameters.

We define the steady state pair ratios in absence of immigration as {x0
1, x

0
3} , which is the solu-

tion to (A.2) and turn out to be (.09782, .5429). A grid of NX1 points in ((1− a1)x0
1, (1 + a2)x0

1)

and NX2 points in ((1− b1)x0
3, (1 + b2)x0

3) for a total of NX1 ∗ NX2 pairs in the resulting grid is

used for the value function iteration procedure, where a1, a2, b1 and b2 are positive constants that

represent the deviation from the no-immigration steady state. The specific nodes that are used

for interpolation are chosen as the roots of Chebyshev polynomials in the considered state spaces.

The specific constants that define the state grid depend on the policy space (i.e. big high-skilled
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quotas might imply an induced state out of the grid if b2 is too small), which we now describe.

The policy space considers Nθ1 points for θ1 in the space [0, θmax
1 ] , Nθ2 points for θ2 in [0, θmax

2 ]

and Nθ3 points for θ3 in [0, θmax
3 ].

We first explain setting (II), which has a perfectly inelastic supply of high skill immigrants

(θmax
3 = 13%) in section 4.5 in detail as it provides our main results, then comment on the case

with wage-elastic supply of high-skilled immigrants (section 6.1), and finally on Setting (I) in

section 4.4. Comments on Settings (II) also apply to case (III), since allowing guest workers only

adds to choice variables but does not expand the range of parameters.

Figure 2. Optimal Policy function for low-skilled immigration. Case with θmax
3 = 13%

In the case of a ”small pool” of high-skilled immigrants (θmax
3 = 13%), we use the particular

grid given by points in [.07823, .1761]× [.4344, .9773] , with NX1 = NX2 = 40 nodes in each axis, for

a total of 1600 nodes (points) in the state space. The considered immigration policies are elements

(θ1, θ2, θ3) ∈ [0, θmax
1 ]×[0, θmax

2 ]×[0, θmax
3 ] ⊆ R3

+. For this version of the model, the number of policy

points in θ2 and the maximum immigration θmax
2 quota turn out to be irrelevant since the model

always predicts (given parameterization of model) that the majority chooses θ∗2 = 0. Similarly,

given that the maximum level θmax
3 = 0.13 is lower than the quota that would be freely chosen

under setting (I), the majority chooses θ∗3 = θmax
3 = 0.13. The relevant policy information in this

version of the model (in addition to the state grid) are the number of policy points available for θ1

and having a large enough θmax
1 in order to allow for an interior solution, together with the specific

level of θmax
3 (set at 13% in this version). We show the case below (used as ”baseline”) where

θmax
1 = 1, and θmax

3 = 0.13, with 801 equidistant points in the policy space for θ1 ∈ [0, 1.25] (this

case the number of points for high skill immigration is irrelevant). We use β = .6325 (this level

chosen to get as close as possible to a target of θ∗1 = 18%). Solving the model with a tolerance of
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.0000001 in the sup norm between the value functions of the current and the previous iteration,

we obtain a quota of low-skilled workers of 18.01%, and the high-skilled immigration quota is

optimally chosen at 13%. The induced steady state (xss1 , x
ss
3 ) is (.1004, .589) . Cases where there

are guest worker quotas available typically involve increasing the size of the policy space.

As an example of the solution to the case with a wage-elastic supply as captured by (16), we use

an elasticity of 10, while the rest of the parameters set as in the main text; with a state grid of 900

pairs of points in [.097826, .176084]× [.434353, .977295]. In this case the i− th immigration policy

point (θ1i, θ2i, θ3i) at the state node (x1, x3) is feasible if θ3i ≤ θmax
3 (w3 (x1, x3, (θ1i, θ2i, θ3i))) . We

use 90 points for θ1 ∈ [0, 2] and 150 points in θ3 ∈ [0, θmax
3 (w3 (·))]. Again θmax

2 (and the number

of policy points for θ2) are irrelevant. At the no-immigration steady state the optimal policies are

(43.4%, 0%, 19.9%) . Below we show the immigration policies chosen in the state-grid considered.

The shape of the low-skilled immigration quota is just like before: increasing in x3 and decreasing

in x1, while the shape of the high-skilled immigration policy is decreasing in x3 and slightly

increasing in x1. Other numerical cases look qualitatively identical and are therefore not discussed

further.

Figure 3. Optimal policy functions with an elastic response of θmax
3 (Elasticity=10)

In setting (I), which is the case of a huge pool of high-skilled immigrants, we successively

expanded the maximum immigration quotas until we found a policy space such that the resulting

optimal functions were in the interior for all possible states. In the case of medium-skill immi-

gration, θmax
2 = 100% was high enough, as the optimum policy is θ∗2 = 0. For the other types,

θmax
1 = 4.5 and θmax

3 = 3 turned out to be sufficient.
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8.8 Appendix to section 6.2 on definition of skill groups

In section 6.2 we did some sensitivity analysis regarding the definition of the skill categories.

We defined medium skilled workers as those with a high-school diploma, some college or having

a college degree. For the computations of the immigration estimates, we use data from 2000

to 2013. Using the same estimates of net international migration (3.1 for 2010-2013 and 3.29

for 2000-2009), but using the information in table 18, we estimate that there were an average

(given new definitions) of 6.55 annual low-skilled immigrants per thousand low-skilled natives,

2.45 medium skilled per thousand medium skilled natives, and 4.44 high-skilled immigrants per

thousand high-skilled natives. This translates into approximately 20% quota for the low-skilled

group and we obtain again 7% quota for the medium-skilled and 13% for the high-skilled.

Table 18. Education Shares of Foreign Born and US Population (2000-2013)

2010-2013 2000-2009

Foreing Born

Entering

US

Pop

Foreign Born

Entering

US

Pop

LTHS Diploma 21.1 12.4 31.6 14.8

HS+Some College+College 63.5 76.6 55.4 75.7

Master & Above 15.4 11.0 13.0 9.5

Given the new skill definitions we obtain wage premia of w3

w2
= 1.727 and w2

w1
= 1.4845 for

the same samples and filters as previously discussed (except education). Total fertility rates can

be computed from the ACS, which yield fertility rates for native women of (2.41, 2.04, 1.97) and

(3.23, 2.44, 2.08) for foreign-born women as the time-averages for the years 2001-2008. This in turn

imply model parameters of η = diag {1.21, 1.02, .99} for natives and ηI = diag {1.62, 1.22, 1.04}
for immigrants. Given ρ = 1/2, mobility and fertility rates, the production share parameters

(φ1, φ2, φ3) are calibrated as (.11209, .56996, .31795) following the steps described in the paper.

The tax rate used is the same as in the main parameterization (τ = 30%). The model is studied

under log utility (σ = 1) and we set β = .98530 as in the initial experiments. In this case, under

setting (II) there’s no β that is able to produce a low-skilled quota of 20%, but the qualitative

results to all experiments remain the same (shape of optimal policy, guest workers for low-skilled,

immigration for the high-skilled while minimizing medium-skill immigration, etc.). Numerical

results are summarized in table 7 in the paper.
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