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This appendix shows that the optimal decisions rules for capital investment

and natural resources exploitation have the properties claimed in the text.

Section A1 covers optimal capital investment, Section A2 examines oil

production and exploration, and Section A3 considers forestry.



A1. The Optimal Capital Investment Policy

Existence and uniqueness of the optimal policy can be shown along the lines

of Stokey-Lucas (1989, ch.9), conditional on ξt=0. The value function

collapses to zero for ξt=1, which implies that the optimal decision

conditional on ξt=1 is indeterminate, but irrelevant. Without loss of

generality, one may set It=0 for ξt=1. The partial derivatives of the

optimal policy function K* and the optimal investment per worker are

obtained by taking the total differential of equation (7).

Notation

The following additional notation and preliminary transformations are

convenient. Let it = (I/N)t, kt = (K/N)t, and yt = (Y/N)t be the investment,

capital, and output per worker. Constant returns to scale and our

investment cost function imply that

V(Kt,Nt,Ht,xt,πt,ξt) = Nt·v(kt,Ht,xt,πt,ξt),

so V(·) is proportional to population times a “per-capita” value function

that depends on capital and population only through the ratio K/N=k.

The assumption that xt and πt are Markov processes can be formalized

by writing xt+1 = fx(xt,εxt+1) and πt+1 = fπ(πt,επ
t+1), where εxt+1 and επ

t+1

are white noise processes. The integral ∫ VK dG in eq. (7) can then be
written as

∫ VKdG = (1-πt)·∫ vk(kt+1,Ht+1,fx(xt,εxt+1),fπ(πt,επ
t+1),0)·dGε(εxt+1,επ

t+1)

where the r.h.s. integral is over the marginal distributions of the

innovations to x and π. We have used the fact that V=0 if ξt+1=1, which

occurs with probability πt.

The Total Differential of the First Order Condition

The total differential of eq. (7) is then

[2·c’(it/kt)/kt+it/kt2·c”(it/kt)]·(dit-(it/kt)·dkt)
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 = -[
1
1+r

·∫ vkdGε]dπt + [
1-πt
1+r

·∫ vkkdGε]·dkt+1 + [
1-πt
1+r

·∫ vkHdGε]·dHt+1

 + [
1-πt
1+r

·∫ vkx·fxxdGε]·dxt + [
1-πt
1+r

·∫ vkπ·fππdGε]·dπt, (A1.1)

where subscripts denote partial derivatives. The differential and the

expressions therein can be written as follows. Define

Ωcc ≡ [2·c’(it/kt)/kt+it/kt2·c”(it/kt)] > 0,

Ωc  ≡ ∫ vkdGε = c(it/kt)+it/kt·c’(it/kt) > 0,

and note that both expressions are positive. To replace dkt+1 and dHt+1 by

t-dated variables, we can exploit the dynamics of physical capital and

human capital, which are

dkt+1 = 1/(1+n)·dit + (1-δ)/(1+n)·dkt

and dHt+1 = [β·Htβ−1·h(xt) + 1-δh]·dHt + [Htβ·h’(xt)]·dxt.

Equation (A1.1) can therefore be rewritten as

[Ωcc
kt

 - 
1-πt
1+r

·∫ vkkdGε/(1+n)]· dit

= [Ωcc·(it/kt)+
1-πt
1+r

·∫ vkkdGε·(1-δ)/(1+n)]· dkt

 +
1-πt
1+r

·∫ vkHdGε·(β·Htβ−1·h(xt) + 1-δh) dHt

 +
1-πt
1+r

·[∫ vkx·fxxdGε + ∫ vkHdGε·Htβ·h’(xt)]· dxt

+ [-Ωc
1+r

 + 
1-πt
1+r

·∫ vkπ·fππdGε]· dπt

Define Ωi = 
Ωcc
kt

 - 
1-πt
1+r

·∫ vkkdGε/(1+n),

and note that Ωi>0 is the second order condition for value maximization.

Provided vkk≤0 (to be verified below), the second order condition is

satisfied, and Ωi>0. The derivatives of the optimal policy function i*(·)

can then be read off the above differential as
∂i*t
∂kt

 = 
Ωcc
Ωi

 · 
it
kt
 + 

1-δ
Ωi

·
1-πt
1+r

·∫ vkkdGε/(1+n) (A1.2a)

∂i*t
∂Ht

 = 
1

Ωi
·
1-πt
1+r

·∫ vkHdGε·(β·Htβ−1·h(xt) + 1-δh) (A1.2b)

∂i*t
∂xt

 = 
1

Ωi
·
1-πt
1+r

·[∫ vkx·fxxdGε + ∫ vkHdGε·Htβ·h’(xt)] (A1.2c)

∂i*t
∂πt

 = - 
1

Ωi
·

Ωc
1+r

 + 
1

Ωi
·
1-πt
1+r

·∫ vkπ·fππdGε. (A1.2d)
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The signs of these derivatives depend on the second derivatives of the

value function v(·). The envelope theorem implies that

vk(·) = Vk(·) = 
∂PRt+1
∂Kt+1

= (1-α)·Ht+1α·kt+1-α +(1-δ)·c(
it+1
kt+1

) +
it+1
kt+1

·[
it+1
kt+1

+1-δ]·c’(
it+1
kt+1

)

can be written as a function of it+1, kt+1, and Ht+1. The second partial

derivatives of v(·) can therefore be computed as

vkk = -α(1-α)·Ht+1α·kt+1-α−1 + [-it+1
kt+1

 + 
∂i*t+1
∂kt+1

] · Ωk (A1.3a)

where Ωk = 2·(
it+1
kt+1

 + 1-δ)·c’(
it+1
kt+1

)

 + 
it+1
kt+1

·(
it+1
kt+1

 + 1-δ)·c”(
it+1
kt+1

)]/kt+1 >0;

vkH = α(1-α)·Ht+1α-1·kt+1-α + 
∂i*t+1
∂Ht+1

 · Ωk; (A1.3b)

vkx = 
∂i*t+1
∂xt+1

 · Ωk; and   (A1.3c)

vkπ = 
∂i*t+1
∂πt+1

 · Ωk (A1.3d)

Inserted into (A1.2a-d), these equations imply that the derivatives of the

policy function at time t depend on the derivatives of the policy function

at time t+1.

To evaluate the derivatives, we use a limit argument. Consider the

finite horizon analog of the above infinite horizon problem, i.e., assume

the economy ends at some known terminal date T periods ahead. We will

determine the derivatives of the optimal policy in the finite horizon

problem through a backward recursion, starting at the terminal date, and

then exploit the fact that the finite horizon policy converges to the

infinite horizon policy as T->∞.

The Infinite Horizon Problem as Limit of a Finite Horizon Problem

Since the finite horizon problem has time-dependent policy and value

functions, let superscripts denote the number of remaining periods (e.g.,

Vn denote the value function with n periods to go.) In the final period,
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there is no investment. Hence, iT*=0 and its derivatives are identically

zero. In period t=T-1, we therefore have

vkk1 = -α(1-α)·Ht+1α·kt+1-α−1 < 0 (A1.4a)

vkH1 = α(1-α)·Ht+1α-1·kt+1-α >0 (A1.4b)

vkx1 = 0; vkπ1 = 0, (A1.4c,d)

and Ωi
1 = 

Ωcc
kt

 - (1-πt)·∫ vkk1dGε/(1+n) > 0. (A1.4e)

Since vkk1<0 and Ωcc>0, we have 0<Ωcc/Ωi
1<1. This is useful to evaluate the

derivatives of the policy function,
∂i*t
∂kt

 = 
Ωcc

Ωi
1 · 

it
kt
 + 

1-δ
Ωi

1·
1-πt
1+r

·∫ vkk1dGε/(1+n) < 
it
kt
 (A1.5a)

∂i*t
∂Ht

 = 
1

Ωi
1·
1-πt
1+r

·∫ vkH1dGε·(β·Htβ−1·h(xt) + 1-δh) > 0 (A1.5b)

∂i*t
∂xt

 = 
1

Ωi
1·
1-πt
1+r

·∫ vkH1dGε·Htβ·h’(xt) > 0 (A1.5c)

∂i*t
∂πt

 = - 
1
1+r

 · 
Ωc

Ωi
1 < 0. (A1.5d)

For the induction argument, suppose that for some period t+1 = T - n, the

derivatives of the policy function and of the value function (using vn

instead of v1) satisfy the inequality restrictions in (A1.4a-e) and (A1.5a-

d). Then for period t, which is T-t = n+1 periods away from the terminal

date,

vkkn+1 = -α(1-α)·Htα·kt-α−1 + [-it+1
kt+1

 + 
∂i*t+1
∂kt+1

] · Ωk

    < -α(1-α)·Htα·kt-α−1 <0,

using (A1.5a), proving vkkn+1<0 for all n. In the limit, at least the weak

inequality vkk≤0 must apply in the infinite horizon problem. But if vkk≤0,

then (A1.2a) implies 
∂i*t
∂kt

 ≤ 
it
kt
 and (A1.3a) implies vkk≤-α(1-α)·Ht+1α·kt+1-α−

1<0. Thus, the inequality is strict. This argument also proves that the

second order condition for optimality is satisfied and that the solution

for it is unique.
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Similarly, vkHn>0 implies ∂i*t/∂Ht>0 in (A1.2b), which implies vkHn+1>0

in (A1.3b). Hence, vkH≥0 and ∂i*/∂Ht≥0 apply in the infinite horizon

problem. But then

vkH = α(1-α)·Htα-1·kt-α + 
∂i*t+1
∂Ht+1

 · Ωk ≥ α(1-α)·Htα-1·kt-α >0

is strictly positive, and ∂i*/∂Ht>0. Thus, higher human capital

unambiguously raises investment.

Regarding x and π, (A1.5c,d) combined with (A1.3c,d) imply that vkx2>0

vkπ2<0, so that the induction can be started at n=2. If vkxn+1>0 and vkπn+1<0

for some n≥1, (A1.2c,d) imply ∂i*t/∂xt>0, and ∂i*t/∂πt<0 for t=T-n, which

implies vkxn>0 and vkπn<0. Hence, the inequalities vkx>0, vkπ<0, ∂i*/∂xt>0,

and ∂i*/∂πt<0 apply in the infinite horizon problem.

The sign of ∂i*/∂kt is generally indeterminate, because of two

offsetting effects. A higher k reduces the marginal return to new

investment (see negative the vkk term in (A1.5a)) but it also reduces the

cost of installing new investment (see the positive Ωcc term in (A1.5a)).

The ratio of investment to capital, it/kt, however, is unambiguously

declining in kt. Also, since Ωcc>0. (A1.2a) and the definition of Ωi imply

that
∂i*t
∂kt

 = 
Ωcc
Ωi

 · 
it
kt
 - (1-δ) ·(1-

Ωcc
Ωi

) > -(1-δ)

and therefore
∂kt+1*

∂kt
 = 

1
1+n

 · [ ∂i*
∂kt

 + 1-δ] >0. (A1.6)

Overall, we have shown that kt+1 = k*(kt,Ht,xt,πt,ξt) and Kt+1 =

Nt+1·kt+1 are increasing in kt, Ht, and xt, and decreasing in πt, as claimed

in Section 2.2. The function it = i*(kt,Ht,xt,πt,ξt) = k*(kt,Ht,xt,πt,ξt) -

(1-δ)·kt, has the same properties, except that ∂i*/∂kt can be positive or

negative.
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The Investment-Output Ratio

With regard to the investment-output ratio (I/Y), we have

(It/Yt)* = 
k*(Kt,Nt,Ht,xt,πt,ξt)-(1-δ)·Kt/Nt]

Htα·(Kt/Nt)1-α

         ≡ i+(Kt/Nt,Ht,xt,πt,ξt), (A1.7)

The derivatives of i+(·) with respect to xt and πt have the same sign as

∂i*/∂xt>0 and ∂i*/∂πt<0, respectively, while
∂i+
∂kt

 = 
1
yt
·[ ∂i*

∂kt
 -(1-α)·

it
kt
] and (A1.8a)

∂i+
∂Ht

 = 
1
yt
·[ ∂i*

∂Ht
 - α · 

it
Ht
]. (A1.8b)

have ambiguous signs. If eq. (4) is used to substitute Kt by Yt,

(I/Y)* = i+(yt1/(1-α)·Ht-α/(1-α),Ht,xt,πt,ξt) = i*(yt,Ht,xt,πt,ξt),

which is equation (8) in the text, the derivatives of (I/Y)* with respect

to xt and πt have the same signs as before, positive and negative,

respectively. (Note that the i* function in the text has different

arguments than the i* function in (A1.8a,b) and the appendix above; we use

(I/Y)* and (I/N)* below to prevent ambiguities.)

The derivatives with respect to initial output and human capital,
∂(I/Y)*

∂yt
 =  

kt
(1-α)·yt2

·[ ∂(I/N)*
∂kt

 -(1-α)·(I/K)t] and (A1.9a)

∂(I/Y)**
∂Ht

 = 
1
yt
·[ ∂(I/N)*

∂Ht
 - 

α
1-α·(yt/Ht)

1/(1-α)· 
∂(I/N)*

∂kt
] (A1.9b)

have ambiguous signs. But unless ∂(I/N)*/∂kt takes a large positive value,

the fact that ∂(I/N)*/∂Ht>0 suggests a positive sign in (A1.9b).

Human Capital Accumulation

This section of the appendix explains why the regression model (8) is

consistent with both exogenous and endogenous human capital accumulation.

This issue deserves comment because productivity and its determinants are,

at best, imperfectly measured and because the exact interpretation of the
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proxies for human capital, such as schooling variables, depends on the

model of human capital accumulation.

Suppose human capital is produced according to a production function

Ht+1 = Htβ·h(xt) + (1-δh)·Ht,

where 0≤β≤1 and 0≤δh≤1. If β<1 and xt is stationary, human capital will

converge to a stochastic steady state. In this case, a country's mean level

of human capital is a weighted average of past investments. Hence xt and Ht

in (8) can be proxied by current and past schooling rates and trade

variables.1

If β=1, the long run growth rate of the economy is endogenously given

by gH = h(xt)-δ. Then Ht does not converge to a steady state and, because

gH(.) does not depend on Ht in this case, the economy's optimal Kt+1 depends

on Kt/(Nt·Ht), xt, πt, and ξt, but not on Ht separately. Using the production

function as before to replace Kt, the investment share of output can be

written as

(
It
Yt
) = i*(

Yt
Nt·Ht

,xt,πt,ξt).

Although Kt/Nt and Yt/Nt do not converge to steady states in this model,

It/Yt and Yt/(Nt·Ht) do. Further, the balanced growth prediction implies

that Kt/(Nt·Ht) and Yt/(Nt·Ht) might show little sample variation. Instead

of trying to find proxies for Ht one might therefore omit these regressors

and subsume them into the error term. The above regression specification

reduces to (It/Yt) = i*(xt,πt,ξt) in this case. Then schooling variables

should be interpreted as proxies for xt.

1 A potential empirical concern is that an investment model that uses past schooling as
proxy for Ht could suffer from an omitted variables bias because some components of Ht are
not measured. This would seem especially problematic if the political variables are
correlated with output, because output depends on the true Ht, i.e., is correlated with
the unobserved components of Ht. Nonetheless, if output is included as a regressor, as in

(8), the coefficient on πt will be consistent provided πt is conditionally (conditional on
Yt/Nt) uncorrelated with Ht. Only the coefficients on output and on the proxies for human
capital would be biased.
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Overall, both of the specifications with endogenous growth (with and

without Yt/(Nt·Ht)) are restricted versions of equation (8). Without making

judgments about the nature of human capital accumulation, we estimate

eq.(8) without restrictions and let the data determine the significance of

Yt/Nt and/or Ht. This approach yields consistent coefficient estimates

whether or not growth is endogenous.

A2. The Optimal Oil Production and Exploration Policy

To derive the properties of the optimal plan for oil exploration,

production, and investment in oil production capital, we divide the problem

into three parts--the three steps below. As in the previous section, we can

re-write the integral ∫ V(·) dG in (11) as an integral over the marginal
distributions of the innovations to p and π,

∫ VdG = (1-πt)·∫ V(Rt+1,Ht+1,K0t+1,fp(pt,εpt+1),fπ(πt,επ
t+1),0)

·dGε(εpt+1,επ
t+1).

Step 1: Exploitation of a fixed reserve

First, consider the optimization problem of a firm with fixed initial

reserves and capital equipment, R0 and K00. With some abuse of notation, let

Rt+1 = Rt - Zt be the remaining reserves of the firm in period t+1 --

assuming reserves are never replenished -- and let K0t be the production

equipment of the firm in period t. Let zt = Zt/Rt and kt = K0t/Rt be the

production-reserve and capital-reserve ratios of the firm.

Regarding production, we assume that oil is produced according to a

Cobb-Douglas production function with constant returns, using capital K0t,

reserves Rt, and labor N0t, and produced materials Y0t,

Zt = (N0t)η·(K0t)γ·(Y0t)µ·Rt1-η-γ-µ,
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where 0<η, 0<γ , 0<µ and η+γ +µ<1. Materials and labor are variable within

the period, while capital and reserves are predetermined. Labor is assumed

to be supplied at a fixed wage rate w; materials have a unit cost. Total

variable cost are therefore w·N0t+Y0t. Note that w is not necessarily the

local wage rate. We assume that oil production requires specialized,

skilled workers who are internationally mobile.

Cost minimization implies Y0t/N0t = µ·w/η, which yields the input

requirements

N0t = Zt1/(η+µ)·(K0t)-γ/(η+µ)·Rt-(1-η-γ-µ)/(η+µ)·(µ·w/η)-µ/(η+µ),

Y0t = Zt1/(η+µ)·(K0t)-γ/(η+µ)·Rt-(1-η-γ-µ)/(η+µ)·(µ·w/η)η/(η+µ).

for producing Zt at given K0t and Rt. Variable cost per unit production are

then

(w·N0t+Y0t)/Zt = χ·Zt1/(η+µ)·(K0t)-γ/(η+µ)·Rt-(1-γ-η-µ)/(η+µ)/Zt

= χ·zt1/(η+µ)-1·kt-γ/(η+µ)

where χ = wη/(η+µ)·[(µ/η)-µ/(η+µ)+(µ/η)η/(η+µ)]. This is the cost function in

the text, if we interpret β = 1/(η+µ)-1>0 and ν = γ /(η+µ)>0. Note that β-ν =

1/(η+µ)·[1-η-µ-γ ]>0. With this cost function, the profit function of the

production firm is

PRt = pt·Zt - χ·Ztβ+1·K0t-ν/Rtβ-ν + (1-δ)·K0t - K0t+1

= (pt - χ·ztβ·kt-ν)·zt·Rt + (1-δ)·K0t - K0t+1 (A2.1)

Given the initial capital and reserves, Rt and K0t, firms maximize their

value

V0(Rt,K0t,pt,πt,ξt) = max PRt(Rt,Rt+1,K0t,K0t+1) + 
1-πt
1+r

·∫ V0(Rt+1,K0t+1,fp(pFt,εpt+1),fπ(πt,επ
t+1),0) ·dGε(εpt+1,επ

t+1).

The first order conditions for Rt+1 and K0t+1 are then

pt - χ·(1+β)·kt-ν·ztβ = 
1-πt
1+r

 ·∫ V0R dGε, (A2.2a)

and 1 = 
1-πt
1+r

 ·∫ V0K dGε, (A2.2b)
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which are equivalent to (12a,b) in the text. The envelope theorem implies

that

V0R = 
∂PRt+1
∂Rt+1

(Rt+1,Rt+2,K0t+1,K0t+2) = (β-ν)·χ·zt+1β+1·kt+1-ν (A2.3a)

and V0K = 
∂PRt+1
∂K0t+1

(Rt+1,Rt+2,K0t+1,K0t+2) = ν·χ·zt+1β+1·kt+1-ν-1 + 1-δ

= ν/(β-ν)·kt+1-1·V0R + 1-δ (A2.3b)

Note that since PRt is linearly homogeneous in (Rt,Rt+1,K0t,K0t+1), the first

order conditions are homogenous of degree zero in these variables. The

optimal policy functions, and hence the value function, are therefore

linearly homogenous in (Rt,K0t); in short, profits, decisions and the value

function are proportional to reserves Rt. To exploit this property, it is

useful to define the value per unit reserves v0 by

V0(Rt,K0t,pt,πt,1) = Rt·V0(1,K0t/Rt,pt,πt,1) ≡ Rt·v0(kt,pt,πt).

We may substitute V0R = v0(·)-kt·v0k(·) and V0K = v0k(·) in (A2.2a,b) and

(A2.3a,b). These equations determine zt and kt+1 as functions of kt, pt, and

πt. Using (A2.3b), we can rewrite (A2.2b) as
β-ν
ν ·[1-1-δ

1+r
·(1-πt)]·kt+1 = 

1-πt
1+r

·∫ v0dGε - kt+1

= pt - χ·(1+β)·kt-ν·ztβ (A2.4)

Taking the total differential of (A2.2a) and (A2.4), we find

dpt + ν·(1+β)·χ·ztβ·kt-ν-1·dkt - β·(1+β)·χ·ztβ−1·kt-ν·dzt

= -[
1
1+r

·∫ ∫ v0dGε]dπt + [
1-πt
1+r

·∫ v0π·fππdGε]·dπt

+ [
1-πt
1+r

·∫ v0kdGε-1]·dkt+1 + [
1-πt
1+r

·∫ v0p·fppdGε]·dpt,

= -(Ω π0-Ω π)·dπt + Ωp·dpt,

where Ωp = 
1-πt
1+r

·∫ v0p·fppdGε,

Ω π = 
1-πt
1+r

·∫ v0π·fππdGε,

Ω π0 = 
1
1+r

·∫ v0dGε > 0

and where we exploit that the coefficient on dkt+1 is zero due to (A2.2b).

Hence,
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dzt = 
1
χz
·[(1-Ωp)·dpt + (Ω π0-Ω π)·dπt + χk·dkt], (A2.5a)

where χk = ν·(1+β)·χ·ztβ·kt-ν-1 >0,

χz = β·(1+β)·χ·zt+1β−1·kt+1-ν >0.

Similarly,

dpt + ν·(1+β)·χ·ztβ·kt-ν-1·dkt - β·(1+β)·χ·ztβ−1·kt-ν·dzt

= 
β-ν
ν ·(1-1-δ

1+r
·(1-πt))·dkt+1 + 

β-ν
ν ·

1-δ
1+r

·kt+1·dπt 

=> dkt+1 = 
1
κ·[Ωp·dpt -(χπ+Ω π0-Ω π)·dπt] (A2.5b)

where κ = β-ν
ν ·[1-1-δ

1+r
·(1-πt)] >0,

χπ = 
β-ν
ν ·

1-δ
1+r

·kt+1 >0.

To determine the signs of Ωp and Ω π, note that (A2.3b) implies

v0 = V0R + kt+1·V0K = 
β

β-ν·V
0
R + (1-δ)·kt+1

=> v0p = 
dv0

dpt+1
 = 

β
β-ν·

dV0R
dpt+1

= β·(β+1)·χ·zt+1β·kt+1-ν·
∂z*t+1
∂pt+1

 = zt+1·(1-Ωp) (A2.6a)

=> v0π = 
dv0

dπt+1
 = β·(β+1)·χ·zt+1β·kt+1-ν·

∂z*t+1
∂πt+1

 = zt+1·(Ω π0-Ω π) (A2.6b)

Now we can use a limit and induction argument analogous to the section on

aggregate investment. In the final period of a finite horizon problem (t=T,

n=1 periods from the end) v0p=0 => Ωp
1=0 => ∂z*t/∂pt=1/χz>0. In period t=T-1

(n=2), Ωp
1=0 implies v0p=zt+1≤1 => Ωp

2 ≤ 
1-πt
1+r

·∫ fppdGε < 1/(1+r), provided

0≤fpp≤1. For the induction, assume that 0≤Ωp
n<1/(1+r) in some period t+1 =

T-n. Then

Ωp
n+1 = 

1-πt
1+r

·∫ (1-Ωp
n)·zt+1·fppdGε

also satisfies 0≤Ωp
t<1/(1+r), provided 0≤fpp≤1. Thus, 0<

r
1+r

/χz≤(1-

ΩP)/χz=∂z*t/∂pt<1/χz applies for all t in a finite horizon problem, which

implies 0<∂z*t/∂pt≤1/χz for the infinite horizon problem.

With regard to ∂z*t/∂πt, the general conditions for ∂z*t/∂πt>0 are more

complicated, because Ω π0 may vary over time. But if fππ is sufficiently
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small or r and πt sufficiently large, we have 0≤Ωπ<Ω π0, which implies

∂z*t/∂πt>0; this is assumed throughout the paper.

Separately, it is instructive to evaluate v0p and v0π at the mean

values of the steady state distribution of zt, πt, and pt. We have

Ωp = 
1-πt
1+r

·∫ zt+1·(1-Ωp)·fppdGε 

=> 
-
Ωp ≈ 1-

-
π

1+r
·
-
z(1-

-
Ωp)·

-
fpp => 

-
Ωp ≈ 1-

-
π

1+r
·
-
z·
-
fpp/[1+ 

1-
-
π

1+r
·
-
z·
-
fpp]

=> 
∂z*t
∂pt

 ≈ 1χz
/[1 + 1-

-
π

1+r
·
-
z·
-
fpp] > 0

and Ω π = 
1-πt
1+r

·∫ zt+1·(Ω π0-Ω π)·fππdGε

=> 
-
Ω π ≈ 1-

-
π

1+r
·
-
z(

-
Ω π0-

-
Ω π)·

-
fππ => 

-
Ω π ≈ 1-

-
π

1+r
·
-
z·
-
fππ/[1+ 

1-
-
π

1+r
·
-
z·
-
fππ]·

-
Ω π0

=> 
∂z*t
∂πt

 ≈ 
-
Ω π0
χz

/[1 + 1-
-
π

1+r
·
-
z·
-
fππ] > 0

which shows that the average values of Ω π and Ω π0 satisfy 0< 
-
Ω π<

-
Ω π0 and

that 
-
Ωp, ∂z*t/∂pt, and ∂z*t/∂πt are approximately equal to strictly positive

quantities. If the stochastic disturbances εpt and επ
t have sufficiently

small variances, the realizations of ∂z*t/∂pt and ∂z*t/∂πt should also be

positive.

Overall, equation (A2.5b) shows that, under the conditions for Ωp>0

and χπ+Ω π0-Ω π>0 stated above, the ratio of capital to reserves is an

increasing function of pt and a decreasing function of πt. Equation (A2.5a)

shows that, under the stated assumptions, zt is an increasing function of

pt, kt, and πt. The economic intuition is discussed in the text.

Step 2: The value of newly discovered reserves

Now we consider the valuation of new reserves. Step 1 above has shown that

a firm with reserves Rt and production equipment K0t has a value

V0(Rt,K0t,pt,πt,ξt). Now suppose the firm can buy new reserves Θt at time t

The new reserves will become productive at time t+1, i.e.,
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Rt+1 = Rt - Zt + Θt. (A2.7)

By construction of the value function, the marginal value qt of the new

reserves is

qt = 
1-πt
1+r

 ·∫ V0R dGε. (A2.8)

We will argue that because of linear homogeneity, qt is an equilibrium

price of reserves in a competitive reserve market that does not depend on

the level of reserves and the level of new discoveries. To see this, note

that according to (A2.5b), kt+1=k*t+1(pt,πt) is a function of pt and πt; it

does not depend on kt (reflecting the absence of adjustment cost) nor on Rt

(reflecting linear homogeneity). Hence,

V0R = v0(k*t+1(pt,πt),pt+1,πt+1)-k*t+1(pt,πt)·v0k(k*t+1(pt,πt),pt+1,πt+1)

is a function of current and future oil prices and political risk. The

relevant integral over future prices and political risk,

qt = 
1-πt
1+r

 ·∫ (v0-kt+1*·v0k) dGε ≡ qt*(pt,πt), (A2.8)

is then a function of current oil prices and current political risk.

Intuitively, the value of reserves is the expected discounted value of a

firm with one unit of reserves (v0) and an optimal equipment-to-reserves

ratio, minus the value of the equipment. (Note that 
1-πt
1+r

 · ∫ kt+1*·v0k dGε =

k*t+1 according to (A2.2b)). To compute the derivatives of q*t, note that

(A2.4) and (A2.5a) imply

qt = pt - χ·(1+β)·kt-ν·ztβ,

=>
dq*t
dpt

 = 1-χ·β·(1+β)·kt-ν·ztβ−1·
dzt
dpt

 = 1 - χz·
1
χz
·(1-Ωp) = Ωp >0,(A2.9a)

and
dq*t
dπt

 = - χ·β·(1+β)·kt-ν·ztβ−1·
dzt
dπt

 = -Ω π0 + Ω π <0, (A2.9b)

where the signs apply under the assumptions stated in Step 1. Overall,

higher political risk reduces the value of reserves while higher current

oil prices (signaling higher future prices) raise the value of reserves.
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Step 3: Oil exploration

Now consider the activities of an oil exploration firm. The firm owns the

country's hidden reserves, incurs cost to discover the reserves, and sells

newly discovered (previously hidden) reserves Θt = Ht-Ht+1 at the

competitive price qt = q*(pt,πt) to production firms. Since discoveries are

a non-linear function of wells drilled, we have to assume that there is a

single firm; the competitiveness assumption is still justifiable because of

international competition.

The profit function of the exploration firm is then

PRXt = q*(pt,πt)·(Ht-Ht+1) - c(F-1(Γ-Ht+1)-F-1(Γ-Ht)), (A2.10a)

as function of hidden reserves, or

PRXt = q*(pt,πt)·[F(Dt+1)-F(Dt)] - c(Dt+1-Dt), (A2.10b)

as a function of cumulative wells drilled. The implied dynamic programming

problem is

VX(Ht,pt,πt,ξt;Γ) = max
Ht+1

{PRXt + 
1-πt
1+r

·∫ VX(Ht+1,fp(pFt,εpt+1),fπ(πt,επ
t+1),0;Γ)·dGε(εpt+1,επ

t+1)}.(A2.11a)

The first order conditions for Ht+1 is then

q*(pt,πt) = c’·(F-1)’(Γ-Ht+1) + 
1-πt
1+r

 ·∫ VXH dGε (A2.11b)

a simplified version of (12c). Intuitively, the price of reserves must

compensate for the drilling cost and for the decline of hidden reserves.

Taking the total differential in terms of drilling cost, one finds

qp·dpt+qπ·dπt = -
c’(∆Dt+1)·F”(Dt+1)

F’(Dt+1)2
·dDt+1 + 

c”(∆Dt+1)
F’(Dt+1)

·(dDt+1-dDt)

+ [-
1
1+r

·∫ VXHdGε]dπt + [
1-πt
1+r

 ·∫ VXHπfππdGε]·dπt+1

- [
1-πt
1+r

 ·∫ VXHHdGε]·F’(Dt+1)·dDt+1

+ [
1-πt
1+r

 ·∫ VXHpfppdGε]·dpt+1 
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=> [c’·(-F”)/F”2 + c”/F’ - ΩHH·F’]·dDt+1

= [ΩH-ΩHπ+qπ]·dπt + [-ΩHp+qp]·dpt + c”/F’·dDt (A2.12)

where ΩH = 
1
1+r

·∫ VXHdGε

ΩHH = 
1-πt
1+r

 ·∫ VXHHdGε

ΩHπ = 
1-πt
1+r

 ·∫ VXHπfππdGε

ΩHp = 
1-πt
1+r

 ·∫ VXHpfppdGε.

Note immediately that if r is sufficiently high (and/or πt high), the

Ω-expressions will be small. Since c’·(-F”)/F”2 + c”/F’>0, qπ<0, qp>0, and

c”/F’>0, drilling Dt+1 will be a decreasing function of political risk and

an increasing function of the oil price; Dt+1 will also be an increasing

function of Dt, and ∆Dt+1 is a declining function of Dt.

In general, the envelope theorem implies

VXH = 
∂PRXt+1
∂Ht+1

 = qt+1 - c’(∆Dt+2)/F’(Dt+1) (A2.13)

Because of free disposal, we have VX≥0 and VXH≥0, hence c’(∆Dt+2)/F’(Dt+1) ≤

qt+1 for all t. Also,

VXHH = c’t+1·F”t+1/F’t+12·
dDt+1
dHt+1

 - c”/F’t+1·[
dDt+2
dHt+1

 - 
dDt+1
dHt+1

]

= 
c’t+1·(-F”t+1)

Ft+1’3
 + 

c”t+1
F’t+12

·
d∆Dt+2
dDt+1

(A2.14a)

VXHp = qP,t+1 - c”t+1/F’t+1·
dDt+2
dpt+1

 (A2.14b)

VXHπ = qπ,t+1 - c”t+1/F’t+1·
dDt+2
dπt+1

 (A2.14c)

and the derivatives of the optimal drilling policy are
dD*t+1
dDt

 = 
1

Ω* · (c”·F’), (A2.15a)

dD*t+1
dpt

 = 
1

Ω* ·(qp-ΩHp), (A2.15b)

dD*t+1
dπt

 = 
1

Ω* · (qπ+ΩH-ΩHπ) (A2.15c)

and
d∆D*t+1
dDt

 = 
1

Ω* · [-c’·(-F”)/F”
2+ΩHH·F’]. (A2.15d)

where Ω* = c’·(-F”)/F”2+c”/F’-ΩHH·F’.
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The second order condition for the optimal choice of Ht+1 requires that

Ω*>0, hence dD*t+1/dDt>0.

To compute the impact of changing oil prices, one may use a limit &

induction argument as above. Since qP≥0, dD*t+1/dpt≥0 applies in the

terminal period T of a finite horizon problem. If dD*t+2/dpt+1≥0 applies in

some period t+1, (A2.14b) and (A2.13b) imply that

ΩHp
t = 

1-πt
1+r

·∫ qP,t+1fppdGε -  
1-πt
1+r

·∫ c”t+1/F’t+1·dDt+2dpt+1
fppdGε (A2.16)

≤ 1
1+r

·∫ qP,t+1fppdGε < qP,t

in period t, provided

 
1
1+r

·∫ qP,t+1fppdGε < qP,t. (*)

Then ΩHp
t<qP,t, which implies dD*t+1/dpt>0 in period t according to (A2.15b),

proving the induction. Since fPp≤1 and r>0, condition (*) is only a mild

restriction on the stochastic process of reserve prices. Taking T->∞ proves

the argument for the infinite horizon. Thus, high oil prices increase

drilling because they raise the current value of reserves (qp,t>0) by more

than the future value (qP,t+1fpp).

The effect of political risk is more ambiguous. One the one hand, if

qπ+ΩH>0, then one can establish dD*t+1/dπt<0 by an argument analogous to the

argument regarding oil prices and under a condition analogous to (*)

(exploiting (A2.13a, A2.14a, A2.15a)). On the other hand, the sign of qπ+ΩH

is determined by two offsetting effects. First, political risk decreases

the price of known reserves, qπ<0, which reduces exploration. Second,

political risk creates an incentive to drill now, to discover and sell the

reserves ahead of a potential expropriation. The economic intuition for the

second argument is similar to the arguments in the production setting. The

analogy suggests that a more elaborate modeling of the exploration process

that takes into account cost of drilling equipment and time lags would
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reduce the incentive to drill, i.e., suggesting dD*t+1/dπt<0; this a

conjecture to be examined empirically.

Finally, consider the effect of past drilling on current drilling

rates, d∆D*t+1/dDt. To show that d∆D*t+1/dDt<0, we have to show that ΩHH·F’

< c’·(-F”)/F”2, which is a slightly stronger condition than Ω*>0. Again, a

limit and induction argument applies. Since -c’·(-F”)/F”2<0, d∆D*t+1/dDt<0

applies in the terminal period T of a finite horizon problem. If

dD*t+2/dpt+1≤0 applies in some period t+1, (A2.14a) implies VXHH ≤ c’t+1·(-

F”t+1)/Ft+1’3 and hence ΩHH
t≤ 

1-πt
1+r

 ·∫ VXHHdGε≤c’t+1·(-F”t+1)/Ft+1’3, which

implies d∆D*t+1/dDt≤0, proving the induction. Taking the limit, d∆D*t+1/dDt≤0

must hold for the infinite horizon problem. To prove the strict inequality

d∆D*t+1/dDt<0, note that ΩHH
t≤ 

1-πt
1+r

 ·∫ VXHHdGε<
1
1+r

·c’t+1·(-F”t+1)/Ft+1’3,

hence d∆D*t+1/dDt≤- r
1+r

·c’t+1·(-F”t+1)/Ft+1’3/Ω*<0 for r>0. Hence, the

current drilling rate ∆Dt+1 is unambiguously a declining function of

cumulative past drilling, Dt, or equivalently, an increasing function of

the remaining reserves, Ht.

A3. The Optimal Forestry Policy

The forestry cost function in the text is motivated as follows. Let

Zt = zt·Ft = A·(NFtφ·KFt1-φ)γ ·YFtδ·Ft1-γ-δ (A3.1)

be the production function of harvested biomass, which is a function of

forestry labor NF (measured in human capital efficiency units), capital

used in forestry KF, other goods used in forestry YF, and the stock of

forests Ft. The contribution of forest stocks can be interpreted as a

congestion effect in this context. That is, the production function can be

interpreted as representing production with constant returns to scale in

NF, KF, and YF combined with a congestion effect that reduces the efficiency
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of harvesting when the forest area is small. The total cost of harvesting

Zt units is then

Costt = MPNt·NFt + MPKt·KFt + YFt. (A3.2)

This reflects a unit price of output, YFt, and economy-wide wage and capital

rental rates, MPN and MPK, respectively, that equal the economy-wide

marginal products of capital and labor from equation (4). Cost minimization

for given Zt implies

MPNt = 
φ·γ ·Zt/NFt

δ·Zt/YFt
 = α·

Yt
Nt·Ht

 and MPKt = 
(1-φ)·γ ·Zt/KFt

δ·Zt/YFt
 = (1-α)·

Yt
Kt

Substituting into (A3.2), cost minimization implies that

Costt = 
φ·γ

δ ·YFt + 
(1-φ)·γ

δ ·YFt + YFt = 
δ+γ

δ ·YFt. (A3.3)

These conditions imply that the inputs to forestry production are used in

proportions that depend on the national output-capital and output-labor

ratios and on the parameters of the forestry production function,

NFt/YFt = (γ /δ)·(φ/α)·(Nt·Ht)/Yt, and KFt/YFt = (γ /δ)·(1-φ)/(1-α)·Kt/Yt.

Substituting these ratios into (A3.1), the required input of goods for a

given production level Zt is given by

Zt = A·({(γ /δ)·(φ/α)·YFt·Nt·Ht/Yt}φ

·{(γ /δ)·((1-φ)/(1-α))·YFt·Kt/Yt}1-φ)γ ·YFtδ·Ft1-γ-δ

   = A*·YFtδ+γ·Ft1-γ-δ·[Kt/(Nt·Ht)](α-φ)·γ,

where A* = A·(γ /δ)γ·(φ/α)φ γ·[(1-φ)/(1-α)](1-φ)γ . Hence,

YFt = (A*)-1/(δ+γ)·Zt1/(δ+γ)·Ft1-1/(δ+γ)·[Kt/(Nt·Ht)]-(α-φ)·γ/(δ+γ)

Substituting into (A3.3), the total cost of producing Zt is

Costt = (δ+γ )/δ·(A*)-1/(δ+γ)·Zt1/(δ+γ)·Ft1-1/(δ+γ)·[Kt/(Nt·Ht)]-(α-φ)·γ/(δ+γ)

The aggregate capital-labor ratio Kt/(Nt·Ht) matters only if α≠φ, i.e., if

the capital intensities differ. If α=φ, the “c” in equation (16) can be

interpreted as the constant c = (δ+γ )/δ·(A*)-1/(δ+γ). The exponent 1/(δ+γ )>1

corresponds to 1+β in (16). If α≠φ, the “c” in equation (16) depends on the
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aggregate capital-labor ratio, which according to Section 2.2 depends on

the political and other variables determining aggregate investment. It

seems reasonable to assume that the capital intensity for forest harvesting

is similar to that of the economy as a whole. Hence, we assume α≈φ and

treat c as constant in Section 2.4.

The optimal harvesting policy is derived as followed. The partial

derivatives of the optimal policy function F* are obtained by taking the

total differential of (16). As before, we can write the integral ∫ VF dG in
(16) as an integral over the marginal distributions of the innovations to

pF and π,

∫ VFdG = (1-πt)·∫ VF(fp(pFt,εpt+1),Ft,
-
F,fπ(πt,επ

t+1),1)·dGε(εpt+1,επ
t+1)

where pFt+1=fp(pFt,εpt+1) reflects the dependence of forestry prices on

lagged prices and a stochastic component εpt+1. For convenience, we write

the production choice in terms of the scaled production variable

zt = Zt/Ft = 1 + g(ft) - Ft+1/Ft,

where ft = Ft/
-
F.

Since unit cost and the natural growth rate for biomass depend on Zt, Ft,

and 
-
F only through their respective ratios, the value function must be

homogenous of degree one in Ft and 
-
F. That is,

V(pFt+1,Ft,
-
F,πt+1,ξt+1) = 

-
F · V(pFt+1,Ft/

-
F,1,πt+1,ξt+1)

and VF(pFt+1,Ft,
-
F,πt+1,ξt+1) = VF(pFt+1,ft,1,πt+1,ξt+1)

Equation (16) then reduces to

pFt - c·(1+β)·ztβ = 
1-πt
1+r

·∫ VF(pFt+1,ft+1,1,πt+1,ξt+1)·dGε

and the total differential is

     dpFt - c·β·(1+β)·ztβ−1·dzt = -[
1
1+r

·∫ VFdGε]dπt + [
1-πt
1+r

·∫ VFπ·fππdGε]·dπt

+ [
1-πt
1+r

·∫ VFp·fppdGε]·dpFt + [
1-πt
1+r

·∫ VFFdGε]·dft+1 (A3.4)

Since ft+1 = (1+g(ft)-zt)·ft, we have
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dft+1 = [1+g(ft)+g’(ft)·ft-zt]·dft - ft·dzt.

The partial derivatives of the optimal policy function are then
∂z*t
∂ft

 = 
1

Ωz
 · 

1-πt
1+r

·∫ (-VFF)dGε·[1+g(ft)+g’(ft)·ft-zt] (A3.5a)

∂z*t
∂pFt

 = 
1

Ωz
 · [1 + 1-πt

1+r
·∫ (-VFp)·fppdGε] (A3.5b)

∂z*t
∂πt

 = 
1

Ωz
 · [ 1

1+r
·∫ VFdGε + 

1-πt
1+r

·∫ (-VFπ)·fππdGε] (A3.5c)

where Ωz = c·β·(1+β)·ztβ−1 + 
1-πt
1+r

·∫ (-VFF)dGε·ft.

To compute the derivatives of the value function, note that the

envelope theorem implies that

VF(·) = 
∂PRt+1(Ft,Ft+1)

∂Ft+1
 = [1+g(ft+1)+g’(ft+1)·ft+1]

·[pFt+1-c·zt+1β·(1+β)] + c·β·zt+11+β

can be written as a function of pFt+1, ft, and zt+1. Hence,

VFF(·) = [2·g’(ft+1)+g”(ft+1)·ft+1]/
-
F·[pFt+1-c·zt+1β·(1+β)]

- Ωzz/
-
F·

∂z*t+1
∂ft+1

 (A3.6a)

VFp(·) = [1+g(ft+1)+g’(ft+1)·ft+1] - Ωzz·
∂z*t+1
∂pFt+1

 (A3.6b)

VFπ(·) = -Ωzz·
∂z*t+1
∂πt+1

 (A3.6c)

where Ωzz = c·zt+1β-1·(1+β)·[1+g(ft+1)+g’(ft+1)·ft+1 - zt+1].

To determine the signs of the partial derivatives of V(·), we proceed

as in the previous section, showing sign restrictions for the analogous

finite horizon problem by induction and taking the limit T->∞. In the last

period of an infinite horizon problem, zT = [pFT/(c·(1+β))]1/β depends only

on pFT. Hence VF1(pFT,fT,1,πT,1) = [pFT/(1+β)](1+1/β)·β/cβ is positive and

increasing in pFT, VFp1>0 (recall that the superscript of V denote the

decision horizon); VF1 does not depend on fT and πT. For period t=T-1, VF1>0

implies pFt-c·ztβ·(1+β)>0; hence (A3.6a) and g’<0, 2·g’(ft)+g”(ft)·ft<0 imply

VFF2 = [2·g’(ft)+g”(ft)·ft]/
-
F·[pFt-c·ztβ·(1+β)] < 0.

For the induction, suppose VFFn<0 for some period t+1 = T-n. Then

Ωz
n = c·β·(1+β)·zt+1β−1 + 

1-πt
1+r

·∫ (-VFFn)dGε·ft > 0,
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and in period t = T - (n+1), 1+g(ft)+g’(ft)·ft ≥ 1 ≥ zt implies
∂z*t
∂ft

 = 
1

Ωz
n · 

1-πt
1+r

·∫ (-VFFn)dGε·[1+g(ft)+g’(ft)·ft-zt] > 0,

and Ωzz
n+1 = c·ztβ-1·(1+β)·[1+g(ft)+g’(ft)·ft - zt] > 0.

Moreover, VF>0 implies pFt-c·ztβ·(1+β) > 0 and

VFFn+1(·) = [2·g’(ft)+g”(ft)·ft]/
-
F·[pFt-c·ztβ·(1+β)]

- Ωzz
n+1/

-
F·

∂z*t
∂ft

 < 0,

which proves that VFFn<0 for all n. This shows that in the limit, VFF(·)≤0

and ∂z*/∂ft≥0. But if ∂z*/∂ft≥0, (A3.6a) implies the strict inequality

VFF(·)<0.

For ∂z*/∂πt, we start with VFπ1=0; (A3.5c) at t=T-1 then implies

∂z*t/∂πt = 
1
1+r

·∫ VFdGε/Ωz > 0; (A28c) at t=T-2 then implies VFπ2<0, which

reinforces the argument for ∂z*t/∂πt>0 in (A3.5c). Induction and limit

arguments analogous to the ones above show that ∂z*/∂πt>0 and VFπ<0 apply

for the infinite horizon problem.

For ∂z*/∂πt, the argument is somewhat more complicated, because higher

current prices tend to raise zt while the expectation of higher future

prices tends to lower zt. In any case, if the persistence in prices, fππ, is

sufficiently low, (A13b) implies ∂z*/∂πt>0; this is assumed.

Overall, we have shown that zt*(Ft/
-
F,pFt,πt) depends positively on all

three arguments. Through zt, Ft+1 = Ft(1+g(Ft/
-
F)-zt) and (Ft+1-Ft)/Ft =

g(Ft/
-
F)-zt therefore depend negatively on pFt and πt. Since g’<0 and

∂z*/∂ft>0, (Ft+1-Ft)/Ft depends negatively on Ft and (Ft+1-Ft)/Ft and Ft+1

both depend positively on 
-
F. Since 1+g+g’·f > 1 ≥ zt, we also have

∂Ft+1/∂Ft>0.
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The appendix enclosed with the previous version of the paper remains

unchanged, except that we have taken the discussion of endogenous and

exogenous growth out of Section 2.1 and moved it into the appendix. To

avoid duplication, we are only enclosing the new section of the appendix,

as shown below. The complete appendix is avaialble upon request.

Human Capital Accumulation

This section of the appendix explains why the regression model (8) is

consistent with both exogenous and endogenous human capital accumulation.

This issue deserves comment because productivity and its determinants are,

at best, imperfectly measured and because the exact interpretation of the

proxies for human capital, such as schooling variables, depends on the

model of human capital accumulation.

Suppose human capital is produced according to a production function

Ht+1 = Htβ·h(xt) + (1-δh)·Ht,

where 0≤β≤1 and 0≤δh≤1. If β<1 and xt is stationary, human capital will

converge to a stochastic steady state. In this case, a country's mean level

of human capital is a weighted average of past investments. Hence xt and Ht
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in (8) can be proxied by current and past schooling rates and trade

variables.2

If β=1, the long run growth rate of the economy is endogenously given

by gH = h(xt)-δ. Then Ht does not converge to a steady state and, because

gH(.) does not depend on Ht in this case, the economy's optimal Kt+1 depends

on Kt/(Nt·Ht), xt, πt, and ξt, but not on Ht separately. Using the production

function as before to replace Kt, the investment share of output can be

written as

(
It
Yt
) = i*(

Yt
Nt·Ht

,xt,πt,ξt).

Although Kt/Nt and Yt/Nt do not converge to steady states in this model,

It/Yt and Yt/(Nt·Ht) do. Further, the balanced growth prediction implies

that Kt/(Nt·Ht) and Yt/(Nt·Ht) might show little sample variation. Instead

of trying to find proxies for Ht one might therefore omit these regressors

and subsume them into the error term. The above regression specification

reduces to (It/Yt) = i*(xt,πt,ξt) in this case. Then schooling variables

should be interpreted as proxies for xt.

Overall, both of the specifications with endogenous growth (with and

without Yt/(Nt·Ht)) are restricted versions of equation (8). Without making

judgments about the nature of human capital accumulation, we estimate

eq.(8) without restrictions and let the data determine the significance of

Yt/Nt and/or Ht. This approach yields consistent coefficient estimates

whether or not growth is endogenous.

2 A potential empirical concern is that an investment model that uses past schooling as
proxy for Ht could suffer from an omitted variables bias because some components of Ht are
not measured. This would seem especially problematic if the political variables are
correlated with output, because output depends on the true Ht, i.e., is correlated with
the unobserved components of Ht. Nonetheless, if output is included as a regressor, as in

(8), the coefficient on πt will be consistent provided πt is conditionally (conditional on
Yt/Nt) uncorrelated with Ht. Only the coefficients on output and on the proxies for human
capital would be biased.
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