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Abstract

Public pensions typically start at retirement and provide partial fund-
ing for retirement consumption. Retirees must rely on savings for the
remainder. A pension system offering higher benefits at the end of life
would be significantly more effi cient. In an optimal system, retirees first
rely entirely on their savings, and then public pensions pay for all retire-
ment consumption. The system’s funding level determines the age(s) of
pension eligibility, which may vary by income if progressivity is desired.
An implication is that pension reforms should focus on adjusting the pen-
sion age, with advance notice, while maintaining high replacement rates.
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Pension systems around the world are struggling with rising longevity and
declining birth rates, which create pressure for cost-reducing reforms. The stan-
dard approach to thinking about retirement is to view public and private funding
as complementary pillars from which the elderly draw simultaneously through-
out their retirement (see, e.g., Poterba 2014). Reducing costs then means re-
duced monthly payments and an expectation that younger cohorts must save
more.
This paper makes a case that a sequential payout structure would be more

effi cient. Optimal public funding specifies a time gap between retirement and
pension eligibility. During this period, retirees are expected to finance their
consumption entirely from private savings. Once the public pension start, it
should cover all desired consumption. Put differently, for any given present
value of pension benefits, the optimal pension age is the age at which this
present value matches the expected present value of the person’s remaining
lifetime consumption.
The main argument is that public pensions and private savings have compar-

ative advantages at different time horizons. For private savings, key challenges
are managing assets and coping with longevity risk. The resulting costs tend to
be cumulative– typically annual charges– and are highest in old age. For public
pensions, the main challenge is the excess burden of taxes. This may be substan-
tial, but it is a one-time cost. This suggests that the use of public funds– any
given amount– should be concentrated late in life. This would amortize the
excess burden over the longest horizon and maximize the government’s com-
parative advantage with regard to management cost and annuitization. Private
savings are relatively more effi cient for the period soon after retirement.
Several related issues are not modeled explicitly but worth noting. First,

financial literacy is a concern. Making a financial plan that ends when public
funding starts would be much easier than planning for an open-ended lifetime.
This is important because medical and cognitive problems that limit decision-
making are increasing with age (Gamble et al. 2015).1 Second, public coverage
of advanced-age consumption implies that the government would bear a large
share of aggregate longevity risk. This is appropriate from the perspective of
intergenerational risk sharing (Bohn 2006). Third, public pensions are often
conditional on not working and thereby encourage early retirement (Gruber
and Wise 2008). A time gap between retirement and pension eligibility would
eliminate this problem.

1To illustrate how retirement planning would simplify, consider someone retiring at age
65 who expects to cover half of retirement consumption from own savings and the other
half from public pensions. Suppose the maximum age is 120, and consumption after age 75
accounts for half of the present value of retirement consumption. Funding half of annual
consumption privately means buying life annuities or taking the risk of outliving ones savings.
Buying annuities means having to trust a company to remain solvent for a very long time
(55 years—from 65 to 120) The government should be indifferent between paying 50 percent
of consumption starting at age 65 or 100 percent starting at 75. The latter would make
individuals responsible for funding all consumption between ages 65 or 75, which is easier
than planning to age 120; it would exclude the advanced ages at which survival probabilities
are low and cognitive problems most likely.
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Existing public pension systems —in the U.S. and around the world —fail to
exploit the comparative advantage of concentrating public funding at the end of
life. Instead, pensions are paid as soon as a person retires. The retirement age
is treated as essentially synonymous with the eligibility age for public pensions.
This confounds two separate decisions. The retirement age is an individual
choice — an optimal labor supply decision — whereas pension eligibility is a
policy issue. The point of this paper is that the retirement age and the age at
which public pensions start (pension age, for brevity) should be as far apart as
possible, subject to resource constraints.
Some pension systems allow members to choose when to start receiving ben-

efits. U.S. social security, for instance, makes actuarial adjustments when in-
dividuals start drawing benefits before or after their "full" retirement age, but
only within the age range 62-70. Financial advisors sometimes recommend that
healthy retirees should defer claiming social security, which goes in the direction
public pension starting later in exchange for higher monthly benefits. However,
such advice is usually motivated by private information about (good) health
and comes with exhortations to defer retirement. My analysis does not rely on
private information and separates retirement from claiming benefits.
The growth in pension cost resulting from rising longevity has motivates

numerous policy proposal suggesting cuts in pensions and telling retirees to rely
more on private savings. The options are usually presented in terms of marginal
shifts between multiple income sources from which retirees are supposed to
draw simultaneously. My analysis implies that benefits cuts (if any) are best
implemented by raising the pension age and not by reducing the replacement
rate. The analysis also implies that progressivity —more private responsibility at
higher incomes —should be implemented by differentiating the pension age across
income levels. High-income individuals would have to cover more retirement
years with savings than low-income individuals, but the replacement rate would
be the same once pensions start (optimally: 100 percent).
To study the optimal interaction of private savings and public pensions,

one must avoid assumptions that would produce extreme solutions. If private
financial markets were perfectly effi cient and annuities available without cost,
even small tax distortions would make public funding ineffi cient. If governments
could credibly promise that payroll "contributions" are individually tracked and
the full value is returned as pension, an optimal tax-transfer scheme could dom-
inate private savings. To avoid these unrealistic extremes, the model assumes
intermediation cost for private savings and it restricts payroll taxes to be not
fully refundable. This setting ensures that there is an economic rationale for
both private retirement savings and for public funding.
Intermediation costs and tax distortions are complicated and require simpli-

fications. In theory, retirement savers could manage their assets are near-zero
cost by holding index funds and deal with uncertain mortality by placing all
their assets into fair annuities (Yaari 1965). In practice, many investors require
advice to manage their assets, or risk losses due to mistakes, and annuitiza-
tion requires that wealth is turned over to outside managers. The latter incurs
intermediation costs and creates undiversified default risks, as annuitants are
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long-term creditors of the insurer.
In the model, intermediation costs are captured simply by a parameter

for maximum annuitization cost. At ages for which mortality is greater than
the annuitization cost, individuals place their private savings into annuities.
At younger ages, individuals are assumed to earn a non-annuitized return—
interpreted either as regular savings, or more conveniently, as annuitized return
with intermediation cost just equal to mortality.
Intermediation costs are also affected by the availability of corporate pension

plans. In theory, such plans can offer low-cost, annuitized private pensions suit-
able to supplement public pensions. Corporate pensions arguably motivated the
paradigm of multiple pension pillars. However, regulations imposed in response
to high-profile defaults have made them prohibitively costly for corporations to
offer, at least in the U.S. Hence the model does not include corporate pensions.
There is an extensive literature on annuities. Brugiavini (1993) examines

why annuities are not widely used, contrary to Yaari’s (1965) findings. Numer-
ous empirical studies document the money’s worth of annuities, e.g., Mitchell et
al (2001). There is also a literature on the optimal timing of payroll taxes, e.g.,
Fenge et al (2006). The main innovation of the paper is to present sequential
payouts —private then public —as organizing principle for the design of public
pensions. (The principle also applies to non-cash benefits. For example, Medic-
aid coverage for nursing homes is a retiree benefit appropriated focused on very
old age.)
The paper is organized as follows. Section 1 sets up a tractable overlapping

generations model with stochastic mortality and describes conditions for Pareto-
effi cient policies. The basic model assumes linear taxes and abstracts from cross-
sectional heterogeneity and from individualized pension promises. Section 2
provides an interpretation of public versus private retirement funding as choice
between investment funds that have one-time versus recurrent cost. Section
3 examines several extensions: A setting with earnings-linked benefits shows
that payouts are the end of life have an additional benefit of minimizing tax
distortions. A setting with cross-sectional heterogeneity shows that payouts are
the end of life are optimal for each types of agent, with pensions ages generally
differing across types. The results also extend to versions with non-linear taxes
and with uniformity restriction on taxation. Section 4 provides a numerical
calculations to quantify the welfare gains from optimizing pension payouts and
to illustrate how pension policy should respond to rising longevity and to fiscal
shortfalls. Section 5 concludes. Proofs are in an appendix.

1 Optimal Policy in a tractable Overlapping-
Generations Model

The model in this section is designed to allow a tractable analysis of optimal
pensions and taxes for a generic cohort within a fiscal structure that covers
many generations. Tractability is obtained by modeling labor-leisure choices so
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that taxes do not distort margins other than labor supply; by allowing tax rates
to differ across cohorts (by age); and by assuming a representative agent per
cohort.

1.1 Population and Preferences

Let time t be discrete and let age be denoted by i. Abstracting from childhood,
cohort t is "born" at the start of working age (i = 0) and has maximum life
span imax. Let Π[0,i],t = Et[I

alive
i,t+i ] denote the unconditional survival probabili-

ties to age i, where Ialivei,t+i is a 0-1 indicator for being alive at time t+ i. Survival
probabilities are known and exogenous. Conditional survival probabilities are
Π[i,j],t+i = Π[0,j],t/Π[0,i],t for general j > i, and Πi,t+i = Π[0,i+1],t/Π[0,i],t de-
notes one-period survival at age i. Assume Πi,t+i ∈ (0, 1) for all i < imax,
decreases with age, ending with Πimax,t+imax = 0.
Individuals have preferences over consumption ci,t+i:

Ut =

imax∑
i=0

βi · Ialivei,t+i · u(ci,t+i)

Period utility u is increasing and concave with u′(0) =∞, and β > 0.2

The cohort size Nt is exogenous and members of each cohort are identical.
(See Section 3 for cross-sectional heterogeneity.)
To ease notation, time subscripts are henceforth omitted when dealing with

a generic cohort t. Also, lagged terms in Ut are omitted when expected utility
Et+iUt (or EiU) is evaluated at age i > 0.

1.2 Labor Supply and Retirement

Assumption on labor supply are designed so that taxes discourage market labor
without distorting other margins in the model, and so there is a well-defined
retirement age.
Individuals have unit time, supply li ∈ [0, 1] to the market, and 1 − li to

home production H, which increasing, concave, and satisfies H ′(1) < 1 and
H ′(0) =∞. Non-zero market labor incurs an age-dependent fixed cost µi ≥ 0.
Market labor is subject to a wage tax at rate τ i. Then labor income after

taxes is
yi = wi(1− τ i)li + wiH(1− li)− µi · I{li>0}, (1)

where I is the indicator function. Assume the government cannot credibly link
taxes to future transfers (for now; see Section 3 for earnings-linked pensions.)
Then labor supply maximizes yi, which implies l(τ i) ≡ 1− (H ′)−1(1− τ i) with
l′(τ i) < 0. Define L(τ) ≡ (1− τ)l(τ) +H(1− l(τ)). Then labor income at age
i is yi = wiL(τ i)− µi. Tax payments are wiT (τ i), where T (τ) ≡ τ l(τ).

2The model assumes no gift or bequest motives because altruism or joy-of-giving would
severely complicate the normative analysis. At the individual level, desired gifts and bequests
at various ages could be subsumed into consumption in the respective periods; this is not
modeled formally to avoid clutter.
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Let τ̂ = arg maxτ{τ l(τ)} be the revenue-maximizing tax rate (Laffer curve
peak). For τ ∈ (0, τ̂), let Φ(τ) = −L′(τ)−T ′(τ)

T ′(τ) > 0 denote the marginal excess
burden, i.e., the reduction in pre-tax income per unit revenue.
Retirement is modeled by assumptions on µi. For now, assume µi is a step

function that jumps at some age iR ∈ (0, imax) from µi = 0 for i < iR to
µi > l(0) ·maxi≥iR{wi} for i ≥ iR. (This is generalized in Section 3.) Then iR
is a well-defined retirement age in the sense that li = 0 is optimal for all i ≥ iR.
Retirement income from home production, yi = wiH(1), would needlessly

clutter the analysis. Hence I normalize H(1) = 0. Then for i ≥ iR, yi = 0,
and for i < iR, yi is market income minus the opportunity cost of forgone home
production.
Overall, these assumptions ensure that income and labor supply are separa-

ble from consumption and savings, that taxes have a well-defined excess burden,
and that retirement is well-defined.

1.3 Private Savings with Financial Frictions

Uncertainty and time variation in returns would needlessly complicated analysis.
Assume therefore that the gross return on assets is R = 1 + r, where r > 0 is
a constant interest rate. This return is available to the government and to
institutional investors, notably to annuity providers.
Individuals at age i face a management cost κs for regular savings (amount

xsi ), a charge κ
a on annuities (xai ), and a borrowing cost κ

d on debt (di). Con-
ditional on survival to age i + 1, regular savings pay (1 − κs)R and annuities
pay (1− κa) ·R/Πi. Assuming debts are discharged upon death, lenders charge
(1 + κd) ·R/Πi conditional on survival.
Net assets at the end of a period are xi = xai + xni − di. They are accumu-

lated from initial net assets Ai, after-tax labor income yi, government transfers
(benefits) Bi ≥ 0: xsi + xai − di = xi ≡ Ai + yi + Bi − ci, where A0 = 0. Net
assets at the start of the next period are

Ai+1 = (1− κs)R · xsi + (1− κa)R/Πi · xai − (1 + κd)R/Πi · di. (2)

The first-order conditions for optimal investments and borrowing are

(1− κs) ·Πi ·Rβu′(ci+1)− u′(ci) + Λxsi = 0 for xsi ≥ 0 (3)

(1− κa) ·Rβu′(ci+1)− u′(ci) + Λxai = 0 for xai ≥ 0 (4)

(1 + κd) ·Rβu′(ci+1)− u′(ci)− Λdi = 0 for di ≥ 0 (5)

where Λξ denotes the Kuhn-Tucker multiplier for a generic condition ξ ≥ 0.
Two insights follow from (3-5). First, assets are annuitized if 1 − κa ≥

(1−κs) ·Πi. Since mortality is increasing with age, annuitization starts at some
age ia that satisfies Πia ≤ 1−κa

1−κs < Πia+1. No annuitization at ages i < ia implies
that lucky heirs receive accidental bequests. Since tracking accidental bequests
would complicate the analysis, I assume instead that annuity providers charge
κai = min{κa, 1 − Πi(1 − κs)} to annuitants at age i. This may be interpreted
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as limit pricing to capture the young. Then without loss of generality, all assets
can be treated as annuitized (xsi ≡ 0) with age-dependent cost κai .

3 Second,
debt and assets are mutually exclusive. Hence xi = xai if xi ≥ 0 and xi = −di
if xi < 0.
To streamline the exposition, define the return on net assets conditional on

survival by

Ri+1(xi) = Ki+1(xi) ·
R

Πi
, where Ki+i(xi) =

 1− κai if xi > 0
1 if xi = 0

1 + κd if xi < 0

captures financial frictions. Normalizing Ki+i(0) = 1 is convenient for handling
corner solutions below. For reference below, define K[i1,i2] =

∏i2
i=i1+1Ki+1(xi)

for general [i1, i2] and note that for savers, K[i1,i2] < 1. The return modifiers
Ki+1(xi) and K[i1,i2] succinctly summarize the financial frictions as compared
to the Yaari (1965) environment.
The dynamics of net assets then reduce to

xi = yi +Bi − ci +Ai = yi +Bi − ci +Ri(xi−1)xi−1, (6)

where Ai+1 = Ri+1(xi)xi. By construction of iR, income yi = wiL(τ i) depends
on taxes for i < iR, and yi = 0 for i ≥ iR. The individual problem is to maxi-
mize E[U ] by choice of {ci, xi} subject to (6) and A0 = 0, for given (rational)
expectations about policy and wages.
Financial frictions will be critical for the analysis because public pensions

involve a round trip of funds, from participants to the government during work-
ing age, and in reverse during retirement. For any given amount of net taxes
paid or net transfers received, such a system could not be effi cient if private
savings were frictionless.

1.4 Optimal Fiscal Policy: Taxes and Transfers

The objective is to characterize optimal policy towards a generic cohort t. How-
ever, to separate effi ciency from redistributional concerns and to ensure common
initial conditions across policies, the policy problem is presented as a welfare
problem starting a some initial period t0. Government debt Dt0 and the path
of non-pension expenditures Gt, t ≥ t0, are taken as given.
All spending is financed by labor income taxes. The government’s choice

variables are taxes τ i,t ≥ 0 and transfers Bi,t ≥ 0 applied to cohorts (born in)
t ≥ t0− imax at ages i ≥ max{0, t0− t}. Taxes and benefits may vary over time
and by age (for now; see Section 3 for restrictions). Though individual survival

3Modeling accidental bequests would not provide much substantive insight since the proba-
bilities of leaving accidentals bequests (1−Πi) are small, being bounded by the intermediation
cost that would trigger annuitization (1 − Πi < 1 − 1−κa

1−κs = κs+κa

1−κs ). However, accidental
bequests would create cross-sectional heterogeneity and require detailed assumptions which
cohorts would be the beneficiaries.
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is stochastic, aggregate taxes and benefits are treated as deterministic, invoking
the law of large numbers.
The government’s primary balance in period t is

PBt =

t∑
i=t−iR+1

Nt−iΠ[0,i],t−iwi,tT (τ i,t)−
t∑

i=t−imax

Nt−iΠ[0,i],t−iBi,t −Gt;

where revenues are summed over working-age cohorts (born between t− iR + 1
and t) and benefits are summed over all living cohorts. Over time, debt accu-
mulates according to Dt+1 = R · (PBt +Dt). The government’s intertemporal
budget constraint is Dt0 =

∑∞
t=t0

ρt−t0PBt, where ρ = 1/R.
Pareto effi ciency requires that policy maximizes a welfare function of the

form

Wt0 =

∞∑
t=t0−imax

βt−t0ωtEt0 [Ut]

for some sequence of weights ωt > 0. Maximizing welfare generally involves
intergenerational redistribution, which must be set aside to derive general prop-
erties of optimal pensions. Generational accounting is a convenient tool to
separate effi ciency and redistribution. Let

GAi0,t+i0 =

imax∑
i=i0

ρi−i0Π[i0,i],t+i0 [T (τ i,t+i)wi,t+i −Bi,t+i] (7)

denote the generational account of cohort t at age i0, per unit population, which
is the present value of future taxes minus transfers. The government’s intertem-
poral budget constraint at time t0 can then be written as linear combination of
generational components:

Dt0 +

∞∑
t=t0

ρt−t0Gt =

imax∑
i=0

Nt−iGAi,t0 +

∞∑
t=t0+1

ρt−t0NtGA0,t. (8)

Equation (8) shows how the exogenous items on the left are allocated to current
cohorts (age i ≥ 0 at t = t0) and to future generations (age i = 0 at t ≥ t0 + 1).
My generational accounts differ from Auerbach and Kotlikoff’s original ap-

proach (Auerbach et al 1999) by making a distinction between debt payments
and transfers. Debt is a commitment whereas transfers are generally discre-
tionary. The distinction matters here because taxes are distortionary and com-
mitments may force the government to impose taxes.4

Using generational accounts, the welfare problem can be defined as maxi-
mizing Wt0 by choice of {ci,t+i, xi,t+i, τ i,t+i, Bi,t+i}i≥0,t≥t0 , subject to (7) and
(8) with given initial debt Dt0 and given spending plans {Gt}t≥t0 , subject to
(6) and the individual optimality conditions (3)-(5) with given initial assets

4See Bohn (1992) for a more complete discussion of governmet accounting and the role of
distortionary taxes.
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(A0,t = 0 for cohorts t > t0 born after t0 and given Ai,t0 for cohorts i ≥ 1 alive
at t0.
Note that with cohort-dependent taxes and benefits, each policy variable

enters into exactly one of the generational accounts. Moreover, with tax dis-
tortions captured by L(τ) and T (τ), policy has no incentive to distort savings,
which means (3)-(5) are satisfied automatically and can be omitted. Hence the
welfare problem of maximizing Wt0 decomposes into three separate problems:

Proposition 1 Solutions to the welfare problem can be obtained by solving the
following three problems:

( i) For each cohort t ∈ [t0 − imax, t0], which is alive at time t0: Maximize
Et0 [Ut] by choice of {ci,t+i, xi,t+i, τ i,t+i, Bi,t+i}i≥i0 , for a given generational
account balance GAi0,t0 at time t0.
( ii) For each cohort t > t0: Maximize Et0 [Ut] by choice of {ci,t+i, xi,t+i,

τ i,t+i, Bi,t+i}i≥0 for a given generational account balance GA0,t at birth.
( iii) Overall: Maximize Wt0 by choice of {GAi0,t0}0≤i0≤imax and {GA0,t}t>t0

for current and future generations, given the relationships between generational
accounts and Et0 [Ut] derived in parts ( i)-( ii).

Parts (i) and (ii) are effi ciency conditions that must necessarily hold for any
Pareto-optimal policy. Only part (iii) depends on welfare weights. All results
below are implications of parts (i) and (ii), or extensions thereof, and therefore
valid regardless of welfare weights.

1.5 Properties of Effi cient Pensions and Taxes

Consider the government’s problem of maximizing a generic cohort’s utility
Ei0 [U ] at some age i0 ≥ 0, given the generational account GAi0 . (General
i0 ≥ 0 covers parts (i) and (ii) above, avoiding case distinctions. For cohorts
alive at t0, GAi0,t is given at i0 = t0− t > 0; otherwise GA0,t is given at i0 = 0.)
Since the government maximizes utility, individual rationality is satisfied

trivially. Effi cient transfers and taxes must satisfy the first order conditions

βiu′(ci)Π[0,i] − ΛGA · ρiΠ[0,i] + ΛBi
= 0

βiu′(ci)Π[0,i] · L′(τ i)wi + ΛGA · ρiΠ[0,i] · T ′(τ i)wi + Λτ i = 0

for all i ≥ i0, where ΛGA is the shadow value of per-capita resources in (7), and
where ΛBi

≥ 0 and Λτ i ≥ 0 are Kuhn-Tucker multipliers. This implies:

βiRiu′(ci) = ΛGA − ΛBi ·Ri/Π[0,i] and (9)

βiRiu′(ci) = ΛGA · ϕ(τ i). (10)

The term ϕ(τ i) = T ′(τ i)
−L′(τ i) = 1

1+Φ(τ) captures how tax distortions restrict the

government’s ability to provide pensions.5 If higher taxes reduce income by a

5Deriving (10) involves an intermediate step of showing that Λτi = 0. This holds because
(9) implies βiRiu′(ci) ≤ ΛGA, so (10) always holds with equality for some τ i ≥ 0.
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unit, only the fraction ϕ(τ i) is collected by the government, where ϕ < 1 for
τ i > 0.
Public pensions are systems that first impose taxes and later make transfers

to the same people. A positive theory public pensions must explain why such
round-tripping of funds can be optimal when taxes are distortionary. Costly
asset management and annuitization provide a natural explanation. The opti-
mality condition for savings can be written as

Rjβju′(cj) = Riβiu′(ci)/K[i,j] (11)

for any pair of ages j > i. For savers, K[i,j] =
∏i2
i=i1+1(1− κai ) < 1 implies that

the left hand sides of conditions (9) and (10) are rising with age. Hence the
conditions for non-zero taxes (βiRiu′(ci) = ΛGA · ϕ(τ i)) and non-zero transfers
(βjRju′(cj) = ΛGA) can both be satisfied if taxes and transfers are far enough
apart that, for some allocations, K[i,j] ≤ ϕ(τ i). An immediate second implica-
tion is that optimal policy must maximize the time interval between taxes and
transfers, which means paying transfers as late as possible.
To be precise, these arguments are formalized as propositions, starting with

the optimality of deferral:

Proposition 2 If public pension benefits are nonzero at some age iP ≥ iR, then
the pension pays for all consumption in all subsequent periods. Private assets
optimally decline to zero in the period when pension benefits start.

Formally define the pension age iP = min{i ≥ iR : Bi > 0} as the age at
which pensions start. Then Prop.2 specifies thatBi = ci for all i > iP and xi = 0
for i ≥ iP . Private wealth declining to zero at iP means BiP = ciP −AiP ≤ ciP .
The age iP is implicitly determined by the cohort’s generational account, which
determines the available present value of transfers.6

Prop.2 is sharply at odds with the conventional wisdom that retirees should
tap a mixture of private and public funds throughout their retirement. Effi cient
transfers are either zero or 100 percent of consumption, except for at most one
transition period.
Prop.2 applies if benefits are non-zero. The following propositions provide

existence conditions for non-zero benefits and characterize the time gap between
the end of contributions and the start of pensions.

Proposition 3 Suppose there is an age i ≤ iR−1 such that savers set xj > 0 for
all j ∈ [i, iR]. If

∏imax
i=i1+1(1− κai ) = K[i,imax] < ϕ(τ i), then policy is ineffi cient.

A marginal increase in Bk for some k ≥ iR would increase welfare.
6The borrowing friction κd is needed here to make the optimal policy unique. If κd = 0,

individuals and the government would be indifferent between the transfers described in Prop.2
and transfers with the same present value paid even later in life, because the same consumption
stream could be financed by borrowing. As extreme example, consider a pension system
promising a huge payment to survivors at age imax and nothing for i < imax. If individuals
can borrow against against Bimax at the same interest rate at which pensions are discouted,
and if Bimax has the same present value as the transfers under Prop.2, individuals can consume
the same as under Prop.2. Such perfect borrowing against future pensions is unrealisting and
the possibility would sidetrack the analysis. Any infinitesimal κd > 0 breaks the tie; κd has
no other function in the model.
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Prop.3 specifies under what conditions financial frictions provide a rationale
for public pensions. Zero public pensions cannot be optimal if savings frictions
are greater than the excess burden of taxes. (Intuitively, optimality requires
K[i,imax] ≈ ϕ(τ i), but this cannot be stated as equality because K[i,imax] is not
continuous in xj .)
Note that without public pensions, non-zero consumption would require xi >

0 for all [iR− 1, imax]; hence K[iR−1,imax] < ϕ(τ iR−1) is a suffi cient condition for
Bimax > 0. Conversely:

Proposition 4 If tax rates are high enough in the period before retirement that
ϕ(τ iR−1) < K[iR−1,i] for any i ≥ iR, then optimally Bj = 0 for all j ∈ [iR, i].

Under the conditions of Prop.4, there is a time gap between retirement and
the start of pensions (if any).7 At least the initial years of retirement are financed
by private saving. In particular, BiR > 0 cannot be optimal unless taxes at age
iR − 1 are so close to zero that the loss from excess burden, 1−ϕ(τ iR−1), is no
greater than the savings friction κaiR−1 for one year.

Proposition 5 Optimal tax rates satisfy ϕ(τ i−1) = Ki(xi−1) · ϕ(τ i), provided
both are nonzero.

SinceKi(xi−1) ∈ [1−κai , 1+κd] bounded around one, optimal taxes should be
nearly constant over time. For savers, ϕ(τ i−1)/ϕ(τ i) = (1−κai ) < 1 and ϕ′ < 0
imply a declining sequence of tax rates. This is broadly consistent with Fenge
et al (2006). Moreover, Prop.5 reinforces that the pension age cannot equal
the retirement age except under restrictive conditions: from Prop.4, BiR > 0 is
optimal only if taxes at age iR − 1 are near zero, and then Prop.5 implies that
tax rates must be low in prior years.
In combination, Prop.4 and 5 imply a significant time gap between taxes

and transfers — either a significant time interval between retirement age and
pension age, or near-zero taxes before retirement, or both. Additional features
of optimal policy are examined quantitatively in Section 4 below.
To conclude, the same savings friction that justifies the existence of public

pensions also implies that benefits should be paid at the end of the life cycle.
The latter is therefore an intrinsic property of optimal pensions.

2 A Finance Interpretation

This section provides a finance intuition for the results above and explains why
both intermediation cost and tax distortions are needed to obtain a mix of public
and private retirement funding.

7Note that Pareto-optimality does not imply contributary pensions for all cohorts. If ωt
is very small, cohort t may face taxes close to τ̂ , so ϕ(τ i) < K[i,j] may apply at all ages and
Bj = 0. If ωt is very high, transfers may be positive during working age, so βiRiu′(ci) = ΛGA
and τ i = 0 at all ages.

11



From parts (i) and (ii) of Prop.1, optimal policy maximizes each cohort’s
utility conditional on the optimal (from part (iii)) generational account balance
GA0. The problem of maximizing E[U ] by choice of {ci, Bi, τ i, Ai} for given
GA0 has a recursive representation that will also be convenient for the numerical
analysis below.
From the taxpayers’perspective, a positive generational account is a liability

and a negative generational account a net asset. To focus on surviving members
of a cohort and their retirement benefits, let

GBi =

imax∑
j=i

ρj−iΠ[i,j]Bj

−
imax∑
j=i

ρj−iΠ[i,j]T (τ j)wj

 = − GAi
Π[0,i]

(12)

denote the present value of net transfers an individual of cohort t alive at age i0
will receive from the government —the generational net asset, or “generational
benefit”for short. Over time, GBi accumulates according to

GBi+1 =
R

Πi
· [GBi + T (τ i)wi −Bi]. (13)

Importantly, the accumulation incurs no cost of asset management or annuiti-
zation.
The cohort’s problem is then equivalent to a investment problem with two

funds, fund A and fund GB. The fund balances (Ai, GBi) serves as state vari-
ables. The Bellman equation with planning horizon k = imax − i ≥ 1 is

Vk+1(Ai, GBi) = max{u(ci) + βΠiVk(Ai+1, GBi+1)}

subject to (13), Ai+1 = Ri+1(xi)xi, xi = Ai + Bi − ci + (L(τ i)wi − µi),
and the inequalities ci ≥ 0, Bi ≥ 0, τ i ≥ 0, and wiL(τ i) ≥ µi. Since all
assets are consumed at imax, the recursion ends with Bimax = GBimax and
V1(Aimax , GBimax) = u(Aimax +GBimax).

This investment analogy does not assume an individual ability to make
or withdraw contributions from the generational account. Once policy is de-
termined, “deposits” into fund GB are collected as taxes. Collecting taxes
T (τ i)wi reduces after-tax income from wiL(0) to wiL{T−1(T (τ i))}, which is a
loss greater than T (τ i)wi. The difference—the excess burden—acts like a one-time
purchase fee for fund GB. Thus the choice between funds A and GB is equiv-
alent to the choice between a no-load investment with annual fees (A) versus a
mutual fund with up-front load and zero annual cost (GB).

Note that pay-as-you-go financing is an advantage in this context. If public
pensions were fully funded, the model’s assumption of no annual management
cost for fund GB would at best be an approximation justified by economies
of scale. However, most governments carry substantial debt and most public
pensions operate as pay-as-you-go systems. On the margin, taxes going into
such a system reduce public debt. Hence there are no assets to manage. The
reduced debt may even reduce the government’s underwriting costs in the bond
markets.
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The analogy to load versus no-load funds explains intuitively why optimal re-
tirement planning draws down fund A before tapping fundGB (Prop.2), why the
tradeoff involves a comparison between excess burden and annual costs (Prop.3),
and why there must be a time gap between deposits into and withdrawals from
fund GB (Prop.4-5).

3 Optimal Pensions withMore General Assump-
tions

This section examines the structure of public pensions under several sets of
alternative assumptions. In each case, assumptions are made to ensure that one
form of retirement savings does not dominate the other.

3.1 Limited Commitment: Earnings-linked pensions

Public pensions in many countries are linked to individual earnings. Hence it
is worth documenting that the main results above generalize to a setting with
earnings-linked pensions, provided the linkage is not so strong that contributions
become voluntary and non-distortionary.
Let φi ≤ φ̄ < 1 denote the degree of earnings-linkage at age i, which is the

present value of incremental pensions promised by the pension system per unit
of payroll taxes. The upper bound φ̄ is meant to capture taxpayers’belief that
government’s commitment to differentiate pensions based on prior earnings is
limited.8

To keep track of earnings-based promises, let each cohort’s transfers be di-
vided into an individual, earning-based component Bei ≥ 0 with present value
GBei and regular (unearned) transfers B

u
i ≥ 0 with present value GBui . Each

period, a share φi of payroll taxes τ iwili is credited to specific taxpayers (to
GBei ). The remainder is credited to GB

u
i . The resulting dynamics are

GBei+1 =
R

Πi
· [GBei + φiτ iwili −Bei ] (14)

GBui+1 =
R

Πi
· [GBui + (1− φi)τ iwili −Bui ] (15)

By construction, GBei + GBui = GBi = −GAi/Π[0,i],t. Hence the analysis fits
into the fiscal framework of Section 1.

8A specific bound that ensures non-zero private savings is derived below. This is an issue
if the government could credibly promise a full refund of payroll "contributions" with interest
(φi = 1), which could dominate all savings. Commitment is required because if the government
re-optimized welfare when pensions are due, it would disregard past earnings. Hence taxpayers
may dismiss promises of φi = 1 as time-inconsistent. The φi are modeled as age-dependent
because this is empirically relevant. For example, if pensions are based on career-average
earnings, early contributions have much lower present value that payments close to retirement,
as φi = φi+1/(R/Πi) < φi+1 would be increasing. If pension credits are linked to an index
(e.g, aggregate wages in the U.S.), φi varies whenever growth in the index differs from the
discount rate.
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Regular and earnings-linked pensions are equivalent except that the earnings-
linkage reduces distortions to labor supply. Hence the decomposition of the
overall welfare problem into generational components still applies, as in Prop.1.
The only new element is that effi ciency can be improved by minimizing tax
distortions, which is achieved by maximizing the value that taxpayers assign
to their earnings-based pension. Due to financial frictions, the individual value
of future transfers tends to be greater than the cost to the government. The
value-added turns out to depend on the payout policy, which can be exploited
to characterize optimal policy, as follows.
Let vi denote the value of a marginal increase in GBei at age i. Labor supply

maximizes yi+viφiτ iwili, which implies the optimality condition 1−τ i−H ′(1−
li) + viφiτ i = 0 or li = 1 − (H ′)−1[1 − (1 − viφi)τ i]. This is identical to labor
supply in the basic model with tax rate (1− viφi)τ i. Thus the earnings-linkage
reduces tax distortions.
Payout policy can be defined by the shares of earned benefits GBeiR at re-

tirement paid out at different dates. Let bj = ρj−iRΠ[iR,j]B
e
j/GB

e
iR
denote the

share paid at age j ≥ iR. where
∑imax
j=iR

bi = 1. Since individuals discount future
transfers by Rk+1(xk), they assign value

viR =

imax∑
j=iR

bj
j∏

k=iR

(
R/Πk

Rk+1(xk)
) =

imax∑
j=iR

(bi/K[iR,j]) (16)

to a unit increase in GBeiR . Similar discounting during working age implies
vi = viR/K[i,iR] for i < iR, so all vi are proportional to viR .
Minimizing tax distortions by choice of φi and bj requires maximizing vi for

any given φi, which in turn requires maximizing viR in (16).
9 Since for savers

K[iR,j] is less than one and strictly decreasing in j, deferring payouts increases
viR for as long as individuals have positive private savings.
If a cohort receives no unearned transfers in retirement, this argument im-

plies a unique optimal payout policy for Bej : No benefits are paid until a pension
age iP . The pension age is determined by the conditions that Bej = cj must
pay for all consumption at ages i > iP and that total payments add up to∑imax
j≥iP bj = 1, which implies an amount BejP ≤ cjP . This is identical to the

optimal policy for regular transfers derived in Section 1.
If a cohort receives unearned transfers in addition to earnings-linked benefits,

the argument for deferral applies to total transfers, leaving indeterminate which
type of benefits is paid in which period, provided the present values add up
to GBeiR and GBuiR , respectively. The indeterminacy arises because financial
frictions vanish once private savings are exhausted. To summarize:

Proposition 6 In a system with earnings-linked pensions, there is at most one
transitional period in which consumption is financed from a mix of public benefits

9The focus here is on payout policy for given φi, because the optimal choice of φi involves a
non-trivial tradeoff between minimizing tax distortions (which suggests high φi) and funding
the generational account (which is proportional to 1−φi). Hence there are no general results
about optimal φi.
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(regular or earnings-linked) and private savings. Before the transitional period,
public benefits are zero. After the transitional period, public benefits pay for all
consumption.

The central result that pensions should be paid late in life thus extends
to earnings-linked pensions. The argument is strengthened because deferral
provides value-added not only by avoiding financial friction but also by reducing
tax distortions.
Note that the existence of private savings is non-trivial in this setting. If

viφi ≥ 1, "taxes" could be reinterpreted as voluntary "contributions" to a public
pension system that dominates private savings. To rule out allocations without
any private savings (in which case Prop.6 would still apply, but trivially with
iP = iR), one must assume that the government’s credibility to return contri-
butions is limited in the sense that the earnings-linkage is bounded by φi ≤ φ̄
where φ̄ < 1/max{vi}.

3.2 Cross-Sectional Heterogeneity

Now suppose each cohort has a distribution F of types η that differ by labor
productivity (and possibly other characteristics). Let wi,t now denote a cohort’s
average wage and let types be labeled by their productivity relative to the mean,
so type η earns ηwi,t and

∫
ηdF (η) = 1. For simplicity, assume relative earnings

are fixed over the life-cycle.10

Individuals maximize utility Et[Ut(η)], earn income yi,t+i(η) as in (1), and
accumulate assets according to

xi,t+i(η) = Ai,t+i(η) +Bei,t+i(η) +Bui,t+i(η)− ci,t+i(η) + yi,t+i(η)

Ai,t+i(η) = Ri,t+i[xi−1,t+i−1(η)] · xi−1,t+i−1(η)

Assume a welfare functionWt0 =
∑∞
t=t0−imax β

t−t0 ·
∫
ωt(η)Et0 [Ut(η)]dF (η) with

arbitrary weights ωt(η) > 0. Let taxes τ t be linear and assume an earnings
linkage φi(η) that may depend on type (and on time, though time-subscripts
are omitted). Regular transfers Bui (η) may also depend on age and on type.
Earning-linked benefits are again defined by payout parameters bj(η), so Bej (η)

= bjGB
e
iR

(η)Rj−iR , where GBeiR(η) is accumulated as in (14).
In this setting, optimal pension ages and amounts will generally vary across

types, but one can show that for each type η, benefits have the same structure
as in the homogenous agents case. A proof is omitted since the result is a special
case of Prop.7 below. The point of this section is to note a key difference between
taxes and benefits: Wheras taxes are linked across types, pension benefits can
optimized separately for each type, given the present value allocated to the
respective type.

10One-dimensional heterogeneity should suffi ce here, as this section is meant to sketch how
the basic model generalizes, not to maximize generality.
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3.3 Optimal Public Pension Payouts in General

Many assumptions above were motivated by the ambition to model pensions
together with the tax system required to finance them. More sweeping results
can be obtained if one takes the tax system as given and simply assumes that
a certain present value of pension payments is part of the optimal policy. One
finds:

Proposition 7 Regardless of the tax system applicable during working age, sup-
pose optimal policy includes paying non-zero transfers GBiR(η) > 0 to a partic-
ular type of retiree (η), and suppose type η has savings AiR(η) ≥ 0 at retirement.
Then a necessary conditions for optimality is that pension benefits maximize ex-
pected retiree utility UR(η) =

∑imax
i=iR

βiIalivei,t+i u(ci) subject to given AiR(η) and
GBiR(η). If benefits are nonzero at some age iP (η) ≥ iR, the pension pays for
all consumption in all subsequent periods.

Prop. 2, 6 and 7 express the same principal result in complementary ways.
Prop.7 makes no assumptions about taxes but is silent about conditions under
which non-zero transfers are part of an optimal policy. Prop.2 and 6 invoke
specific assumptions on taxes to show that GBiR(η) > 0 is part of an optimal
policy under plausible assumptions.
The pension ages iP (η) generally differ cross-sectionally. While it is beyond

the scope of this paper to characterize cross-sectional policy differences, stan-
dard utilitarian logic suggests more generous benefits for low-productivity than
for high-productivity types. This would imply that optimal retirement ages
iP (η) are increasing in productivity. This intuition would be strengthened if
income were positively correlated with longevity (not modeled here). Impor-
tantly, regardless of welfare weights, once pension benefits start for type η, they
optimally cover all consumption in all subsequent periods.
Note that the argument for deferring pension is a marginal argument. This

implies:

Proposition 8 Starting from any policy that violates Prop.7, welfare is in-
creased by any shift of transfers to a later date at which individuals use private
savings for consumption, holding GBiR(η) constant.

Prop.8 allows an evaluation of real-world pension reforms. One strong impli-
cation is that if pension parameters must be changed to reduce cost, an increase
in the pension age is always preferable to a cut in replacement rates.
Prop.7-8 apply to models with non-linear taxes, such as Mirrleesian taxation.

In dynamic Mirrleesian taxation, incentive constraints are sometimes framed in
terms of promised utility. Prop.7 could easily be restated in these terms: suppose
type η enters retirement with promised utility URt (η) and the government seeks
to deliver this utility at minimal cost. Since minimizing GBiR(η) for given
URt (η) and AiR(η) is the dual of the problem in Prop.7, the optimal payout
policy has the same properties.
Prop.7-8 also apply under arbitrary restrictions on tax rates, including uni-

formity across age/cohorts. This is important to clarify that the age-specific
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taxes assumed in Section 1 are without loss of generality. To make this explicit,
the appendix shows how Prop.1 can be modified with age-independent taxes
and why Prop.2 still applies.
One concern about pension deferrals may be that promises of extremely high

transfers to very high income retirees might not be credible. If so, optimal policy
could be modified straightforwardly. For example, if there were a maximum
credible transfer Bmax, the optimal policy for types consuming ci(η) > Bmax

would be to set iP (η) such that GBiR(η) is paid out with Bi(η) = Bmax for
i > iP (η).
The central intuition is that holding constant the present value of transfers

from the government’s perspective, a marginal deferral of payments will increase
a pension’s value to individuals who face costs of asset management and annu-
itization. This argument applies until benefits are deferred to the maximum
extent possible. The argument does not involve or depend on cross-sectional
heterogeneity or redistributional issues. This motivates why the basic model
assumes homogenous agents for simplicity.

3.4 Endogenous Retirement Age

Suppose the fixed cost of market work increases gradually with age so L(τ̂) <
µi/wi ≤ l(0) applies for some age range [iR1, iR2). Then the individually-
rational retirement age depends on taxes. Because retirees pay no taxes, iR =
iR2 is optimal. Hence optimal labor taxes must satisfy τ i ≤ L−1(µi/wi) to avoid
premature retirement. Apart from this additional constraint on taxes, optimal
policy is determined as in the previous sections.
In many countries, pensions systems seems to provide ineffi cient incentives

to retire by providing pension benefits too early (Gruber and Wise 2008). This
problem is diffi cult to avoid in traditional pension systems that make payments
starting at retirement. Even if benefits are initially set to start at iP = iR,
improvements in health may increase iR, and then pensions end up starting
prematurely. A pension system with gap between the retirement age iR and
the pension age iP , as proposed in this paper, would eliminate the problem of
inducing premature retirement.

4 Illustrative Welfare Calculations

This section presents numerical analysis to document the quantitative relevance
of sequential pension funding. The scenarios are roughly calibrated to current
U.S. and European conditions but use round numbers for clarity and abstract
from cross sectional heterogeneity and from earnings linkages. The focus is
on comparisons across scenarios and their implications for policy responses to
changes in the economic and demographic environment.
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4.1 Benchmark: Conventional Public Pensions

In most developed countries, public pension systems pay benefits early enough
that virtually all members draw benefits as soon as they retire. Hence con-
ventional pensions are interpreted here as systems with pension eligibility that
starts at retirement, setting iP = iR.11

Public pensions typically pay constant or formula-fixed benefits. Formulaic
adjustments, such as growth factors, would needlessly complicate the analysis.
Conventional public pensions are therefore best interpreted as a fixed-parameter
system that pay a constant benefit Bi = B̄ for all i ≥ iR and impose a constant
tax rate τ i = τ̄ for all i < iR.

For each specification of the model, welfare gains will be computed by com-
paring the optimal pension system to the optimal fixed-parameter system. That
is, parameters (τ̄ , B̄) that are selected to maximize generational utility.

4.2 Baseline Assumptions

Survival rates are taken from the U.S. Social Security Administration for the
2010 cohort, averaged over males and females. Assume working age starts at age
20, retirement at age 66, and the life span is 120 years. Population is constant,
Nt = 1. Bonds pay r = 0.02 and the rate of time preference equals the bond
rate (β = ρ), which means consumption would be constant in the absence of
financial frictions. Assume κa = 0.01 as maximum annuitization cost, which
becomes effective at age 60. Assume negligible borrowing costs, κd = .0001,
non-zero only to avoid indeterminacies that would arise from costless borrowing
against pensions. Wages wi are proxied by an age-earning profile taken from
Rupert and Zanella (2015), normalized to one at peak earnings (age 50). Work
costs are µi = 0 for i < iR.
Home production is H(1−l) = −hl1+ε with parameters h = 0.5 and ε = 2.12

This implies a labor supply elasticity of 1/ε = 0.5 and τ̂ = ε
1+ε = 2/3. Assume

power utility over market consumption, u(c) = 1
1−γ c

1−γ with γ = 2.
All calculations are done with one period representing two calendar years,

starting at age 20 (i.e., natural ages 20-21 are i = 0 in the calculations, ages
22-23 are i = 1, etc.). However, in the figures and tables below, age is converted
back into natural units to facilitate the interpretation.
The generational account is calibrated so that the initial balance per-capita

is equal to the revenue from a constant tax rate τother = 0.1. Non-pension
expenditures influence the optimal level of pensions by influencing the marginal
excess burden of taxes; to document this dependence, the sensitivity analysis
will consider alternative values of τother.

11This is arguably a sympathetic interpretation, because there is considerable evidence that
pensions systems may encourage premature retirement (suggesting ie < iR), e.g., by making
benefits conditional on not working; see Gruber and Wise (2008).
12The normalization H(1) = 0 implies H(1− l) < 0 for l > 0. If the latter is objectionable

(counterintuitive), one could redefine H(1− l) = h− hl1+ε and u(c) = 1
1−γ (c− h)1−γ . Then

home production would be non-negative and provide subsistence consumption; the model
would remain unchanged otherwise.
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4.3 Baseline Results

Figures 1-6 show the time paths of the main variables in the baseline scenario.
Since peak earnings are normalized to one, all real values should be interpreted
as fractions or multiples of two-year peak earnings.
Optimal pensions (figure 1) are zero until age 70 and jump to 0.61 at age

74. The transitional value of 0.04 at age 72 is best interpreted as full benefit
for a fractional period. Since 0.04 for two years is equivalent to 0.61 for 4

61 of
the 2-year period and 0 for the remainder, optimal benefits can be expressed as
zero until age 73.9, and 0.61 thereafter. All pension ages below are expressed
in this form.
The pension with optimally-chosen fixed parameters offer a constant benefit

of 0.44, starting earlier but providing far less at older ages than the optimal
pension.
Figure 1 illustrates how optimal benefits jump from zero to a value greater

than under a fixed parameter pension. The exact timing of the jump depends on
model parameters– see sensitivity analysis below. A specific scenario is nonethe-
less instructive to convey the model’s full implications.
Figures 2-4 show private net assets (A), generational benefits (GB) —here

called generational net assets since they act like assets —and total net assets (A+
GB). During working age, asset holdings in the optimal and fixed-parameter
cases follow similar paths. In retirement, the optimal plan draws on private
assets first and depletes them by age 74. Until then, generational net assets
accumulate. In contrast, retirement financing in a fixed-benefit setting uses
all funding sources in rough proportions. The resulting consumption profiles
(figure 5) are similar until the optimal pension payments start. Then optimal
consumption is constant and ends up significantly higher than with a fixed
pension.
Optimal tax rates (figure 6) are fairly stable over the life cycle, though

declining as retirement approaches. The intuition is that imposing taxes early
maximizes the time interval between taxes and transfers over which the excess
burden is amortized. For comparisons below, the overall level of optimal taxes
is usefully summarized by an average tax rate τav, defined as constant rate
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that would yield the same lifetime revenue; here τav = 0.238. In this scenario
(though not in general), fixed pensions have a higher tax rate (τ̄ = 0.27), which
is due to the cost of paying benefits for a longer period.
The welfare gain from optimal as compared to fixed-parameter pensions

is about 0.6 percent of lifetime consumption. Compared to having no public
pensions at all, optimal pensions provide a welfare gain of 1.8 percent. Fixed-
parameter pensions would provide a welfare gain of only 1.2 percent. The main
differences arise during from optimal payouts during retirement: a system with
a constant tax rate and variable benefits would provide a welfare gains of 1.7
percent, which is close to the fully optimal system. The age-dependent tax rates
contribute only 0.1 percent.
Another perspective on welfare is to consider an unexpected reform at the

time of retirement, taking taxes and asset positions as given (in the spirit of
Section 3.3). Shifting from fixed-parameter to optimal benefits would provide
welfare gains equal to 2.4 percent of retirement consumption. These are sub-
stantial gains.

4.4 Sensitivity Analysis

This section examines the ramifications of alternative parametric assumptions.
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Table 1: Sensitivity Analysis
Setting iP τavw Bi|i>iP τ̄ B̄
Baseline 73.9 0.24 0.61 0.27 0.44
κa = 0.5% 77.5 0.20 0.62 0.20 0.28
κa = 5% 73.9 0.24 0.60 0.31 0.53
ε = 1 79.8 0.17 0.56 0.16 0.18
ε = 3 71.2 0.28 0.66 0.33 0.60
γ = 4 73.2 0.25 0.63 0.27 0.44

For annuitization cost, consider a low-cost setting with κa = 0.005 and a
high-cost setting with κa = 0.05. For labor supply, consider a higher or lower
labor supply elasticity by setting ε = 1 or ε = 3. For preferences, consider a
reduced elasticity of intertemporal substitution by assuming γ = 4. Table 1
shows the optimal and fixed-parameter pension systems.
Optimal benefits stay remarkably stable across scenarios, again reflecting the

optimality of covering end-of-life consumption fully. A lower (or higher) cost of
annuitization reduces (increases) the value of public pensions. In the optimal
system, this leads to a higher (lower) pension age, whereas in a fixed parameters,
benefits are scaled down (up). A higher labor supply elasticity increases (de-
creases) the excess burden of pensions and other taxes, leading to later pension
eligibility in the optimal system and to lower benefits in a fixed-parameter sys-
tem; a reduced lower labor supply elasticity has the opposite effects. A reduced
elasticity of intertemporal substitution triggers slightly higher pension benefits
in the optimal system, while the fixed-parameter system remains essentially un-
changed. The intuition is that optimal consumption is less variable over the life
cycle when the elasticity of intertemporal substitution is low, and this requires
higher old-age consumption.
Overall, the optimal “size”of the pension system is clearly sensitive to var-

ious institutional and behavioral parameters. With fixed benefits and taxes,
variations in size translate into higher or lower optimal benefits. In contrast,
when the pension age is chosen optimally, variations in “size” and in taxes
translate into earlier or later pension ages. The benefit amounts vary only to
the extent that optimal consumption varies. For all scenarios considered here,
the pension age appears to be in the early- or mid-70s, which is higher than the
eligibility age of most existing pension systems.
Put differently, if one views a country’s observed mix of private and public

retirement funding as revealing the size of the pension system appropriate for the
country’s institutional and behavioral parameters, then the analysis here implies
that welfare could be improved if one took the present value of current pensions
(which typically start at retirement) and reallocated the funds to provide higher
public pensions at a higher starting age.
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Table 2: Optimal pensions when mortality declines
Mortality iR iP τav Bi|i>iP τ̄ B̄
Baseline 66 73.9 0.238 0.610 0.270 0.44
Improved 66 75.9 0.239 0.604 0.267 0.39
Improved 68 76.1 0.235 0.607 0.273 0.45

4.5 Optimal Responses to Increasing Longevity

This section returns to the baseline parameters and uses the model for policy
analysis. One issue is the optimal response to increasing longevity.
The answers turn out to depend significantly on the question to what extent

the changes driving longevity also improve individuals’ability to work longer.
Table 2 compares the baseline to two alternative scenarios. Both assume a 25
percent reduction in mortality, which means life expectancy at age 20 increases
by about 3.3 years. One scenario assumes an unchanged retirement age of
iR = 66, the other assumes that improved mortality also increases the optimal
retirement age to iR = 68.
If these changes occur unexpectedly, intergenerational risk sharing suggests

that young and future cohorts should at least partially insure older cohorts (see
Bohn 2006). As polar cases, consider (i) an unchanged generational account
and (ii) adjustments in the generational account GAiR at retirement that keep
benefits unchanged.
Table 2 shows for each scenario the optimal pension age, the average tax

rate in the optimal system,13 optimal benefits for i > iP , and for comparison,
the tax rates and benefits in a fixed-parameter system.
If mortality is reduced and the retirement age stays unchanged at 66, the

optimal benefit amount and optimal taxes remain almost unchanged. The main
adjustment is that the pension age rises from 73.9 to 75.9. The economic intu-
ition is that an essentially unchanged lifetime labor income is stretched over a
longer horizon, so consumption in every period decreases slightly. Optimal pen-
sions must cover end-of-life consumption fully, so the optimal pension amount
must not decline more than consumption. In a fixed-parameter setting, in con-
trast, longevity can be absorbed only by higher taxes and/or lower benefits. In
the scenario here, an exogenous pension age of 66 implies a cut in benefits from
0.44 to 0.39.
In the scenario with retirement at 68, the optimal pension system offers

slightly greater benefits are an even higher pension age. The intuition is that
two more years with labor income raise the optimal consumption profile at all
ages, though only slightly. The optimal pension age rises because the benefits to
support higher consumption can only be paid for a somewhat shorter period. In
a fixed-parameter system, the pension age would simply rise to 68 and benefits
would be similar to the baseline; thus benefits are sensitive to the retirement

13Optimal taxes vary as shown in Figure 6. To express the level of taxation concisely, the
table reports the tax rates that would raise the same present value of revenues as the optimal
tax system.
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Table 3: Optimal pensions in relation to other taxes
Setting τother GA0 iP τav Bi|i>iP τ̄ B̄ ∆c
High-tax 0.20 1.85 79.3 0.29 0.54 0.28 0.18 0.7
Baseline 0.10 0.98 73.9 0.24 0.61 0.27 0.44 0.6
Low-tax 0 0 70.0 0.18 0.68 0.22 0.64 0.2

age, which is ineffi cient. Intuitively, adding two more years to a 46-year career
is a minor change in economic conditions that should not trigger major policy
changes.
Turning to a slightly different setting, suppose the decline in mortality is

unexpected and occurs at the time of retirement. The cost of financing the orig-
inal consumption stream would increase by about 9 percent. If benefits are kept
unchanged, the present value of optimal benefits would increase by 14.6 percent
and cover about 96 percent of the funding needs, keeping consumption essen-
tially unchanged. The intuition is that 96 percent of the mortality improvements
occur at the end of life when optimal pensions pay for all consumption. In a
fixed-parameter system, the present value of benefits would increase by about 9
percent, roughly in proportion to the present value of consumption. Per-period
consumption would have to decline by about 2 percent.
In summary, this scenario shows that the optimal pension system can provide

almost complete insurance against longevity risk, and it can provide significantly
more intergenerational sharing of such risks than a fixed-parameter system.

4.6 Optimal Responses to Budget Problems and Low Birth
Rates

The optimal taxes and pensions for each generation are affected by the govern-
ment’s budget position through the generational account balance GA0,t that is
imposed on cohort t as it enters the labor force. Within the overall welfare prob-
lem (part iii), higher non-pension expenditures and higher initial debt would
tighten the budget constraint (8), and —ceteris paribus —require an increase in
GA0,t for all cohorts.
If future generations are expected to make positive contributions to the bud-

get (if GA0,t > 0), a small cohort size would also tighten (8). Then low birth
rates cause budgetary problem and imply an increase in the per-capital gener-
ational account for all cohorts.
Table 3 documents the impact of budget problems by comparing three sce-

narios. The scenarios differ by the assumed initial generational account balances
GA0,t. For better intuition, they are calibrated in terms of tax rates required for
non-pension expenditures (τother). By construction, one feasible policy in each
scenario is to provide no pension and to impose only τother. However, optimal
policy in all cases calls for pension benefits financed by additional taxes.
In the low-tax scenario, optimal pensions start earlier and are more generous

than in the baseline, starting with 0.68 at age 70. The high-tax case has lower
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benefits that start later. Note that the average tax rates τav in Table 2 include
τother, so payroll taxes decline from 0.18 percent in the low-tax case to 0.09
percent in the high-tax case. By comparison, benefits in a fixed-parameter
system are much more sensitive to other taxes. In the low-tax case, a fixed-
parameter system would offer comparable benefits (0.64) starting earlier (age
66); in the high-tax case, benefits would be drastically lower (0.18).
The column marked ∆c in Table 3 shows welfare differences between optimal

and fixed-parameter system in percent of lifetime consumption. The welfare
gains for τother = 0.2 are similar to τother = 0.1. Welfare gains are smaller
for τother = 0 because optimal pensions then start fairly early and the fixed-
parameter pensions are relatively generous, so they are closer to the optimal
pension than in the other scenarios.
Note that these comparisons assume that cohorts can adjust their private

savings. Unexpected policy changes in mid-life would have quite different, more
adverse effects. That is, the analysis implicitly assumes that pension changes
are pre-announced or phased in slowly.
In summary, an optimal pension system responds to changes in budget con-

ditions by significantly varying the pension age, which allows the government to
keep the per-period benefit amount much more stable that it could afford under
a fixed pension age.

5 Conclusions

The paper shows that an optimal public pension system should have maximally
deferred benefits. For any given present value, payments should start when
funding is suffi cient to cover all consumption for all remaining periods of life.
Private savings pay for consumption between retirement and the pension age and
are no longer needed once pensions start. The optimal pension age is generally
higher than the retirement age.
The economic intuition is that private savings have recurrent costs for asset

management and/or annuitization, whereas public pensions incur a one-time
excess burden. The excess burden is only worth incurring if the interval between
taxes and benefits is long enough. Hence public pensions have a comparative
advantage at long horizons, whereas private savings are more effi cient in early
years of retirement.
These results are shown to be effi ciency properties that hold regardless of

redistributional preferences. They hold for earnings-linked and regular (un-
committed) pensions. With cross-sectional heterogeneity, optimal pension ages
generally differ by income (or other characteristics). A progressive system would
set higher pension ages for higher-income retirees. Numerical calculations sug-
gest significant welfare gains from replacing a fixed-parameter system by an
optimal pension.
An important implication in the context of pension reforms is that a gradual,

pre-announced increase in the pension age, perhaps differentiated by income
levels to maintain progressivity, would be more effi cient than changes that reduce
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replacement rates.
The idea of pensions starting late in life is not radical in a historical con-

text. When public pensions were first introduced in Germany in the 1890s, the
pension age of 65 was close to adult life expectancy (i.e., conditional on sur-
vival to adulthood). When the U.S. social security system was created in 1935,
the pension age of 65 was close to life expectancy at birth. Remarkably, the
pension age has stayed virtually constant even as life expectancy has increased
significantly over time. If pension systems had been adjusted in line with life
expectancy, most developed countries would now have a pension age of about
75.

References

[1] Auerbach, Alan, Laurence Kotlikoff, and Willi Leibfritz. 1999. Generational
Accounting around the World. Chicago: University of Chicago Press.

[2] Bohn, Henning. 1992. "Budget Deficits and Government Accounting.”
Carnegie-Rochester Conference Series on Public Policy, 37: 1—84.

[3] Bohn, Henning. 2006. “Who Bears What Risk? An Intergenerational Per-
spective.”In: Restructuring Retirement Risks, ed. David Blitzstein, Olivia
Mitchell and Stephen Utkus, 10—36. Oxford University Press.

[4] Brugiavini, Agar. 1993. “Uncertainty Resolution and the Timing of Annuity
Purchases.”Journal of Public Economics, 50(1): 31—62.

[5] Fenge, Robert, Silke Uebelmesser, and Martin Werding. 2006. “On the
Optimal Timing of Implicit Social Security Taxes Over the Life Cycle.”
FinanzArchiv / Public Finance Analysis, 62(1): 68—107.

[6] Gamble, Keith Jacks, Patricia Boyle, Lei Yu, and David Bennett. 2015.
“How Does Aging Affect Financial Decision Making?”Boston College, Cen-
ter for Retirement Research.

[7] Gruber, Jonathan, and David Wise. 2008. Social Security and Retirement
around the World. Chicago: University of Chicago Press.

[8] Mitchell, Olivia, James Poterba, Mark Warshawsky, and Jeffrey Brown.
2001. “New Evidence on the Money’s Worth of Individual Annuities.” In:
The Role of Annuity Markets in Financing Retirement, ed. Olivia Mitchell,
James Poterba, Mark Warshawsky and Jeffrey Brown. MIT Press.

[9] Poterba, James. 2014. “Retirement Security in an Aging Population.”
American Economic Review: Papers & Proceedings 2014, 104(5): 1—30.

[10] Rupert, Peter, and Giulio Zanella. 2012. “Revisiting wage, earnings, and
hours profiles.”Journal of Monetary Economics, 72(C): 114-130.

26



[11] Yaari, Menahem E. 1965. “Uncertain Lifetime, Life Insurance, and the
Theory of the Consumer.”Review of Economic Studies, 32(2): 137—150.

A Appendix

A.1 Proofs of the Propositions

Proof 1. The overall problem is to maximize Wt0 subject to (6), (7), and
(8) by choice of {ci,t+i, xi,t+i, τ i,t+i, Bi,t+i}i≥0,t≥t0 for given Dt0 = 0, {Gt}t≥t0 ,
Ai,t0 = 0 for all i ≥ 0 at t = t0, and A0,t = 0 for t > t0. The additional incentive
constraints (3)-(5) are moot since they are be satisfied at the solution obtained
without imposing them. The welfare problem subdivides straightforwardly be-
cause the welfare function Wt0 and the constraint (8) are both additively sep-
arable and the variables entering into {GAi0,t0}0≤i0≤imax and {GA0,t}t>t0 are
cohort-specific.
Proof 2. If Bj > 0 for any age j ∈ [iR, imax), then ΛBj

= 0 in (9), hence
ΛGA = βjRju′(cj). Moreover, ΛBj+1 ≥ 0 in (9) implies βj+1Rj+1u′(cj+1) ≤
ΛGA, so βRu′(cj+1) ≤ u′(cj). Then in (3), κai > 0 implies Λxaj = u′(ci)−Raj+1 ·
Πjβu

′(cj+1) > 0, so xaj = 0. Since u′(0) =∞, finite ΛGA in (9) implies ci > 0.
Given xj ≤ 0, ci > 0 requiresBk > 0 for at least one period k > i. GivenBk > 0,
the above argument for j applies to k, and by finite recursion, the argument
for Bk > 0 applies to k = imax. Given Bimax > 0, ΛGA = βjRju′(cj) =
βimaxRimaxu′(cimax) implies ΛGA = βiRiu′(ci) for all i ∈ [j, imax] and hence
βRu′(ci+1) = u′(ci) for all i ∈ [j, imax−1]. In (3-5), βRu′(ci+1) = u′(ci) implies
xaj = dj = 0, hence ci = Bi.
Proof 3. Suppose Bk = 0 for all k ≥ iR. Since u′(0) = ∞, individual must
set xi > 0 for i ≥ iR − 1 to ensure ci > 0. Hence K[i,imax](Rβ)imaxu′(cimaxt ) =
(Rβ)iu′(cit) for i = iR−1 applies with Ki+1(xi) = 1−κai < 1. The same applies
for i < iR − 1 if xj > 0 for j ∈ [i, iR − 1]. From (10) (Rβ)iu′(ci) = ΛGAϕ(τ i),
so K[i,imax](Rβ)imaxu′(cimaxt ) = ΛGAϕ(τ i). By assumption, ϕ(τ i)/K[i,imax] > 1,
which implies (Rβ)imaxu′(cimaxt ) > ΛGA, contradicting (9). Hence Bk = 0 for
all k ≥ iR is ineffi cient. Hence setting Bk > 0 for some k ≥ iR is a necessary
condition for effi ciency.
Proof 4. From (10), (Rβ)iR−1u′(ciR−1) = ΛGAϕ(τ iR−1), hence βjRju′(ci) =

ΛGA
ϕ(τ iR−1)

K[iR−1,j]
for all j ≥ iR. If ϕ(τ iR−1) < K[iR−1,i] for some i ≥ iR, then

ϕ(τ iR−1) < K[iR−1,i] ≤ K[iR−1,j] for all j ≤ i, which implies (Rβ)iu′(cj) < ΛGA,
so ΛBj > 0 and hence Bj = 0.
Proof 5. For τ i−1 > 0 and τ i > 0, (10) and (11) imply ϕ(τ i−1) = βi−1Ri−1

· u′(ci−1)/ΛGA = Ki(xi−1) · βiRiu′(ci)/ΛGA = Ki(xi−1) · ϕ(τ i).
Proof 6. The argument was provided in the text. An easy formal proof is
by contradiction: Suppose benefits were paid in some period i1 while private
assets are positive. Then private asset must be used to fund consumption in
some period i2 > i1, which implies Kk+1(xk) < 1 for i1 ≤ k < i2, which in
turn implies that viR could be increased by a marginal reduction in B

e
i1
and a
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marginal increase in Bei2 that keeps the sum bi1 + bi2 unchanged, contradicting
optimality.
Proof 7. By assumption, an allocation that maximizes Wt0 exists, it spec-
ifies retirement benefits {Bi,t+i(η)}i≥iR,t≥t0 for each cohort and type. Since
GBiR(η) > 0, Bi(η) > 0 for some i ≥ iR, so iP = min{i : Bi(η) > 0} exists.
Since benefits are additively separable in the government’s budget constraint,
optimal benefits for each type and for each cohort t ≥ t0 − iR must maxi-
mize Et[URt (η)] subject to given GBiR(η) and AiR(η) by choice of Bj,t+j(η) and
ci,t+j(η). The text claims that for each type η pension benefits must be struc-
tured so that Bj(η) = cj(η) for all j > iP . (This is as in Prop.2 and Prop.6. The
additional claim xiP (η) = 0 follows as corollary.) The proof is by contradiction,
in two parts:

(a) Proof for regular benefits: Suppose for contradiction that optimal poli-
cies satisfies Bi(η) < ci(η) for some period i+ > iP . Then Ai(η) ≥ ci+(η) −
Bi+(η) > 0 implies non-zero assets for [iP , i+], hence K[iP ,i+] < 1. Consider
a marginal increase in ∆Bi+(η) > 0 at age i+ combined a marginal reduc-
tion ∆BiP (η) = −∆Bix(η)Π[iP ,i+]/R

ix−iP at age iP that leaves GBiR(η) un-
changed. Since Ai(η) > 0 for i ∈ [iP , i+], individuals can reduce Ai(η) mar-
ginally by ∆Ai(η) = −∆Bi+(η)Π[i,i+]/R

i−iP /K[i,i+] to maintain unchanged
ci(η) for i ∈ (iP+1, i+]. This variation raises consumption in period iP by
∆ciP (η) = −∆xiP (η)−∆BiP (η) = (1/K[iP ,i+] − 1)|∆BiP (η)| > 0, which shows
that the variation increases utility, contradicting optimality.
(b) Proof for earnings-linked benefits: Suppose for contradiction thatBi(η) <

ci(η) for some period i+ > iP . Then marginal increase in bi+(η) combined
with ∆biP (η) = −∆bi+(η) would increase viR(η) by ∆viR(η) = ∆biP (η) +
∆bi+(η)/K[iP ,i+] > 0. Hence the original policy did not minimize tax dis-
tortions, in addition to not maximizing utility, again contradicting optimality.
Proof 8. Follows from the marginal arguments in the Proof of Prop.7.

A.2 The Welfare Problem with Uniform Taxes

Consider the problem of Section 1 with the additional constraint of uniform,
age-independent taxes. As discussed in Section 1 (Prop.1), the welfare prob-
lem of maximizing Wt0 subject to (8), (7), and (6) subdivides straightforwardly
if taxes τ i,t+i can vary across cohorts. With uniform taxes, the problem can
be subdivided differently, namely into (A) maximizing Wt0 over retirement-age
choices ΩR = {ci,t+i, xi,t+i, Bi,t+i}i≥iR,t≥t0 conditional on working-age choices
Ωw = {ci,t+i, xi,t+i, τ i,t+i, Bi,t+i}i≥0,i<iR,t≥t0 ; and (B) maximizing over the con-
ditioning variables Ωw.

To do this, first divide utility and welfare into working-age and retirement
components, Ut = Uworkt + URt , where U

work
t =

∑iR−1
i=0 βiσi,t+iu(ci,t+i) and

URt =
∑imax
i=iR

βiσi,t+iu(ci,t+i), and Wt0 = Wwork
t0 + WR

t0 , where W
work
t0 =∑∞

t=t0−imax β
t−t0ωtEt0 [U

work
t ] and WR

t0 =
∑∞
t=t0−imax β

t−t0ωtEt0 [U
R
t ].

Second, note that the generational accounts divide similarly: GA0,t = GAwork,t+
ρiRGAiR,t+iR for generic t ≥ t0, was defined in the text; for t < t0 − iR, the
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same division applies with truncated work and/or retirement periods.
Third, note that Ωw implies values GAiR,t+iR and AiR,t+iR for generations

t ≥ t0 − (iR − 1), and values GAt0−t,t0 and At0−t,t0 for generations t ≤ t0 − iR,
and that the conditioning variables are relevant for the retirement period only
through GA and A. Hence part (A) of the problem reduces to maximizing WR

t0
subject GA- and A-values at retirement. (For generations t ≥ t0− (iR− 1), the
relevant variables are GAiR,t+iR and AiR,t+iR ; for generations t ≤ t0 − iR, they
are GAt0−t,t0 and At0−t,t0 .)
Moreover, since {ci,t+i, xi,t+i, Bi,t+i}i≥iR for any t enters into URt andGAi,t+i

for only one generation, the problem of maximizingWR
t0 separates into generation-

specific problems of Et0 [U
R
t ]. Specifically:

(A1) For cohorts t ≥ t0 − (iR − 1), maximize EtURt subject to (7) and (6)
by choice of {ci,t+i, xi,t+i, Bi,t+i}i≥iR for given GAiR,t+iR and AiR,t+iR . The
solutions define indirect utility functions

V RiR,t(GAiR,t+iR , AiR,t+iR) = max{Et0
imax∑
i=iR

βiσi,t+iu(ci,t+i)|GAiR,t+iR , AiR,t+iR}.

(A2) For cohorts t ∈ [t0 − imax, t0 − iR], the analogous truncated problems
starting at age i = t0−t define indirect utility functions V Rt0−t,t(GAt0−t,t0 , At0−t,t0).
Given solutions to (A1) and (A2), the remaining welfare problem (part B)

is to maximize

Wt0 = Wwork
t0 +

∞∑
t=t0−iR

βt−t0ωtV
R
iR,t +

t0−iR∑
t=t0−imax

βt−t0ωtV
R
t0−t,t.

by choice of Ωw and of generational account and asset balances at retirement.
By construction, problems (A1) and (A2) do not depend on working age.

Hence optimal pensions (if nonzero) have the properties described in Prop.7.
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