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Part A:  Notation Table 

General conventions: 

 • Subscript t denotes the time period. 

 • Superscript 1 indicates working-age variables (first period of life). 

 • Superscript 2 indicates retirement-age variables (second period of life). 

 • Hats (^) denote percentage deviations from a deterministic steady state. 

 • Superscript star (*) denotes objects associated with planning solutions. 

 • Generic symbols:  for a variable;  for a state variable;  xt st

 π x,s  = Coefficient on  in the log-linearized dynamics for  (or equivalently: derivative 

of  with respect to , elasticity of  with respect to ); 

ŝt x̂t

x̂t ŝt xt st

 σ x  = Steady state share of x in output.  

 • Variable labels without time subscripts denote deterministic steady state values. 

Functions: U  = utility;  = production; (⋅) F(⋅) G(⋅)  = capital accumulation. 

Operator:  = expectation conditional on period-t information. Et[⋅]

Model variables (in sequence as defined, but related variables grouped together): 

  = lifetime utility of the cohort entering working-age in period t. Ut

  = consumption of  a worker (first period of life) in period t ct
1

  = consumption of  a retiree (second period of life) in period t ct
2

  = leisure of a worker in period t. lt

  = aggregate output in period t. Yt

  = aggregate capital stock in period t. Kt

  = aggregate labor input into period-t production Lt
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  = size of the working-age cohort in period t.  Nt

  = aggregate capital investment in period t. It

  = period-t value of the stochastic trend in total factor productivity. At

  = permanent productivity shock.  at = At / At −1

  = vector of shocks to the production function F. zt
F

  = vector of shocks to the capital accumulation function G. zt
G

zt = (zF
t , z

G
t )  = vector of shocks to F and G. (Note: In Sections 3-4, reduces to a scalar that 

represents a temporary productivity shock. Then , and there is no ). 

zt

zt = zF
t zt

G

  = state of nature in period t.  ht

  = value of capital in period t in terms of consumption (Tobin’s Q).  Qt

  = return on capital between periods t-1 and t. Rt

  = savings of a worker in period t (all invested in capital). kt
1

  = wage rate in periods t  (equals wage income in versions without leisure). wt

  = government net transfers per retiree in period t, a.k.a., retirees’ generational account. bt

  = disposable income of a worker in period t (wage income minus net taxes). yt
1

  = savings rate of a worker in period t (savings/disposable income). κ t = kt
1 / yt

1

 ω t  = welfare weight on generation t relative to generation t-1 in the planning problem. 

  %ω t  = welfare weight on generation t relative to t-1 implied by a market allocation. 

   = Markov state vector. St

  = capital-labor ratio. kt = Kt / (At −1Nt −1)

  = working-age consumption deflated by the productivity index. χt = c1
t / At
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Constants: 

 γ N = Nt / Nt −1 = population growth rate. 

 γ A = E[at ]= average growth rate of the productivity trend A. 

 δ  = depreciation rate (applicable only when depreciation is constant). 

 ε  = elasticity of intertemporal substitution. 

 ρ  = discount factor for time preference. 

 α  = capital share (constant in case of Cobb-Douglas; steady state value in general.) 

 v = (1− δ ) / R  = steady state share of old capital in the return on capital. 

  = cutoff value for v defined in equation (22). v0

 r = R / (γ Nγ A )  = steady state ratio of returns to population plus productivity growth. 

  = parameters in the habit preference utility function defined in equation (23).  ( %ε, %h)

 h  = steady state ratio of habit stock to retirement consumption in Section 4.1. 

  εKL  = elasticity of substitution between capital and labor in Section 4.3. 
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Part B:  Proofs of Propositions 1-3 

The linearizations in Section 3-4 are taken around the deterministic steady state obtained by 

suppressing the shocks, as follows. Let time-subscripts be omitted to denote steady state values, and 

let σ x  denote steady state output-shares (specifically: σ b  for bt
N t−1

Yt
, σ c1  for ct

1 Nt
Yt

, σ c2  for 

ct
2 Nt−1

Yt
, and σK  for K t+1

Yt
). For every combination of preference and technology parameters 

(ε,ρ,α,δ,γA ,γN )  and for given ω , equations  

 (a) ρ(σ c1γ Aγ N
σ c 2

)−1/ε R = 1; (b) R = αγ Aγ N
σK

+ (1− δ ) ;  

 (c) σ c1 + σ c1 + σ K = 1+ (1−δ )
γ Aγ N

σ K ; (d) (σ c , 1)−1/ε = ρ(σ c1γ N )−1/ε / ω

determine unique steady state values of the return R  and the output shares (σ c1 ,σ c2 ,σK ) in the 

efficient allocation. Given this solution, an implied level of transfers σ b  is obtained from 

 (e) σ c2 = α + (1−δ )
γ Aγ N

σ K + σb . 

Equations (a-e) are the steady state analogs of: the Euler equation (4), the return on capital (3), the 

resource constraint (1), the efficiency condition (8), and the retiree budget equation (5).  

 For market allocations, parameters (ε,ρ,α,δ,γA ,γN )  and given transfers σ b  uniquely 

determine R  and (σ c1 ,σ c2 ,σK ) from (a-c) and (e). Given these values, (d) can be used to infer the 

weight ω = ˜ ω  that yields the same steady state transfers. This dual interpretation of (a-e) illustrates 

how a given level of transfers determines a welfare weight, and it shows why market allocations and 

comparable efficient allocations have, by construction, the same steady states.   

Proposition 1(a-b): Under the assumptions of Section 3, one obtains the log-linearizations: 

(A1) , from (1-2); σ K ⋅ (k̂t + ât ) + σ c1 ⋅ ĉt
1 + σ c2 ⋅ ĉt

2 = (α + σ v ) ⋅ k̂t −1 + (1− α ) ⋅ (ât + ẑt )

(A2) , from (3);  R̂t = π R,a ⋅ (ât + ẑt − k̂t −1)

(A3) 1
ε ⋅ (ĉt

1 − ât ) + Et[R̂t +1 − 1
ε ⋅ ĉt +1

2 ] = 0 , from (4);  
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(A4) ĉt
2 = (1− σb

σc 2
) ⋅ (R̂t + k̂t −1) + σb

σc 2
⋅ b̂t , from (5); and combining (A1,A4), 

(A5) σK
1−α −σb

⋅ (k̂t + ât ) + σc1
1−α −σb

⋅ ĉt
1 = (1−α )

(1−α −σb ) ⋅{α k̂t −1 + (1− α )(ât + ẑt )} − σb
(1−α −σb ) ⋅ b̂t . 

Equation (A4) proves (18); (A2, A4) imply π c2,k = (1− σb
σc 2

) ⋅ (1− π R,a ) + σb
σc 2

⋅πb,k = 1− π c2,a , and this 

can be used in (A3) to obtain:  

(A6) .  ĉt
1 − ât = (επ R,a + 1 − π c2,a ) ⋅ k̂t

Let ˆ k t  and  in (A5, A6) be replaced by their log-linearized policy functions with undetermined 

coefficients, and equate coefficients for each state variable. This implies  

ĉt
1

 π c1,a − 1 = (επ R,a + 1 − π c2,a ) ⋅π k ,a ,   

 π c1,z − 1 = (επ R,a + 1 − π c2,a ) ⋅π k ,z , 

 κ (π k ,a + 1) + (1−κ )π c1,a = (1− α ) + σb
(1−α −σb ) (1− α − πb,a ) , and   

 κπ k ,z + (1−κ )π c1,z = (1− α ) + σb
(1−α −σb ) (1− α − πb,z ) . 

Substituting away the coefficients on capital, one obtains 

(A7) 1− π c1,a = Φ ⋅{α − σb
(1−α −σb ) (1− α − πb,a )} , where Φ ≡ (επ R ,a +1−π c 2 ,a )(σ K +σ c1 )

σ K +σ c1 (επ R ,a +1−π c 2,a ) , and 

(A8) π c1,z = Φ ⋅{(1− α ) + σb
(1−α −σb ) (1− α − πb,z )}   

Then consider different cases, (i-iv) below: 

(i) For (ε,v) = (1,0)  and π b,a = π b,z = 1 − α : (18) implies επ R,a + 1 − π c2,a = 1, so (A7-8) reduces to 

π c1,a = π c2,a = π c1,z = π c2,z = 1 − α . 

(ii) For ε =1, π b,a = 1 − α , and any v : (18) implies > 0 π c2,a = π c2,z = (1 − v)(1 − α ) < 1 − α  and 

, so 1− v < Φ ≤1 π c1,a ≥ 1 − α > π c2,a  and π c1,z = Φ(1 − α ) > π c2,z .  

(iii) For ε =1 and anyv : Differentiating (18) and (A7-8) with respect to ≥ 0 πb,s , , yields  s ∈{a, z}

∂π c 2,s

∂πb ,s
= σb

σ c 2
> 0  for both shocks, 

∂π
c1,zT

∂πb ,z
= −Φ ⋅ σb

(1−α −σb ) < 0 , and 

∂π c1,a

∂πb ,a
= Φ ⋅ { σ K

σ K +σ c1 (επ R ,a +1−π c 2 , )
∂π c 2 ,a

∂πb ,a
− σb

(1−α −σb )} = Φ ⋅ σb
(1−α −σb ) { Φσ K

(επ R ,a +1−π c 2,a )σ c 2
− 1} < 0 . 

The latter is negative because (επ R,a + 1− π c2,a )σ
cr > 1− α  whereas Φσ K < 1− α .  

Given step (ii), this implies π c1,a > π c2,a  and π c1,z > π c2,z for all  and all v > 0 π b,s ≤ 1 − α .  
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(iv) For ε <1: Because Φ is strictly increasing in ε , (A7) implies that π c1,a > π c2,a  is strict for all 

ε <1 whenever π c1,a ≥ π c2,a  for ε =1, i.e., for all (ε,v) ∈ [0,1] × [0,1] and for π b,a ≤ 1 − α  excluding 

the case (ε,v) = (1,0)  with π b,a = 1 − α . This proves Prop.1(a).  

 Also because Φ is strictly increasing in ε , (A8) implies that π c1,z − π c2,z  is strictly increasing 

in ε  and strictly decreasing in πb,z . To show that π c1,z > π c2,z  for all ε  and all π b,z ≤ 1 − α , it is 

therefore sufficient to show a positive sign for ε = 0 and π b,z = 1 − α . For this case, ε = 0 and 

π b,z = 1 − α , (18) and (A8) imply π c1,z −π c 2,z

1−α = Φ − [1 − v(1 − σb
σ c 2

)] > 0  if and only if 

v > π c2,a { σK
σK +σc1

/ (1− σb
σ c2

) + v σc1
σ K +σc1

} . Using (18) for π c2,a , and using the steady state relationships 

(b) and (e) to substitute  σ K
σ K +σc1

= 1
1−v

α
1−α −σb

/ R
γ Aγ N

 and 1− σb
σ c 2

= α
α +σb (1−v) , this inequality reduces to 

, where  v{ f + v} > f %ϑ(1− v) f = (α +σ b )
1−α−σ b

 and %ϑ = 1−α
α ⋅ f / R

γ Aγ N
. The equation  

has a positive root  

v{ f + v} = f %ϑ(1− v)

v0 = f / 2[ (1 + %ϑ )2 + 4ϑ / f − (1+ %ϑ )] , which is equivalent to the formula in the 

text, using  . Given the direction of inequality above, ϑ = (1 + %ϑ ) / 2 π c1,z > π c2,z  holds for v > v0. 

This proves Prop.1(b). 

Proposition 1(c): Inserting the efficient laws of motion into (A1, A6) and evaluating the 

undetermined coefficients for  one finds ât

 , and π c1,a
* − 1 = (επ R,a + 1− π c2,a

* ) ⋅π k ,a
*

(A9) σ K ⋅ 1−π c1,a
*

επ R ,a +1−π c 2,a
* + σ c1 ⋅ (1 − π c1,a

* ) + σ c2 ⋅ (1− π c2,a
* ) = (α + σ v ) . 

Invoking the efficiency condition π c1,a
* = π c2,a

* , (A9) implies that  is the fixed 

point of  

(1− π c2,a
* ) = φ(1− π c2,a

* )

φ(x) ≡ (α +σ v )(επ R ,a + x )
σ K +(σ c1 +σ c 2 )(επ R ,a + x ) . Because φ(0) > 0, 0 < φ ' ≤ σc1

σc1 +σc 2
< 1, the fixed point is unique; 

and φ(x) > x  holds if and only if x  is below the fixed point. 

If  holds in a market allocation, . Inserting the market laws 

of motion (10) into (A1,A6), and proceeding as above, one obtains 

π c2,a < π c1,a η ≡ (1− π c1,a ) / (1− π c2,a ) < 1

 σ K ⋅ η(1−π c1,a )

επ R ,a +1−π c 2,a
+ σ c1 ⋅η(1 − π c2,a ) + σ c2 ⋅ (1 − π c2,a ) = (α + σ v ) . 

Because η <1, this implies 1− π c2,a = (α +σ v )(επ R ,a +1−π c 2,a )

σ K η+ (σ c1η+σ c 2 )(επ R ,a +1−π c 2,a )
> φ(1 − π c2,a ) . Thus, 1  is less 

than the fixed point, hence . Comparing (A1) for efficient and market solutions, one 

− π c2,a

π c2,a < π c2,a
*
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obtains . From  and (A6), 

this implies 

σ K ⋅ (π k ,a
* − π k ,a ) + σ c1 ⋅ (π c1,a

* − π c1,a ) + σ c2 ⋅ (π c2,a
* − π c2,a ) = 0 π c2,a < π c2,a

*

π k ,a ≥ π k ,a
* [σ K +σ c1 ⋅(επ R ,a +1−π c 2,a

* )]

[σ K +σ c1 ⋅(επ R ,a +1−π c 2,a )]
> π k ,a

* , and . QED. π k1,a = 1+ π k ,a > 1+ π k ,a
* = π k1,a

*

 

Proposition 2: From Section 2, efficient policies exist. Prop.1 shows 0 ≤ π b,s ≤ 1 − α  for  

are inefficient under the same assumptions as assumed in Prop.2, and the proof of Prop.1 rules out 

negative values. Hence  for 

s ∈{a, z}

πb,s
* > 1− α s ∈{a, z} . [More constructively, one could derive formulas 

for the optimal coefficients (  by treating (  as derived from (A1-A6) as 

undetermined coefficients and equating retiree and workers’ consumption elasticities. Then 

 could be verified directly. But such a direct proof would be lengthy.]   

πb,a
* ,πb,z

* ) πb,a ,πb,z )

πb,s
* > 1− α

 

Proposition 3: In the habit model, the Euler equation (4) can be written as  

  (ct
1)− 1

%ε = ρEt[(Rt +1 + %h)(ct +1
2 − %hct

1)− 1
%ε ] .  

Its log-linearization is 
 
− 1

%ε ⋅ (ĉt
1 − ât ) = Et[ R

R+ %h
R̂t +1 − 1

ε ⋅{ 1
1−h ĉt +1

2 − h
1−h (ĉt

1 − ât )}]  and implies 

 
 
ĉt

1 − ât = Et [ĉt +1
2 − %ε R

R+ %h
(1− h )R̂t +1]  

By comparison to the CRRA, 
 
%ε R

R+ %h (1 − h ) = ε  is the elasticity of substitution. From (8): 

  (ct
2 − %hct −1

1 )− 1
%ε = (ct

1)− 1
%ε − ρ %hEt[(ct +1

2 − %hct
1)− 1

%ε ] = ρEt[Rt +1(ct +1
2 − %hct

1)− 1
%ε ]  

Now use χ̂ t = ĉt
1 − ât  and define ĉt

ha = 1
1−h ĉt

2 − h
1−h ⋅ χ̂t −1 − ât . Then (4) and (8) reduce to 

 
 
χ̂t = Et[ĉt +1

ha − %ε R
R+ %h

R̂t +1]  and   ĉt
ha = Et[ĉt +1

ha − %ε R̂t +1]

These equations and (A1-2), which remain valid, define the log-linearized allocation. Because 

Prop.3 is about  set  in (A1-2). Then write (A1) as ât zt = 0

 σ K ⋅ k̂t + σ c1 ⋅ χ̂t + σ c2 ⋅ (1− h )ĉt
ha = (α + σ v ) ⋅ k̂t −1 − (α + σ v − σ c2 ⋅ h ) ⋅ ât − σ c2 ⋅ h χ̂t −1  

and use (A2) to substitute  in the optimality conditions. One obtains Et R̂t +1 = −π R,a ⋅ k̂t

 
 
χ̂t = Et[ĉt +1

ha ] + %ε R
R+ %h

π R,a ⋅ k̂t  and   Et [ĉt +1
ha ] = ĉt

ha − %επ R,a ⋅ k̂t

hence 
 
χ̂t = ĉt

ha − %ε R
R+ %h

π R,a ⋅ k̂t = ĉt
ha − η ⋅ k̂t , where η = %ε R

R+ %h
π R,a ≥ 0 . 

Inserting (10) with undetermined coefficients, one obtains , and π χ ,s
* = π

cha ,s
* − ηπ k ,s

* ∀s
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(A10a)  σ K ⋅π k ,k
* + σ c1 ⋅π χ ,k

* + σ c2 ⋅ (1 − h )π
cha ,k
* = α + σ v  

(A10b)  σ K ⋅π k ,χ
* + σ c1 ⋅π χ ,χ

* + σ c2 ⋅ (1− h )π
cha ,χ
* = −σ c2h  

and using , one obtains 
 
π

cha ,χ
* χ̂t + π

cha ,k
* k̂t = ĉt

ha − %επ R,a ⋅ k̂t

(A10c)   
 
π

cha ,χ
π χ ,k

* + (π
cha ,k
* + %επ R,a )π k ,k

* = π
cha ,k
*

(A10d)   
 
π

cha ,χ
π χ ,χ

* + (π
cha ,k
* + %επ R,a )π k ,χ

* = π
cha ,χ
*

Equations (A10a-d) characterize the four coefficients { . Noting that  π k ,k
* ,π k ,χ

* ,π
cha ,k
* ,π

cha ,χ
* }

π
cha ,χ
* = − σ c 2 ⋅h

α +σ v
π

cha ,k
*  and π k ,χ

* = − σ c 2 ⋅h
α +σ v

π k ,k
* , this reduces  to a pair of equations in {  that 

can be further reduced to a quadratic equation in 

π cha ,k
* ,π k,k

* }

π k,k
* , which yields a unique, positive stable root. 

(Details omitted because the following only relies on π k,k
* ≥ 0.) Noting that { ˆ k t , ˆ χ t , ˆ c t

ha} are 

homogenous of degree zero in ( , ât , χ̂t , k̂t ) π k,k
* ≥ 0 implies π k ,a

* = −(1 − σ c 2 ⋅h
α +σ v

)π k ,k
* < 0 , and therefore 

. By construction of  and π χ ,a
* = π

cha ,a
* − ηπ k ,a

* ≥ π
cha ,a
* ˆ c t

ha ˆ χ t , one has  and π c1,a
* = 1+ π χ ,a

* ≥ 1+ π
cha ,a
*

π c2,a
* = (1− h )(1+ π

cha ,a
* ) , so π c2,a

* ≤ (1− h )π c1,a
* . QED.  
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Part C: Supplementary materials on efficiency in Section 2 

1. The one-for-one correspondence between ex ante efficient allocations and sets of state-contingent 

transfers  (asserted on page 7) works as follows: For arbitrary welfare weights {{bt
* (ht )}t≥0 ω t}t≥0 

let {  be the solution to the planning problem. Define transfers for all 

dates and states by 

ct
1*(ht ),ct

2*(ht ), lt
*(ht ),Kt +1

* (ht )}t ≥0

  b , t
*(ht ) ≡ ct

2*(ht ) − Rt
*(ht ) ⋅ Kt

*(ht −1) / Nt −1

where stars (*) refer to planning-solution values. In a market economic with these transfers, 

, , and  are optimal choices for generation t-workers, and the 

resulting savings yield K , which means that the planning solution can be 

decentralized.  

ct
1 = ct

1*(ht ) ct +1
2 = ct +1

2* (ht +1) lt = lt
* (ht )

t+1 = Kt+1
* (ht )

 

2. The efficiency standard (Fn.10, p.6) In the literature, “ex ante” comparisons sometimes refers to 

“timeless” comparisons of steady states, but such comparisons easily miss transition cost. Hence I 

condition on the initial state of nature. One could define Pareto optimality more generally 

conditional on a history ht. But maximizing W0 conditional on ht would yield the same first order 

condition for subsequent periods and provide no additional insights. 

 There is also a controversy about ex ante versus interim efficiency. Some authors have 

favored interim over ex ante efficiency because laissez-faire allocations generally violate (8) and are 

therefore inefficient (Peled 1982; Wright 1987; Demange and Laroque 1999). Under an interim 

perspective, agents born in different states of nature are treated as distinct. This yields in a less-

demanding welfare standard that is generally satisfied by laissez-faire (Peled 1982). However, for 

this paper, interim efficiency is uninteresting. This is because alternative policies invariably shift 

resources across state of nature and are therefore not comparable under the interim standard.  
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 Specifically, interim efficient allocations can be interpreted as solutions to planning problems 

with state-contingent weights ω t (ht )  that maximize { ω t (ht )Nt E[Ut | ht ]}ht
∑t≥0∑ . For any given 

market allocation, one may compute state-contingent weights  

 
 
%ω (ht ) = 1 / Et[

∂Ut

∂ct
1 / ∂Ut−1

∂ct
2 ]   

for which the allocation can be rationalized as interim efficient, provided the planning problem with 

weights ˜ ω (ht )  has a solution. Thus, interim efficiency imposes no constraints on policy except to 

rule out policies that would yield dynamic inefficiency. 

 Ex ante efficiency, in contrast, imposes non-trivial restrictions on risk sharing and it imposes 

a feasible efficiency standard, a standard that can be attained regardless of policy makers’ 

redistributional preferences. 

 

3. Non-existence of comparable efficient allocations (Fn.11 on p.7) The welfare weights ˜ ω t  defined 

in (9) are uniquely defined for all market allocations, but the planning problem with weights { ˜ ω t}t≥0 

may not have a solution. Notably, if the market allocation is dynamically inefficient, the sequence 

{ ˜ ω tt=0
k∏ }k≥0 will typically diverge as k → ∞ . If the planning problem with weights { ˜ ω t}t≥0 does 

have a solution, however, it is easy to check if the market solution satisfies (8) for all states of 

nature. Because transfers imply allocations, one may also check if the given transfers {bt (ht )}t≥0  

match the transfers that maximize welfare for weights { ˜ ω t}t≥0. There may be “borderline” Pareto 

efficient allocations for which the sum in (2.7) does not converge, but they are inessential for risk 

sharing issues and hence disregarded. For this paper, Pareto efficiency and “solution to the planning 

problem subject to initial conditions” are treated as equivalent. 
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4. An economic interpretation of why distributional judgments are not needed: The main intuition is 

that constructing the comparable efficient allocation formalizes the distinction between 

redistribution and risk sharing. A planner who discounts future generations’ utility heavily will tend 

to transfer resources from young to old, or put differently, assign relatively more consumption to the 

old than to the young. This applies in all states of nature, which means that the general “level” of 

transfers in a market allocation reveals the planner’s welfare weights, i.e., his/her distributional 

preferences. 

 Risk sharing is inherently about fluctuations around a given “level” of activity. The basic 

requirement for optimal risk sharing is—as shown in (8)—that transfers vary across states of nature 

so that the marginal utilities of the old and the young vary proportionally. This proportionality 

applies regardless of welfare weights, which means that ω t  is a nuisance for studying risk sharing. 

The nuisance is removed by conditioning on the welfare weights ˜ ω t  that are embedded in the market 

allocation itself. This step separates risk sharing from redistribution and thus provides the conceptual 

foundation for the study of intergenerational risk sharing. 

 Once the appropriate welfare weights are identified via (9), efficiency can be assessed 

without making distributional judgments. One must simply examine to what extent the variables of 

interest—consumption, leisure, capital investment, transfers, etc—vary across states of nature in the 

same way as in the comparable efficient policy. 

 Because redistribution is a distraction, this paper is not interested in market allocations that 

are inefficient because of an inefficient level of transfers—the case of dynamic inefficiency—nor in 

“borderline” cases of dynamic efficiency where problem (7) has no finite solution (e.g., Golden 

Rule-type allocations). To avoid existence issues, the paper restricts attention to allocations for 

which comparable efficient allocations exist. That is, I restrict the analysis to combinations of 
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preferences, technologies, and policies for which the Pareto problem with weights { ˜ ω t}t≥0 has a 

finite solution. 

5. Details on why balanced growth implies constant welfare weights (Fn.12, p.8): If a market 

allocation has balanced growth, marginal rates of substitution must converge to a limiting 

distribution. Hence the welfare weights in (9) must always converge to a constant 

 ω = 1 / lim
t→∞

E0[ ∂Ut

∂ct
1 / ∂Ut−1

∂ct
2 ]( ). 

Balanced growth in infinite horizon planning problems similarly requires exponential discounting. 

This suggests that one may restrict attention to planning problems with constant discount factors and 

simply compare a market allocation to the efficient allocation with fixed discount factor ω t = ω . 

This comparison applies asymptotically for any initial conditions  (as ). It applies for all t, 

if initial values are drawn from the limiting distribution of the market allocation to make 

h0 t → ∞

E0[ ∂Ut

∂ct
1 / ∂Ut−1

∂ct
2 ]  time-invariant. In any case, researchers commonly invoke ergodicity to estimate or 

calibrate a model, i.e., use time-averages to proxy expectations. This means that initial conditions 

and initial periods, though conceptually important to define efficiency, are disregarded in most 

applications. Treating ω as constant is no more restrictive.  
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Part D: Supplementary materials on the empirical claims in Section 3, Fn.18. 

This section examines empirical co-movements of wages and returns on capital. Though the paper is 

primarily theoretical, the inequality between wage and return responses to productivity shocks is 

sufficiently important to deserve empirical analysis.  

 To start—as a simple extension that gives returns a higher variance than wages without 

changing any results about productivity—suppose capital accumulation takes the form 

G(It,Kt ,zt
G ) = It + (1−δ + zt

G ) ⋅ Kt , where  is a mean-zero shock to the value of old capital, or 

equivalently, stochastic depreciation.  

zt
G

 In the presence of , the temporary productivity shock must be relabeled to avoid 

inconsistent notation. For this part of the appendix (Part D only), denote the temporary productivity 

shock by . The overall resource constraint is then 

zt
G

zt
F

 . Kt +1 + Ntct
1 + Nt −1ct

2 = Kt
α (Nt At zt

F )1−α + (1− δ + zt
G ) ⋅ Kt

The wage equation remains unchanged, and the return on capital is 

(A11) . Rt = α(kt −1 / γ N )α −1(at zt
F )1−α + 1− δ + zt

G

 The stochastic zt -term increases return volatility, breaks the perfect correlation of returns 

and wages, and may give returns a one-period-ahead variance that exceeds the comparable variance 

of wages. The introduction of -shocks would add another linear term to the law of motion in 

(10).

G

zt
G

1 However, assuming , , and zt
G zt

F at  are independent, this extension does not change any of the 

elasticities with respect to productivity shocks and hence leaves Prop.1-2 unchanged. (Correlation 

between capital values and new shocks is addressed in the Q-model below.)  

                                                 
1 This additional term raises new questions about the efficient policy response. Because  is a generation-specific 
shock, it is obvious that efficient policies should help spread its impact across generations. 

zt
G
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 Turning to the empirical evidence, I estimated variances and covariances of output, wages, 

and returns at “generational” frequencies for a range of VAR and error-correction specifications, 

using 1870-2002 U.S. data. Because long-run covariance matrices must be inferred from annual data 

that cover at most 4-5 generations, the results should be interpreted cautiously. The objective is to 

document that the theoretical modeling of incomes and asset returns above is broadly consistent with 

empirical evidence, not to provide precise parameter estimates.  

 A period in the model is interpreted as 30 years in the data. Because the Cobb-Douglas 

model implies ˆ Y t − Et−1
ˆ Y t = ˆ w t − Et−1 ˆ w t = (1− α) ⋅ ˆ a t , one-generation-ahead output or wage 

movements relative to expectations can be used to identify productivity shocks. (For shorter 

periods—post 1929, for which wage data are available, output and wages are highly correlated. 

Hence I use shocks to GDP as proxy for wages, permit use of longer time series.)  

 At a 30-year horizon, stationary shocks (in the empirical sense) have a negligible impact as 

compared to unit root shocks. Hence I interpret the shock identified by wage movements as a 

permanent shock ( ).ât
2 For returns, (A11) and (15) imply the log-linearization 

(A12) R̂t − Et −1R̂t = π R,aât + zt
G = π R ,a

πw ,a
(Yt − Et −1Ŷt ) + ẑt

G  

where the coefficient on  is normalized to 1 (by choice of units), so  can be interpreted as 

residual volatility in . The coefficients 

zt
G zt

G

Rt π R,a  have multiple interpretations:  According to (A11), or 

equivalently (14), π R,a = (1 − α )(1 − v)  and π w,a = 1 − α . However, the same regression specification 

also fits the Q-model in Section 4.3, then with interpretation π R,a = (1 − α )(1 − v) + v
ε IK

⋅π I ,a  (see 

                                                 
2 Because the sample contains so few non-overlapping generational periods, no attempt is made to distinguish 
permanent shocks from generation-long temporary ones. I focus on 30 year periods to be specific; 20 year intervals yield 
very similar results.  Implicitly, all shocks to output within a generation are interpreted as productivity shocks. This is a 
broad interpretation of productivity, but appropriate for describing the risks faced by different generations. 
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below). Either way, the ratio π R,a / π w,a  in (A12) captures relative magnitude of return to wage 

responses to productivity shocks.  

 In the data, I proxy returns on capital by log-linearized, leverage-adjusted returns on the 

S&P500 index. Equity returns ( lnRe) are computed from Shiller’s (2003b) equity price and dividend 

data, using Campbell et al’s (1997, ch.7) log-linearization method. To obtain returns on capital 

( ), I take a weighted average of 26% debt (assumed safe) and 74% S&P500 equities. (The 26% 

debt/asset ratio is from Hall and Hall, 1993.) Output and its components are taken from National 

Income Accounts for 1929-2002; pre-1929 output is taken from Romer (1989). Because output is 

available for a much longer period than wages, I use output movements to identify productivity 

shocks and use 1875-2002 as estimation period.

ln R

3

 Table A1 shows the estimation results. As suggested by Hamilton (1994, ch. 20.4), I first 

estimate a basic vector autoregression (VAR) in levels, with two lags, and then examine the data for 

unit roots; see Col.1. Because a Johansen test suggest a single cointegrating vector of 

, I estimate an error corrections model by regressing 

differenced data on own lags and the cointegrating vector (labeled ECM#1, Col.2). Separately, 

Phillips-Perron and Dickey-Fuller tests reject a unit root in dividend yields and in the dividend-

output ratio. This suggests an ECM with the dividend yield and in the dividend-output ratio as 

regressors (labeled ECM#2, Col.3).   

0.13 ⋅ lnY + 0.43 ⋅ ln(Stockprice) − ln(Dividends)

 For each specification, the estimated coefficients are used to compute 30-year-ahead standard 

deviations and correlations for output ( ), equity returns, and returns on capital, as shown. For the lnY

                                                 
3 To examine how well output proxies for wages, I estimated a VAR for log-GDP and the log-wage share (computed as 
suggested by Cooley-Prescott 1995) for 1933-2002, finding a 30-year ahead correlation of 0.997. An error corrections 
specification yields a similarly high correlation, and both are consistent with the high correlations found by Baxter and 
Jermann (1997). 

A16 



(Appendix – Not for publication) 

key elasticity ratio π R,a / π w,a , all three specifications imply a ratio well below one.4 The ECM 

estimates also imply a variance ratio of capital returns and output above one, suggesting that  has 

sufficient variance to make returns on capital more risky in an absolute sense than wage income. 

zt
G

 The variance estimates are somewhat sensitive to the treatment of time trends. A much lower 

variance for log-GDP is obtained if time is included in the VAR (Col.4). This effectively treats much 

of GDP-growth as deterministic. But because this specification also reduces the correlation with 

equities, it does not yield a higher ratio of elasticities. Moreover, if one estimates ECM#2 with time 

trends (Col.5), the data again favor a higher variance of output. This specification also yields a high 

correlation of GDP and equity returns and a high ratio of elasticities, 0.73, the highest value across 

specifications. 

 Finally, Col.6 displays annual data for comparison. As is well known, annual equity returns 

are much more volatile that output growth, as reflected in the high variance ratio. The 0.59 response 

of  to output shocks is, however, within the range of the generational estimates. ln R

 I show this range of specifications to demonstrate robustness. Without arguing about the 

relative merits of the different specification—the VAR is simple, ECM#1 has a better statistical 

grounding, and ECM#2 is more intuitive economically—the main point is that all specifications 

yield a ratio of elasticities below one. The 0.29-0.73 range is low enough to consistent with Cobb-

Douglas type models of production. The highest estimate, 0.73, is remarkably consistent with the 

lower bound estimatev  in Section 3, which implies 1= 0.27 − v = 0.73. The other (lower) estimates 

for the ratio of elasticities would imply higher v-values and hence greater inefficiencies in the 

allocation of productivity risk. 

                                                 
4 A display of the regression estimates would be lengthy and is hence omitted. Details are available from the author. I 
make no attempt to identify a definitive model (a heroic task, given the long-standing controversies about unit roots in 
GDP), but focus on robustness. Standard errors are not provided because they would fail to capture specification errors, 
which are arguably at least as important as sampling error, given that the sample covers only 4-5 generational periods. 
Specification error is crudely captured by the range of point estimates. 
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 Because capital returns and output are imperfectly correlated, -shocks are needed to fit the 

data. But because the estimated elasticity ratios are within the range of calibrated values for 1

zt
G

− v , 

the data do not require a Q-theoretic term nor a deviation from Cobb-Douglas; that is, they are 

consistent with εKL ≈ 1 and with a linear G-function (arbitrarily high εIK -values). As claimed in 

Fn.18, the data appear consistent with (17), if supplemented with an independent -shock. zt
G
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Part E: Supplementary materials on the model extensions in Section 4 

1. More on the Habit Model: Table A2 (below) demonstrates the quantitative impact of habit 

formation. Column 1 shows the laissez-faire allocation of risk for the Example Parameters. Col. 2-4 

show the efficient allocation of risk for CRRA (labeled h = 0 ) and for the habit model with habit 

stocks of h = 25% and h = 50% of retirement consumption, respectively. Comparing the elasticities 

of worker and retiree consumption across columns, it is evident that economies with higher habit 

parameter have higher efficient ratios of worker to retiree exposure to productivity shocks. The 

ratios in the market allocation are too high when compared to the efficient CRRA allocation, about 

correct when compared to h = 25%, and actually too low in case of h = 50%. Thus, the 25% habit 

model makes laissez-faire look roughly efficient, and the 50% habit model might provide a rationale 

for policies to protecting the old. 

 Note that laissez-faire allocations are always inefficient in the habit model because they omit 

χ t−1 as state variable. The resulting inefficiency in the propagation mechanism is illustrated in Table 

A2 by the consumption responses to kt−1 and χ t−1.  

 Table A3 presents three policies with different responses to permanent productivity risk and 

it displays the habit parameters for which each policy would be efficient. Col. 1 assumes 

π b,a = 0.11 , the calibrated elasticity of U.S. retirees’ generational account, Col. 2 assumes π b,a = 0 , 

the polar case of safe transfers, and Col. 3 assumes π b,a = 0.67 , the limiting case of wage-indexed 

transfers, all for σ b = 10%. The habit parameters needed to justify these policies range from about 

0.26 for wage-indexed transfers to 0.49 for safe transfers, and an intermediate 0.45 for the calibrated 

policy.  

 To be efficient for the respective habit parameters, these policy would have to response 

efficiently to other state variables, too, as shown. This means that even though the habit model adds 
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a degree of freedom to the benchmark model, it has testable restrictions. The efficient policy 

response to temporary productivity shocks turns out to be slightly less than the responses to 

permanent shocks, which is intuitive because consumption smoothing reduces the need to intervene; 

the required responses to lagged consumption are large; and a negative response to lagged capital is 

implied by homotheticity. An intuition for these large lag coefficients is that, because laissez-faire 

ignores χ t−1, efficient responses to χ t−1 must be implemented entirely through the transfer system. 

To conclude, the fact that efficiency restricts policy in other dimensions and may even add new 

testable restrictions—here, requiring efficient responses to lagged consumption—is noteworthy for 

future research, but the ramifications are beyond the scope of the paper. 

 

2. Labor-Leisure Choices:  

To see why variable labor supply does not help to rationalize safe transfers, consider an arbitrary 

time-separable utility function U , which generalizes the utility function in 

section 3.1. By log-linearizing the efficiency condition (8) one obtains 

t = u(ct
1, lt ) + ρ ⋅u(ct

2 ,1)

 (A13) (− ucc (c2 ,1)c2

uc (c2 ,1)
) ⋅ ĉt

2* = (− ucc (c1 ,l )ct
1

uc (c1 ,l )
) ⋅ ĉt

1* − ( ucl (c1 ,1)l

uc (c1 ,1)
) ⋅ l̂t

*  

which is like (12) but with a term for leisure. Because the sign of the leisure term depends on ucl , 

the role of leisure in the efficient allocation depends on how leisure and consumption interact in the 

utility function. This interaction is restricted by balanced growth: leisure is non-stationary unless 

consumption and leisure have a unit elasticity of substitution.  

 An instructive special case is log-utility. If utility is logarithmic in consumption, balanced 

growth requires separability, ucl = 0, so  drops out of (A13). Then age-independent risk aversion 

implies , the same efficiency condition (13) as in Section 3, and this has similar 

implications for the inefficiency (all ) or the efficiency (in case v

ˆ l t
*

ĉt
2* = ĉt

1*

v > 0 = 0) of market allocations. 
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 For elasticities of substitution ε <1, the empirically relevant range, balanced growth requires 

ucl < 0. This combined with age-independent risk-aversion implies that (A13) can be reduced to 

, where ĉt
2* = ĉt

1* + φ ⋅ l̂t
* 0>≡ cu

lu
cc

clφ . The conditions for approximate efficiency are then 

, which differs from (13). For permanent productivity shocks, it is 

straightforward to show , i.e., that leisure responds positively. Given 

π c2,s
* = π c1,s

* + φπ l ,s
* ∀s ∈St

π l ,a
* > 0 φ > 0, this implies 

π c2,a
* > π c1,a

* , indicating that retirees should be more exposed to productivity shocks than workers. 

Thus, variable labor shifts the efficiency standard in the opposite direction of what one would need 

to rationalize safe transfers.5

 

3. More on general production (Section 4.3): The main point to note is that for general , the only 

relevant new parameter is the elasticity of substitution between capital and labor in steady states. 

This parameter would be constant if production is CES, but for the log-linearization, a CES 

assumption is not required. Straightforward algebra yields 

F

π w,a =1−α /εKL  and 

π R,a = (1 − α )(1 − v) / εKL . The bound εKL = 0.78  is based on numerical calculations.  

 Regarding empirically relevant values for εKL , note that the π R,a / π w,a  ratios in Table A1 

imply estimates for εKL  greater or equal one if one uses (A2) and v = 0.27 to interpret the empirical 

data. This suggests the low εKL  is not a plausible rationalization for safe transfers. 

 

4. Formal results for the Tobin’s-Q model (Section 4.3): This extension is conceptually important 

and hence deserves analysis, because it produces an endogenous positive correlation between 

productivity shocks and the value of old capital. For Tobin’s-Q to be a strictly increasing function of 

                                                 
5 The same line of argument implies that a variable work effort would be more promising if , but this would 
either contradict the empirical evidence on intertemporal substitution or require abandoning balanced growth. 

ucl > 0
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investment, the function G in (2) must be strictly concave. Then constant returns to scale imply that 

the value of old capital, GK (It,Kt ,zt
G ) , is also strictly increasing in new investment. Assuming 

Cobb-Douglas production with temporary productivity shock , the total return on capital 

expressed in terms of stationary variables is 

zt
F

(A14) Rt = α(kt −1 / γ N )α −1(atzt
F )1−α + GK ( It / At−1 / Nt−1 ,kt−1 ,zt

G )

GI ( It /At−1 /Nt−1 ,kt−1 ,zt
G )

. 

 The response of investment to shocks is endogenous and best derived by log-linearization. 

For log-linearizations, the only relevant characteristic of  is the elasticity of substitution between 

investment and old capital in steady state, denoted 

G

εIK . For εIK → ∞ on recovers the linear 

specification; and if (It ,Kt )  are reasonably close substitutes, εIK  should be well above one. An 

intuition for how Q-theory affects the allocation of productivity shocks is obtained by log-linearizing 

(6.2), which implies 

(A15) π R,a = (1 − α )(1 − v) + v
ε IK

⋅π I ,a , 

where v = QGK /Rk  is again the value-share of old capital. If new investment is an increasing 

function of , so at π I ,a > 0 , then the investment term in (A15) increases the response of retiree 

incomes to a productivity shock. However, the same concavity in  that makes the return on capital 

variable and gives investment a role in (A14) also acts as an adjustment cost that discourages 

variations in capital investment. Economies with low 

G

εIK , for which v /εIK  in (A15) is large, also 

have elasticities π I ,a  near zero, which limits the overall effect. More specifically, one can prove:  

Proposition 4: Consider a laissez-faire economy with power utility, Cobb-Douglas production, 

and concave accumulation function . If G εIK ≥ σ v
σ I

, then π c2,a < π c1,a  applies for all 

(ε,v) ∈ [0,1] × [0,1] except (ε,v) = (1,0) . 
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The proof is below. The bound σ v /σ I  is ratio of old to new capital in production—the lower bound 

asserted in Section 4.3. Because most capital depreciates over a generation, εIK ≥ σ v
σ I

 is fairly weak 

restriction. For simplicity, the proposition is only proved laissez-faire (which suffices, given the 

direction of inefficiency). 

Proof of Proposition 4: By log-linearizing (A14), one obtains 

π R,a = (1 − α )(1 − v) + v
εKI

⋅π I ,a  and π c2,a = π R,a = (1 − α )(1 − v) + v
εKI

⋅π I ,a  

where 1
ε KI

= GKI
GK

− GII
GI

 is used to simplify derivatives. 

For workers, the log-linearizations 

 k̂t
1 − Q̂t = k̂t + ât = GI I

G ⋅ Ît + GK K
G ⋅ k̂t −1 = σ I

σK
⋅ Ît + (1− σ I

σ K
) ⋅ k̂t −1  

and Q̂t = − GII
GI

⋅ ( Ît − k̂t −1) = σ I
σK

1
εKI

⋅ ( Ît − k̂t −1) = 1
εKI

(k̂t + ât − k̂t −1)  

imply  π I ,a = σ K
σ I

⋅ (1+ π k ,a ) , πQ,a = 1
εKI

⋅ (1 + π k ,a ) , and π k1,a = (1 + π k ,a )(1 + 1
εKI

) . 

The first order condition 1
ε ⋅ (ĉt

1 − ât ) + Et[R̂t +1 − Q̂t − 1
ε ⋅ ĉt +1

2 ] = 0  

implies  , hence ĉt
1 − ât = [1 + (1 − ε )π R,k ] ⋅ k̂t + ε ⋅Q̂t

 π c1,a = 1 + [1 + (1 − ε )π R,k ] ⋅π k ,a + ε ⋅ 1
εKI

⋅ (1 + π k ,a )   

The critical case is again ε =1 (as in the proof of Prop.1) because π c1,a  is declining in ε . For ε =1:   

π c1,a = 1 + π k ,a + 1
εKI

⋅ (1 + π k ,a ) = π k1,a  combined with σ K
σ K +σc1

π k1,a + σ c1
σ K +σc1

π c1,a = 1− α  imply 

π c1,a = π k1,a = 1 − α , hence (1+ π k ,a ) = (1− α ) εKI
1+εKI

. For retirees, one finds 

π c2,a = (1− α )(1− v) + v
εKI

⋅ σ K
σ I

⋅ (1− α ) εKI
1+εKI

. By comparison, π c1,a − π c2,a = (1− α ) ⋅ v ⋅ (1− σK
σ I

1
1+εKI

) > 0  

for all v  provided > 0 εKI > σ K
σ I

−1= σ v
σ I

. QED. 
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Table A1: Empirical Evidence about Output and Equity Returns  

at Generational Frequencies (30-year-ahead projections) 
 

 Values for Generational Periods obtained from Annual 

Estimation Method: Basic  
VAR 

ECM #1  ECM #2 VAR 
 w/ trends 

ECM #2 
w/ trends 

Raw Data 

Column: (1) (2) (3) (4) (5) (6) 
Standard Deviations of       
     Output (lnY) 30.1% 35.9% 35.1% 10.7% 34.6% 4.9% 
     Return on equity (lnRe) 38.3% 64.2% 63.9% 35.8% 49.6% 17.7% 
     Return on capital (lnR) 28.3% 47.5% 47.3% 26.5% 36.8% 13.1% 
Correlation (lnR, lnY) 0.315 0.303 0.414 0.157 0.686 0.166 
Variance Ratio (lnR, lnY) 0.89 1.75 1.82 6.17 1.13 7.02 

Ratio of elasticities 
     π R,a / πw,a  0.297 0.400 0.558 0.390 0.730 0.595 

 
Notes: Output refers log real GDP, equity returns are log returns on the S&P500 computed from 
price and dividend data as suggested by Campbell et. al, (1997, ch.7). The return on capital 
refers to a weighted average of equity and debt returns, assuming 26% debt/asset ratio and 
treating debt as riskless.  
The ratio of elasticities is the covariance of lnR and lnY divided by the variance of lnY, as 
suggested by the log-linearization in the text. It measures the ratio of the return-on-capital 
response to productivity shocks over the wage response. 
Col.1-5 use 30-year-ahead projections computed from vector autoregression (VAR) and error 
corrections models (ECM) that are estimated for 1875-2002, using the variables log GDP, log 
S&P500 prices, and log S&P500 dividends. Col.1 is based on a VAR in levels with two lags and 
a constant. ECM #1 in Col.2 is estimated in differences with two lags and includes an estimated 
cointegrating vector (see text). ECM #2 in Col.3 instead includes the log dividend-yield and log 
dividends-output ratios. Col.4 and Col.5 and analogous to Col.1&3 but include time trends. 
Col.6 is computed from annual growth rates. 
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Table A2: The Allocation of Risk without and with Habit Formation 
(Benchmark Parameters) 

 
 
 Setting: Laissez-Faire 

Economy 
Efficient with 
h = 0 (CRRA) 

Efficient with 
habit h = 0.25  

Efficient with 
habit h = 0.50  

  (1) (2) (3) (4) 

 Consumption responses to permanent shocks ( ): at     

   Workers: π c1,a =  0.49 0.63 0.51 0.37 

   Retirees: π c2,a =  0.69 0.63 0.69 0.77 

   Ratio: π c1,a
π c 2,a

=  143% 100% 135% 205% 

 Consumption responses to temporary shocks ( ): zt     

   Workers: π c1,z =  0.49 0.54 0.46 0.37 

   Retirees: π c2,z =  0.61 0.54 0.60 0.69 

   Ratio: π c1,z
π c 2,z

=  126% 100% 130% 186% 

 Implied responses to the lagged capital labor ratio ( kt−1)     

   Workers: π c1,k =  0.51 0.37 0.32 0.25 

   Retirees: π c2,k =  0.31 0.37 0.41 0.47 

 Implied responses to lagged consumption ( χ t−1)     

   Workers: π c1,χ =  0 0 0.17 0.37 

   Retirees: π c2,χ =  0 0 -0.10 -0.24 

 
Notes: The responses are the elasticities of worker/retiree consumption with respect to the state 
variables. The case h = 0 in Col.2 is equivalent to the power utility model of Section 3. 
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Table A3: How the Habit Model Rationalizes Relatively-safe Transfers 
 

 
   Policy: Safe Transfers Calibrated U.S. 

Policy 
Wage-indexed 

Transfers 
    (1) (2) (3) 

   Assumed   πb,a
* = 0.0 0.11 0.67 

   Implied habit h =  0.491 0.455 0.258 

   Implied other policy parameters:    

     πb,z
* = 0.00 0.075 0.42 

    πb,k
* = -0.82 -0.77 -0.53 

     π b,χ
* = 1.82 1.66 0.87 

 
 

Note: The parameter h  in each column is set to rationalize the given policy 
response to permanent shocks ( ). The bottom three rows show the 
efficient policy responses to the other state variables if  the habit stock 

πb,a = πb,a
*

h  takes 
the value required to rationalize the assumed response to permanent shocks. 
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