
Online Appendix to

"Immigration and demographics: can high immigrant fertility explain voter
support for immigration?"

by Henning Bohn and Armando R. Lopez-Velasco

A Fertility Data for Europe

Sobotka (2008) compiles empirical evidence from several studies on total fertility rates
for several European countries. The table below reproduces Sobotka’s estimates from his
tables 2.a and 2.b and the implied fertility factor (ε) is computed. In every case fertility is
higher for immigrants. There are two types of estimates: countries labeled with (a) show
the comparison between fertility of "native" versus fertility of "immigrant" women, while
countries labeled with (b) compare "native" nationals with "foreign" nationals. For more
details on the particular data sets used for the estimate for each country, see Sobotka (2008).

Table A.1. Total Fertility Rates by Native and Immigrant Status
Several European Countries and Years

Country
Native
Fertility

Immigrant
Fertility

Ratio
(ε)

Year

Austria (b) 1.29 2.03 1.57 2001− 2005
Belgium (b) 1.49 2.13 1.43 2001− 2005
Flanders (Belgium)(b) 1.5 3 2 1995
Denmark (a) 1.69 2.43 1.44 1999− 2003
England and Wales (a) 1.6 2.2 1.38 2001
France (a) 1.65 2.50 1.52 1991− 1998
France (ii) (a) 1.70 2.16 1.27 1991− 1998
France (b) 1.72 2.80 1.63 1999
France (b) 1.80 3.29 1.83 2004
Italy (b) 1.26 2.61 2.07 2004
Netherlands (a) 1.65 1.97 1.19 2005
Norway (a) 1.76 2.42 1.38 1997− 1998
Spain (b) 1.19 2.12 1.78 2002
Sweden (a) 1.72 2.01 1.17 2005
Switzerland (b) 1.34 1.86 1.39 1997

Source: Sobotka (2008) tables 2.a and 2.b.
(a): Native vs. immigrant women. (b) : Native nationals vs. foreign nationals.
For (ii), data is adjusted for age of arrival and duration of stay in France.
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B Analysis in Sections 2-3

B.1 Utility as Function of Factor Prices

We claim in Section 2 that (4) implies the indirect utility (6).
Proof: For log-utility (γ = 1), maximizing

U
(
c1
t , c

2
t+1

)
= ln c1

t + β ln c2
t+1 (A.1)

straightforwardly yields optimal consumption and savings

c1
t =

1

1 + β
wt, c2

t+1 =
β

1 + β
wtRt+1, and st =

β

1 + β
wt.

Inserting these expressions into (A.1), using rules of logarithms and collecting similar terms
one obtains

U (wt, Rt+1) = A1 + (1 + β) lnwt + β lnRt+1 (A.2)

A1 = [β lnβ − (1 + β) ln (1 + β)]

The constant A1 = [β lnβ − (1 + β) ln (1 + β)] is inessential and omitted from (6) for sim-
plicity.

For power utility (γ 6= 1), the first order conditions of (4) imply

st =
(βRt+1)1/γ

Rt+1 + (βRt+1)
1/γ
wt, c1,t =

Rt+1

Rt+1 + (βRt+1)1/γ
wt, and c2,t+1 = (βRt+1)

1
γ c1,t.

Substituting consumption into the utility function, one obtains:

U (wt, Rr+1) =
1

1− γ

{
1 + β

1
γR

1
γ
−1

t+1

}
(

1 + β
1
γRt+1

1
γ
−1
)1−γw

1−γ
t =

1

1− γ

{
1 + β

1
γR

1
γ
−1

t+1

}γ
w1−γ
t ,

as claimed. QED.

B.2 Extensions with stochastic mortality

We claim in footnote 8 that our maintained assumption of a working-age majority is a
robust result in extended versions with stochastic mortality. This appendix provides an
illustration.

To model stochastic mortality within a two-period setting, suppose there is idiosyncratic
uncertainty about survival at the end of working age: individuals die with probability
(1− π) and survive with probability π. These assumption largely follow Bohn (2001). The
consumption/saving problem of individuals is then

Ut = Max
c1t ,ĉ

2
t+1,st

{
u(c1

t ) + E[β̂u(ĉ2
t+1)]

}
(A.3)

= Max
c1t ,c

2
t+1,st

{
u(c1

t ) + πβ̂u(c2
t+1)

}
s.t. c1

t + st = wt and c2
t+1 = R̂t+1st +Qt+1,
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where E[·] is the expectation over survival, β̂ pure time preference, ĉ2
t+1 = c2

t+1 in case
of survival, ĉ2

t+1 = 0 otherwise, and Qt+1 denotes bequests (if any). The return R̂t+1

conditional on survival depends on the availability of annuity markets. With actuarially
fair annuities, R̂t+1 = Rt+1/π, as all savings are allocated to survivors. Without annuities,
R̂t+1 = Rt+1 is the return on savings, and one must make assumptions about the disposal
of deceased agents’assets.

In general, denote survivors return to saving by R̂t+1 = Rt+1/π
a where a ∈ [0, 1] admits

intermediate degrees of annuitization. Then the first order condition for optimal saving is
u′(c1

t ) = πβ̂R̂t+1u
′(c2

t+1) = π1−aβ̂Rt+1u
′(c2

t+1). Accidental bequests are (Rt+1/π − R̂t+1)st.
Without much loss of generality, assume accidental bequests are shared by surviving mem-
bers of the old generation. Then c2

t+1 = R̂t+1st + Qt+1 = Rt+1st/π applies regardless of
annuitization, and optimal saving imply (wt − st)−γ = π1−aβ̂Rt+1(Rt+1st/π)−γ , and hence

σt = st
wt

= B̂t
1+B̂t

, where B̂t = (π1−a+γ β̂)
1
γ

(Rt+1)
1−γ
γ . Thus, individual consumption and

saving are the same as in the model with 100% survival and time preference β = π1−a+γ β̂.
Since the voting population consists of Nt = Nt−1η (1 + εθt−1) young and πNt−1 old

agents, the voting share of the young is given by η (1 + εθt−1) /[π + η (1 + εθt−1)]. Since
θt−1 ≥ 0, the voting share of the young is bounded below by η/(π+η). Empirically, U.S. life
expectancy at age 65 is about 20 years (male and female averaged according to the Social
Security Administration23), so π can be estimated as (remaining life expectancy)/(number
of years in workforce), which yields π ≈ 1/2. Hence η > 1/2 is a suffi cient condition for the
young to be the majority in absence of immigration. In section 5.1 we calibrate η = 1.116,
which rules out immigration cycles by a wide margin.24

B.3 Utility as Function of Immigration

Section 3 claims that utility in terms of immigration quotas is given by (14) and that
dynamically effi ciency corresponds to χ ≥ 1− α.

Proof of (14): Inserting (9) into (8), one obtains

kt+1 =
β(1− α)

η (1 + β)

(1 + θt)

(1 + εθt) (1 + θt+1)
kαt (A.4)

Substituting this into Rt+1 = α (kt+1)−1+α and substitution Rt+1 into the utility func-
tion (A.2), we obtain

23According to the Social Security Administration, conditional on reaching 65 years of age, a man
in the US is expected to live until age 84.3, while a woman is expected to live until age 86.6. See
https://www.ssa.gov/planners/lifeexpectancy.html .
24The particular assumptions required for immigration cycles are: (i) Fertility and mortality such that the

old generation is the majority in the absence of immigration: Nt+1 = ηNt < πNt, which implies that η < π;
and (ii) a policy space with maximum immigration quota θmax high enough that in the next period there
are more young agents than (alive) old agents: Nt+1 = Ntη (1 + εθmax) > πNt (implies η (1 + εθmax) > π).
Under these assumptions, the initial old majority would choose the maximum quota available (θ∗t = θmax).
Then since the majority in next period is the young cohort because η (1 + εθmax) > π, this young majority
restricts immigration in order to remain the majority in the following period (when they are old), which is
a period in which they liberalize immigration. That particular cohort controls policy when young and when
old. The immigration quota that the young majority selects is either θ∗t+1 = 0 or a sligthly positive number
(depending on how large ε is), taking into account that the they will be in power the next period and thus
choosing the maximum quota in that period (θ∗t+2 = θmax). A cycle of restriction and then liberalization
repeats, tracking the life cycle of cohorts that remain in power during all their lifetimes and similarly, each
cycle sees a generation that is never in power, and so on.
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V̂ (θt, θt+1, kt) = A1 + (1 + β) ln (1− α) kαt

− β (1− α) ln

(
β (1− α)

(1 + β)

(1 + θt)

η (1 + εθt) (1 + θt+1)
kαt

)
Finally, substituting kt = κt

1+θt
, collecting similar terms, and dividing the equation by

the constant β (1− α), we obtain the indirect utility function that depends on θt, θt+1 and
κt :

V (θt, θt+1, κt) = A+ χ lnκt − (1 + χ) ln (1 + θt) + ln (1 + εθt) + ln (1 + θt+1) . (A.5)

where χ is a constant given by χ = α(1+βα)
β(1−α) . We write V (θt, θt+1, κt) , where we condition

on κt since agents take it as given. Q.E.D.
Regarding dynamic effi ciency, note that the steady state ratio of return to capital is

greater than (or equal to) population growth if and only if χ > 1 − α (or χ = 1 − α).

In detail, (A.4) implies that kt+1 converges to k =
(

β
1+β

1−α
η(1+εθ)

)1/(1−α)
for any constant

θt = θ, and hence Rt+1 converges to R = α/
(

β
1+β

1−α
η(1+εθ)

)
. Since η (1 + εθ) is population

growth, the return-to-growth ratio is R
η(1+εθ) = α

1−α
1+β
β . Moreover,

χ+ α =
α (1 + αβ)

β (1− α)
+ α =

α

β (1− α)
[1 + αβ + β (1− α)] =

α

1− α
1 + β

β
.

Hence R
η(1+εθ) = 1 iff χ = 1− α and R

η(1+εθ) > 1 iff χ > 1− α.

B.4 Welfare Comparisons

In the baseline model, we claim that a transition from zero immigration to θ0 = ε−(1+χ)
χε > 0

will (a) increase welfare for one or more generations and (b) reduce welfare in the long run,
provided the economy is dynamically effi cient. The following provides a constructive proof:

First we write the evolution of capital per-native worker by substituting kt = κt
(1+θt)

into
equation (A.4). We obtain

κt+1 = $
(1 + θt)

1−α

(1 + εθt)
καt , where $ =

β(1− α)

η (1 + β)
. (A.6)

Since we will compare the lifetime utility of agents with and without immigration, it is
convenient to define V 0

t = V
(
θ0, θ0, κt

)
as lifetime utility in the regime with immigration

and to define Ṽt = V (0, 0, κt) as lifetime utility in a regime without immigration. Using
(A.5), lifetimes utility in the immigration regime is given by

V 0
t = V

(
θ0, θ0, κt

)
= A+ χ lnκt + Ω (A.7)

(since θt = θ0 is constant), where Ω = ln
(
1 + εθ0

)
− χ ln

(
1 + θ0

)
. Note that ε > (1 + χ)

implies Ω > 0.
Taking logs in equation (A.6), we can write the evolution of κt in the regime with

immigration as
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lnκt+1 = ln$ −∆ + α lnκt

where ∆ = ln
(
1 + εθ0

)
− (1− α) ln

(
1 + θ0

)
Note that ∆ > Ω for χ > (1− α) and θ0 > 0, which applies under conditions of dynamic
effi ciency.

To compare utilities across regimes, we write lifetime utility in terms of the initial value
κ0 in some starting period labeled t = 0. For all t > 0, we have:

lnκt =

(
1− αt

)
1− α ln$ −

(
1− αt

)
1− α ∆ + αt lnκ0.

Using (A.7), the sequence of lifetime utilities is

V 0
t = A+ χ

(
1− αt

)
1− α ln$ + αt lnκ0 +

[
Ω− χ

(
1− αt

)
1− α ∆

]
.

In a regime without immigration, analogous dynamics apply with Ω = ∆ = 0, so the
sequence of lifetime utilities would be

Ṽt = A+ χ

(
1− αt

)
1− α ln$ + αt lnκ0

Hence the difference between lifetime utilities with and without immigration is

V 0
t − Ṽt =

[
Ω− χ

(
1− αt

)
1− α ∆

]
Notice that V 0

0 − Ṽ0 = Ω > 0 is positive for the generation t = 0 and that because
∆ > 0, V 0

t − Ṽt declines monotonely over time. As t→∞, (V 0
t − Ṽt)→ Ω− χ∆

1−α . Note that

Ω− χ∆

1− α = − (1 + χ) ln
(
1 + θ0

)
+ ln

(
1 + εθ0

)
+ ln

(
1 + θ0

)
− χ

1− α
{

ln (1 + εθ∗)− (1− α) ln
(
1 + θ0

)}
=

(
1− χ

1− α

)
ln
(
1 + εθ0

)
Hence limt→∞(V 0

t − Vt) < 0 and only if χ > (1− α). Monotonicity then implies there is a
date t such that V 0

t − Vt > 0 for all t < t, whereas V 0
t − Vt < 0 for all t > t. Q.E.D.

C Analysis in Section 4

Section 4.1 asserts that indirect utility is (18). Proof: Let j = I, II denote the states,
pI = 1− p, pII = p. Then the individual problem for general CRRA utility is

Ut = Max
c1t ,c

2
t+1,i,st

u(c1
t ) + β

∑
j

pj · u(c2
t+1,j)

 (A.8)

s.t. c1
t + st = wt, c2

t+1,j = Rt+1,jst
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The first order condition for optimal savings is u′(wt − st) = β
∑

j pj · Rt+1,ju
′(Rt+1,jst),

and it implicit defines the optimal savings rate

σt =
st
wt

=
Bt

1 +Bt
, where (A.9)

Bt = β
1
γ

∑
j

pj · (Rt+1,j)
1−γ


1
γ

(A.10)

For log-utility (γ = 1), this reduces to Bt = β. Substituting consumption and savings (A.9)
into (A.8), one obtains

Ut = (1 + β) lnwt + βE [lnRt+1] + const

Substituting wages (10) and returns (10), this implies

V̂ = − (α (1 + βα) + β (1− α)) ln (1 + θt) + β (1− α) ln (1 + εθt)

+ β (1− α)E
[
ln
(

1 + θ̂t+1

)]
+ exog

where immigration θ̂t+1 is treated as random variable and exog summarizes exogenous
terms (inessential constants and initial conditions). The possible realizations for θ̂t+1 are
θ̂t+1 = θIt+1 with probability 1 − p (chosen by gen. t + 1) and θ̂t+1 = θIIt+1 = θt with
probability p. Therefore V̂ can be written as

V̂ = − (α (1 + βα) + β (1− α)) ln (1 + θt) + β (1− α) ln (1 + εθt)

+ β (1− α) (1− p) ln (1 + θt+1) + β (1− α) p ln (1 + θt) + exog

Dividing by β (1− α) and simplifying, one obtains

V
(
θt, θ

I
t+1

)
= − (1 + χ− p) ln (1 + θt) + ln (1 + εθt) + (1− p) ln

(
1 + θIt+1

)
+ exog

If state I applies in period t, θt = θIt is set by generation t and V
(
θIt , θ

I
t+1

)
is the relevant

indirect utility. QED.
We also claim that θp = ε−1−χ+p

ε(χ−p) is increasing in p and in ε. As proof, note that

dθp

dp
=
ε (χ− p) + (ε− 1− χ+ p) ε

ε2 (χ− p)2 =
(ε− 1− χ+ p) ε

ε [(χ+ p)− 1]2
=

ε− 1

ε (χ− p)2 > 0

dθp

dε
=
ε (χ− p)− (ε− 1− χ+ p) (χ− p)

ε2 (χ− p)2 =
χ+ 1− p
ε2 (χ− p) > 0.

for all (ε, χ, p) such that 0 < θp < θ̄ is not a corner solution. QED.

D Details on Calibrating the CRRA model in Section 5

The parameters to be calibrated are {α, β, ε, γ, η} .We explain each of them in this section.
Externally calibrated parameters. The externally calibrated parameters are α, ε

and γ. We use baseline values α = 1
3 and ε = 1.5 as discussed in Section 3.2. Regarding γ,
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typical overlapping generation economies in the macroeconomics and the finance literature
use risk aversion levels between 2 and 5 (see for example Auerbach and Kotlikoff (1987),
Rios-Rull (1996), Constantinides et al. (2002), Conesa and Garriga (2008) and Evans et al.
(2012)). We use a baseline of γ = 4, but also explore the sensitivity of the fertility required
to different levels of risk aversion.

Internally calibrated parameters. The internally calibrated parameters are η and
β. The total-growth factor of the population in the model is given by η+ ≡ η (1 + εθ) ,
which we set at 1.25 (about 1% growth per year), which is consistent with US population
growth.25 Given η+, one can infer η from ε and θ by writing η = η+/ (1 + εθ) . Using
ε = 1.5 and θ = .08, this yields η = 1.25

1+1.5·0.08 = 1.116.
For the calibration of β, we show that one can derive a calibrating expression that is

invariant to the particular equilibrium concept used. Start with equation (8), which shows
the evolution of capital per native worker in the CRRA case, given by

κt+1 =
(1 + θt)

1−α

η (1 + εθt)
σtwt.

replacing wt = (1− α)καt , the evolution of capital per native worker can be written as

κt+1 =
(1− α) (1 + θt)

1−α

η (1 + εθt)
σtκ

α
t

where σt is the saving rate. At steady state, this equation can be solved for 1
σ as

1

σ
=

(1− α)

η (1 + εθ)

(
κ

1 + θ

)α−1

Since the gross interest rate at steady state R is given by R = α
(

κ
1+θ

)α−1
. The above

expression can be written as

1

σ
=

(1− α)

α

R

η (1 + εθ)
. (A.11)

From the definition of σt in equation (5), at steady state σ = β
1
γ R

1
γ−1

1+β
1
γ R

1
γ−1

, which implies

that the term 1
σ is also given by

1

σ
= 1 +

1

β
1
γR

1
γ
−1
. (A.12)

Therefore, at steady state equating (A.11) and (A.12) yields an equality 1 + 1

β
1
γ R

1
γ−1

=

(1−α)
α

R
η(1+εθ) that can be solved for β as

β =
Rγ−1[

(1−α)
α

R
η(1+εθ) − 1

]γ .
25Using US census data from 1970 to 2010, the annual population growth rate for this 40 year period is(

308.45
205.52

)1/40 − 1 = 1.02%.
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Thus the calibration of β depends on the ratio r ≡ R
η(1+εθ) as explained in the text.

Since η+ = η (1 + εθ) is also empirically observed, R can be replaced by r · η (1 + εθ) and
hence β can be calibrated as

β̂ =
[(r · η (1 + εθ))]γ−1[

(1−α)
α r − 1

]γ . (A.13)

In the case of log utility (γ = 1), this simplifies to

β̂(γ=1) =
α

(1− α) r − α.

as claimed in Section 3.2. For general γ and in the context of sensitivity analyses, we vary
β as implied by the parameters on the r.h.s. of β̂.

E Analysis in Section 5.1

E.1 Derivation of dRt+1

dθt

Section 5.1 claims that dRt+1

dθt
> 0. Proof: Combining (8), (A.9), (A.10), (9), and writing

(10) as kt+1 =
(

α
Rt+1

) 1
1−α
, one obtains(

α

Rt+1

) 1
1−α

= kt+1 =
(1− α) (1 + θt)

1−α (κt)
1−α

η (1 + εθt) (1 + θt+1)

β
1
γ (Rt+1)

1
γ
−1

1 + β
1
γ (Rt+1)

1
γ
−1
.

Taking logs and differentiating with respect to θt, one obtains

− 1

1− α
d lnRt+1

dθt
=

1− α
1 + θt

− ε

1 + εθt
+ (

1

γ
− 1)

1

1 +Bt

d lnRt+1

dθt
d lnRt+1

dθt
= (1− α)

[
ε

(1 + εθt)
− (1− α)

(1 + θt)

]
− φ 1

1 +Bt

d lnRt+1

dθt

d lnRt+1

dθt
=

(1− α)

1 + φ/(1 +Bt)

[
ε

(1 + εθt)
− (1− α)

(1 + θt)

]
,

dRt+1

dθt
=

(1− α)Rt+1

1 + φ/(1 +Bt)

[
ε

(1 + εθt)
− (1− α)

(1 + θt)

]
. (A.14)

The sign is determined by
[

ε
(1+εθt)

− (1−α)
(1+θt)

]
, which is positive iff ε > (1−α)

(1+αθt)
. Since ε > 1

and 1−α
1+αθt

≤ 1− α, dRt+1

dθt
> 0 follows. QED.

E.2 The First Order Condition

Section 5.1 asserts the optimality condition (22). Proof: Maximizing (6) with respect to θt
implies (using (A.10))

dUt
dθt

= {1 +Bt}γ w−γt
dwt
dθt

+ {1 +Bt}γ−1w1−γ
t β

1
γR

1
γ
−2

t+1

dRt+1

dθt
(A.15)

= {1 +Bt}γ w1−γ
t

[
1

wt

dwt
dθt

+
Bt

1 +Bt

1

Rt+1

dRt+1

dθt

]
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Hence dUt
dθt

= 0 ⇔ Bt
1+Bt

1
Rt+1

dRt+1

dθt
= − 1

wt
dwt
dθt
. Note that 1

wt
dwt
dkt

= α
kt
and dkt

dθt
= − kt

(1+θt)
, so

1
wt

dwt
dθt

= − α
(1+θt)

< 0. Replacing dRt+1

dθt
by (A.14), one finds that dUt

dθt
= 0 is equivalent to

α

(1 + θt)
= (1− α)

[
ε

(1 + εθt)
− (1− α)

(1 + θt)

]
/

(
1 +

(
1

γ
+ α− α

γ

)
1

Bt

)
,

1 +

(
1

γ
+ α− α

γ

)
1

Bt
=

(
1− α
α

)[
ε(1 + θt)

(1 + εθt)
− (1− α)

]
=

(
1− α
α

)[
α− 1− ε

(1 + εθt)

]
,

(
1

γ
+ α− α

γ

)
1

Bt
=

1− φ
Bt

=

[(
1− α
α

)
ε− 1

(1 + εθt)

]
− α.

Dividing by (1− φ), using (A.10) and (10) to replace Bt, one obtains (22). QED.
Note that the corner solution θt = 0 applies if dUtdθt

≤ 0 at θt = 0, which is equivalent to

α

(1 + θt)
− (1− α)

[
ε

(1 + εθt)
− (1− α)

(1 + θt)

]
/

(
1 + (1− φ)β

− 1
γR

1− 1
γ

t+1

)
≥ 0, or

1

Bt
≥ 1

1− φ

[(
1− α
α

)
(ε− 1)− α

]
.

E.3 The Dynamics of Capital per Worker

Proof of (23): For CRRA utility, the evolution of capital is given by

kt+1 =
(1 + θt)

η (1 + εθt) (1 + θt+1)
st =

(1 + θt)

η (1 + εθt) (1 + θt+1)

Bt
1 +Bt

wt (A.16)

If optimal immigration has an interior solution, (22) implies

1 +
1

Bt
= 1 +

(
1−α
α

)
ε−1

(1+εθt)
− α

1− φ =

1
γ (1− α) +

(
1−α
α

)
ε−1

(1+εθt)

1− φ

Substituting into (A.16) and simplifying implies

kt+1 =
(1 + θt)

η (1 + θt+1)

α(1− α+ αγ)

εα(1 + θt) + (γ − α)(ε− 1)
kαt , (A.17)

κt+1 =
1

η

α(1− α+ αγ)

εα(1 + θt) + (γ − α)(ε− 1)
(1 + θt)

1−α καt , (A.18)

which is (23). QED .
Note that for corner solutions with θt = 0, (A.16) and Rt+1 = αkα−1

t+1 imply

κt+1 + β
− 1
γα

1− 1
γ (κt+1)φ(1 + θt+1)

(1−α)(1− 1
γ

)
=

1

η
(1− α)καt .

Since φ > 0, the l.h.s. is strictly increasing in κt+1, so κt+1 is determined uniquely.
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E.4 Steady State

Section 5.1 claims there is a unique steady state (θ0, κ0). Proof: The steady state conditions
are obtained by setting (θ, κ) constant in (22) and (23), which yields:

κ0 =
1

η

α(1− α+ αγ)

εαθ0 + (γ − α) (ε− 1)

(
1 + θ0

)1−α
(κ0)α, (A.19)

β
− 1
γ (R0)

1− 1
γ = β

− 1
γα

1− 1
γ (

κ0

1 + θ0 )−φ =

(
1−α
α

)
ε−1

1+εθ0 − α
1− φ (A.20)

where (A.19) can be simplified to obtain

κ0

1 + θ0 =

{
α [(1− α) + αγ]

η
(
εα(1 + θ0) + (γ − α) (ε− 1)

)} 1
1−α

(A.21)

Substituting (A.21) into (A.20), one obtains

β
− 1
γα

1− 1
γ

(
η
(
εα(1 + θ0) + (γ − α) (ε− 1)

)
α [(1− α) + αγ]

)(1− 1
γ

)

=

(
1−α
α

)
ε−1

(1+εθ0)
− α

1− φ ,

β
− 1
γ

(
η
(
εα(1 + θ0) + (γ − α) (ε− 1)

)
[(1− α) + αγ]

)(1− 1
γ

)

=

(
1−α
α

)
ε−1

(1+εθ0)
− α

1− φ

which is a univariate equation for θ0; the solution is unique since the l.h.s. is strictly
increasing in θ0 for γ > 1 whereas the r.h.s. is strictly decreasing. Given θ0, (A.21)
provides solutions for κ0 and k0 = κ0/(1 + θ1). QED.

E.5 Convergence and Stability

Section 5.1 claims that the perfect foresight path {θt, κt}t≥t0 converges to (θ0, κ0). To
streamline the algebra, we sometimes work with xt = 1 + θt and kt = κt

xt
(since we can

always recover {θt, κt}t≥t0 from {xt, kt}t≥t0). To streamline, we use the constants

φ1 =
α [(1− α) + αγ]

η
> 0

φ2 = (γ − α) (ε− 1)

φ3 =
ηφ
[
α

1+α−α
γ

]
[(1− α) + αγ]

α+ 1−α
γ

β
1
γ γ (1− α) (ε− 1)

> 0

φ4 =
α2

(1− α) (ε− 1)
> 0

and we omit superscripts for variables in steady state.
The dynamic system (A.16) and (22) can be written in terms of {xt, kt} as

kt+1 = φ1

xt
xt+1 [εαxt + φ2]

kαt

1

εxt − (ε− 1)
= φ3

[
xt+1 [εαxt + φ2]

xtkαt

]φ
+ φ4,
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and the steady-state values are

k1 =

{
φ1

[εαx+ φ2]

} 1
1−α

1

εx1 − (ε− 1)
= φ3φ

− αφ
1−α

1

[
εαx1 + φ2

] φ
1−α + φ4.

To determine the stability of the system, we take a log-linear approximation around
the steady state. Denote the percentage deviations from steady state by "̂", e.g. ẑt =
ln zt − ln z1 for generic variable zt. We obtain

κ̂t+1 = αk̂t + b0x̂t = ακ̂t + (b0 − α)x̂t

x̂t+1 = αk̂t − (1/b1)x̂t = ακ̂t − (α+ 1/b1)x̂t,

where

b0 =
φ2

εαx1 + φ2

=
1

1 + εαx1

(γ−α)(ε−1)

(A.22)

b1 =

[
εx1 − (ε− 1)

](
1
φ

{
εx1

1−εx1φ4+(ε−1)φ4

}
−
[

[εx1−(ε−1)](γ−α)(ε−1)
(εαx1+(γ−α)(ε−1))

]) (A.23)

In matrix form, this is [
κ̂t+1

x̂t+1

]
=

[
α (b0 − α)

α −
(
α+ 1

b1

)][κ̂t
x̂t

]
Stability requires that the system has one characteristic inside the unit circle and the

other outside. Here the characteristic equation is µ2 + µ
b1
− α(1+b0b1)

b1
= 0, which has roots

µ1,2 = − 1

2b1
±

√
1

4

(
1

b1

)2

+
α (1 + b0b1)

b1
.

The properties of µ1,2 require tedious derivations, which we report in a series of Lemmas
below; in combination, the Lemmas provide conditions for µ1 < −1 and 0 < µ2 < 1, which
are suffi cient conditions for saddle-path stability and convergence.

Lemma A1: γ > α implies 0 < b0 < 1. Proof: Follows from φ2 = (γ − α) (ε− 1) > 0
and x1 ≥ 1. QED.

Lemma A2: 1 − φ4

[
εx1 − (ε− 1)

]
> 0, provided x1 > 1. Proof: The steady state

satisfies
1

εx− (ε− 1)
= φ3φ

− αφ
1−α

1 [εαx+ φ2]
φ

1−α + φ4

⇔ 1− φ4 [εx− (ε− 1)] = φ3φ
− αφ

1−α
1 [εx− (ε− 1)] [εαx+ φ2]

φ
1−α

The r.h.s. is positive because εαx + φ2 > 0, εx − (ε− 1) > 0 and φ3φ
− αφ

1−α
1 > 0. Hence

1− φ4 [εx− (ε− 1)] > 0. QED.
Lemma A3: b1 > 0, provided x1 > 1. Proof: b1 can be written as

b1 = 1/

({
εx

[1− φ4 [εx− (ε− 1)]]φ [εx− (ε− 1)]

}
−
[

φ2

(εαx+ φ2)

])
A-11



Therefore b1 > 0 if
{

εx
[1−φ4[εx−(ε−1)]]φ[εx−(ε−1)]

}
>
[

φ2
(εαx+φ2)

]
= b0. Using Lemma A2, this

is equivalent to

εx (εαx+ φ2) > φ2φ [1− φ4 [εx− (ε− 1)]] [εx− (ε− 1)] , or

α (εx)2 + εxφ2 + φ2φφ4 [εx− (ε− 1)]2 > φ2φ [εx− (ε− 1)] .

Since φ2 = (γ − α) (ε− 1) > 0 and 0 < φ = (1− α)
(

1− 1
γ

)
< 1 if γ > 1, one can divide

both sides by φ2φ and simplify to obtain

α (εx)2

φ2φ
+ εx

(
1− φ
φ

)
+ φ4 [εx− (ε− 1)]2 + (ε− 1) > 0.

The r.h.s. is positive, because 0 < φ < 1 and because φ2, φ4 and ε are all greater than one.
By equivalence, b1 > 0. QED.

Lemma A4: 0 < µ2 < 1, provided 0 < b0 < 1 and b1 > 0. Proof: Since b0 > 0

and b1 > 0, we have α(1+b0b1)
b1

> 0, which implies µ2 = − 1
2b1

+

√
1
4

(
1
b1

)2
+ α(1+b0b1)

b1
> 0.

Given µ2 > 0 and b1 > 0, µ2 + 1
2b1

> 0, so µ2 = − 1
2b1

+

√
1
4

(
1
b1

)2
+ α(1+b0b1)

b1
< 1 ⇔

1
4

(
1
b1

)2
+ α(1+b0b1)

b1
<
(

1 + 1
2b1

)2
, ⇔ 1 − αb0 + 1−α

b1
> 0, which is implied by b0 < 1 and

b1 > 0. QED.
Lemma A5: µ1 < −1, provided 0 < b0 < 1 and 0 < b1 < 1. Proof: Since b0 > 0 and

b1 > 0 imply α(1+b0b1)
b1

> 0, µ2 < − 1
2b1
−
√

1
4

(
1
b1

)2
< − 1

b1
, so µ2 < − 1

b1
< −1 for b1 < 1.

QED.

Lemma A6: Define ρ = α
γ−α and z(ρ) = (2 + 3ρ)−2

√
2ρ(1 + ρ) =

(√
2(1 + ρ) −√ρ

)2
.

Then suffi cient conditions for b1 < 1 are that

(1− 1

γ
)z(ρ)

(
1− α− α2

ε− 1

)
< 1, or (A.24)

(1− 1

γ
)z(ρ) <

1

1− α (A.25)

Proof: Since (A.25) implies (A.24) holds for ε > 1, it suffi ces to prove (A.24). Since b1 >

0, the restriction b1 < 1⇔
{

εx
[1−φ4[εx−(ε−1)]]φ[εx−(ε−1)]

}
− φ2
εαx+φ2

> 1⇔
{

εx
[1−φ4[εx−(ε−1)]]φ[εx−(ε−1)]

}
>(

εαx+2φ2
εαx+φ2

)
⇔
{(

εαx
(γ−α)(ε−1)

+1
)

(
εαx

(γ−α)(ε−1)
+2
) εx

[εx−(ε−1)]
1
φ

}
+ φ4 [εx− (ε− 1)] > 1

Define Ψ = (ε−1)
εx , ρ = α

(γ−α) , and

H (Ψ) =

( ρ
Ψ + 1

)( ρ
Ψ + 2

) 1

1−Ψ
=

(ρ+ Ψ)

(ρ+ 2Ψ)

1

1−Ψ
.

Then
b1 < 1⇔ 1

φ
H (Ψ) + φ4

[
εx1 − (ε− 1)

]
> 1.
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Given ε > 1 and given an interior solution x1 > 1, we have 0 < Ψ < 1. The terms 1
[1−Ψ] and

1
φ are both greater than 1, while the term

[ ρΨ +1]
[ ρΨ +2]

is necessarily less than 1. Note that H (Ψ)

has a minimum in the interval 0 < Ψ < 1 and that

1

φ
H (Ψ) + φ4 [εx− (ε− 1)] ≥

[
min

0<Ψ<1
H (Ψ)

]
1

φ
+ φ4

{
min
x≥1

[εx− (ε− 1)]

}
Since min

x≥1
[εx− (ε− 1)] = 1, a suffi cient condition for b1 < 1 is that[

min
0<Ψ<1

H (Ψ)

]
1

φ
+ φ4 > 1⇔ min

0<Ψ<1
H (Ψ) > φ(1− φ4) (A.26)

where φ(1 − φ4) > 0 because (1− φ4) > 0 for x > 1 and φ > 0 for γ > 0. Note that

H ′ (Ψ) = (ρ+2Ψ)−2(ρ+Ψ)

(ρ+2Ψ)2
1

(1−Ψ) + (ρ+Ψ)
(ρ+2Ψ)

1
(1−Ψ)2 = −ρ(1−Ψ)+(ρ+Ψ)(ρ+2Ψ)

(ρ+2Ψ)2(1−Ψ)2
= 2Ψ2+4ρΨ−ρ(1−ρ)

(ρ+2Ψ)2(1−Ψ)2
=

Ψ2+2ρΨ−ρ(1−ρ)/2

2(ρ+2Ψ)2(1−Ψ)2
= 0 has roots Ψ = −ρ ±

√
ρ2 + ρ(1− ρ)/2 = −ρ ±

√
ρ
2(1 + ρ). Of these,

only Ψmin = −ρ+
√

ρ
2(1 + ρ) is inside the [0, 1] interval, so H is minimized at Ψmin, where

Hmin = H
(
Ψmin

)
=

√
ρ
2(1 + ρ)(

−ρ+ 2
√

ρ
2(1 + ρ)

) 1(
1 + ρ−

√
ρ
2(1 + ρ)

)
=

√
ρ
2(1 + ρ)

−ρ(1 + ρ) + 2(1 + ρ)
√

ρ
2(1 + ρ) + ρ

√
ρ
2(1 + ρ)− 2ρ2(1 + ρ)

=

√
ρ
2(1 + ρ)

−2ρ(1 + ρ) + (2 + 3ρ)
√

ρ
2(1 + ρ)

=
1

2 + 3ρ− 2ρ(1 + ρ)/
√

ρ
2(1 + ρ)

=
1

2 + 3ρ− 2
√

2ρ(1 + ρ)
=

1

z(ρ)

Thus from (A.26), 1/z(ρ) > φ (1− φ4) =
(

1− 1
γ

)(
1− α− α2

ε−1

)
is suffi cient for b1 < 1.

QED.

Lemma A7: (a) The term
(

1− 1
γ

)
z(ρ) in (A.24) is increasing in γ and decreasing in

α provided α < γ/2; (b) the 1− α − α2

ε−1 in (A.24) increasing in ε and decreasing in α. (c)

If 1 − α − α2

ε−1 ≤
1
2 and α ≤ γ/2, then condition (A.24) is satisfied for all γ > 1. (d) if

1 − α − α2

ε−1 >
1
2 and α ≤ 1/2 there exists an upper bound γ̄ > 1 so that condition (A.24)

is satisfied for all γ ∈ (1, γ̄) and not satisfied for γ > γ̄.

Proof: Note that z′(ρ) = 3− 21.5 1+2ρ

2
√
ρ(1+ρ)

= 0 has roots ρ1,2 = −1
2 ±

√
1
4 + 2 = −2,+1

and satisfies z′(ρ) < 0 for ρ ∈ (−1, 1). Since α < γ/2 implies ρ < 1 and since ∂ρ
∂γ <

0 < ∂ρ
∂α

∂
∂γ

[(
1− 1

γ

)
z( α
γ−α)

]
= 1

γ2 z(ρ) +
(

1− 1
γ

)
∂ρ
∂γ z
′(ρ) > 0 for all α ≤ 1/2 < γ/2, and

∂ρ
∂α =

(
1− 1

γ

)
∂ρ
∂αz

′(ρ) < 0, proving (a). Part (b) holds by inspection. For (c), note that(
1− 1

γ

)
z( α
γ−α)→ z(0) = 2 as γ →∞, so

(
1− 1

γ

)
z( α
γ−α) < 2 for any finite γ, which implies

(c). For (d), note that
(

1− 1
γ

)
z( α
γ−α) → 0 as γ → 1, so (A.24) holds in a neighborhood
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of γ = 1. For 1 − α − α2

ε−1 >
1
2 and

(
1− 1

γ

)
z( α
γ−α) → 2 implies that (A.24) cannot hold

as γ− > ∞. Existence of γ̄ then follow from the mean value theorem and uniqueness of γ̄

from monotonicity of
(

1− 1
γ

)
z( α
γ−α). QED.

Corollary to A1-A7: If (A.25) holds for some α = ᾱ and γ = γ̄, then (A.25) holds for
all ᾱ ≤ α ≤ 1/2 and all 1 < γ ≤ γ̄. If in addition x1 > 1, then µ1 < −1 and 0 < µ2 < 1, so
saddle-path stability holds.

Condition (A.25) can be evaluated numerically and is satisfied for plausible parameters.

For example, for ᾱ = 1/3 and γ̄ = 10, one finds
(

1− 1
γ

)
z(ρ) = 1.4133 < α

1−α = 1.5 and

for ᾱ = 0.2 and γ̄ = 5, one finds
(

1− 1
γ

)
z(ρ) = 1.2285 < α

1−α = 1.25. Thus the system

is saddle-path stable for all 1/3 ≤ α ≤ 0.5 and 1 < γ ≤ 10 and for all 0.2 ≤ α ≤ 0.5 and
1 < γ ≤ 5. The suffi cient condition tends to fail only if α is implausibly small and γ is
large. (Note that the condition is not necessary; in some cases, one can use (A.24) to show
that the system is stable even though (A.25) fails. For example, for α = 1/3 and γ = 15,
one can show that (A.24) applies for all ε ≤ 10.)

F Analysis in Section 5.2

F.1 Derivation of dRt+1

dθt
under Markov Strategies

Section 5.2 asserts (25), assuming no persistence. Proof: By the Markovian assumption on
strategies we can write θt+1 = g(κt+1), where g is some unknown function. Differentiating
lnRt+1, one obtains

d lnRt+1

dθt
= (1− α)

[
d ln (1 + θt+1)

d lnκt+1
− 1

]
d lnκt+1

dθt

= (1− α) [λt+1 − 1]
d lnκt+1

dθt
.

where λt+1 = d ln(1+θt+1)
d lnκt+1

= κt+1g′(κt+1)
1+g(κt+1) . Differentiating

lnκt+1 = [ln (1− α)− ln η] + (1− α) ln (1 + θt)

− ln (1 + εθt)− ln

(
1 + β

− 1
γR

1− 1
γ

t+1

)
+ α lnκt (A.27)

with respect to θt, one obtains

d lnκt+1

dθt
=

1− α
(1 + θt)

− ε

(1 + εθt)
−

(
1− 1

γ

)
1 +Bt

d lnRt+1

dθt

Substituting the above equation into dRt+1

dθt
above, we obtain

d lnRt+1

dθt
= (1− α) [λt+1 − 1]

 1− α
(1 + θt)

− ε

(1 + εθt)
−

(
1− 1

γ

)
1 +Bt

d lnRt+1

dθt

 .
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Solving for dRt+1

dθt
and simplifying terms we obtain

d lnRt+1

dθt
=

(1− α) [λt+1 − 1]
[

1−α
(1+θt)

− ε
(1+εθt)

]
(1 + 1/Bt)

(1 + 1/Bt) + [λt+1 − 1] (1− α)
(

1− 1
γ

)
/Bt

=
(1− α) (1− λt+1)

[
ε

(1+εθt)
− 1−α

(1+θt)

]
(1 + 1/Bt)

1 + (1− (1− λt+1)φ) /Bt
(A.28)

As in the previous section, maximizing (6) with respect to θt again implies (A.15), where
dRt+1

dθt
= Rt+1

d lnRt+1

dθt
is now given by (A.28). An interior solution again requires d lnRt+1

dθt
/ (1 + 1/Bt) =

α
(1+θt)

, which (after simplifying as in the previous section) reduces to (25). QED.

F.2 The Numerical Algorithm for the Equilibrium in Markov Strategies

We obtain a log-linearization of the model in Markov strategies and verify the quality of
the solution by using numerical methods that use projection methods similar to den Haan
and Marcet’s (1990) parameterized expectations approach (PEA).

Specifically, we approximate period-t expectations about θ∗t+1 by using the function:

(
1 + θ∗t+1

)
= exp

(
n∑
i=0

µi (ln (κt+1))i
)

(A.29)

for some unknown coeffi cients µ = {µ0, µ1, µ2, ..µn}, and where κt+1 is known at time
t. The general idea is to choose some particular coeffi cients µ̂ such that the distance
between the forecast and the optimal choices dictated by the equations of the model are
minimized. For our application, the coeffi cients are obtained after an iterative procedure
where the model is solved for different points on the state grid26, where the solution is
conditional on a previous set of coeffi cients. The new set of equilibrium pairs {κt, θt} are
used to generate a new set of coeffi cients that describe the optimal policy function (and the

elasticity
d ln(1+θ∗t+1)
d lnκt+1

), and which also update the expectation function of the model. This
is repeated until the distance of the forecast and actual choices consistent with that forecast
is minimized.

Under equation (A.29) the term
d ln(1+θ∗t+1)
d lnκt+1

needed in the first order condition of gen-
eration [t] is given by

d ln (1 + θt+1)

d lnκt+1
=

n∑
i=1

iµi (ln (κt+1))i−1 (A.30)

The particular steps of the algorithm are explained below.
Preliminaries. For the initial conditions that represent the grid of the state variable

(κ) we use a neighborhood around the myopic steady state, given by
[
.75κ1, 1.5κ1

]
. This

interval does not need to be symmetric, and in our particular case it is due to the fact that

26See Christiano and Fisher (2000) for the use of this step in the PEA algorithm. Since simulating the
model will naturally lead to points which have a high probability and not many points of states with low
probability, they suggest several variations of the algorithm that amount to collocation in the grid, rather
than increasing the number of periods of the simulation. Some of their best variations of the PEA algorithm
don’t require many collocation points (i.e. 5 collocation points) , nor require many terms in their expectation
function.
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(with γ > 1) the Markov steady state level (κ∗) is always to the right of the myopic steady
state (κ1).

Step 1. Start with the solution of the rational expectations "myopic" equilibrium where
immigration quotas θt take as given the future immigration quotas θt+s, for s ≥ 1. The
model is simulated for many periods t = 0, 1, 2, ...T using perfect foresight under j = 1, 2, ...J
different initial conditions in the state grid. For each of the time series generated under
each initial condition, a point (κ0, θ

∗
0) is obtained.27 Hence there are J pairs

(
κ0,j , θ

∗
0,j

)
that show the optimal immigration quota consistent with the initial condition and with
perfect foresight simulation of the model. Then those pairs are used to estimate equation
(A.29) in order to obtain the first set of coeffi cients (µ̂1) . More details about the specific
regression are explained in step (4). Then form the forecasting function ĝ (κt+1; µ̂1) , which
is parameterized by the initial set of coeffi cients µ̂1. For economy of notation in what
follows define the forecasting function parameterized by the coeffi cients of the sth iteration
by ĝ (κt+1; µ̂s) ≡ ĝs (κt+1) .

Step 2. For each initial condition κ0,j (j = 1, 2, ...J) and given the coeffi cients µ̂s that
parameterize the ĝs (κt+1) , a non-linear solver is used in order to (simultaneously) solve
for θ∗0,j and κ

∗
1,j for the following two equations that describe the evolution of the system

(where for simplicity we ignore the subscript j that denotes a particular initial condition):

κ1

(
1 + β

− 1
γα

(
1− 1

γ

)(
1 + ĝs (κ1)

κ1

)φ)
=

(1− α) (1 + θ0)1−α κα0
η (1 + εθ0)

β
− 1
γα

(
1− 1

γ

)(
1 + ĝs (κ1)

κ1

)φ

=

[(
1−α
α

) (ε−1)
(1+εθ0) − α

]
− d ln(1+ĝs(κ1))

d lnκ1

[
(1− α) +

(
1−α
α

) (ε−1)
(1+εθ0)

]
{

1
γ + α− α

γ

}
+ φd ln(1+ĝs(κ1))

d lnκ1

where the term d ln(1+ĝ(κ1))
d lnκ1

is given by equation (A.29). For each κ1,j obtained as the
solution to the above equations, the non-linear solver can be used again in order to obtain(
κ2,j , θ

∗
1,j

)
and repeat this step recursively up to some final period T .

Step 3. A measure of accuracy of the forecast ĝs (κt) and the optimal choice that solves
the system of equations

(
θ∗t,j
)
is constructed. We calculate the sum of squared residuals for

simulation started by initial condition j (SSRj) from the current optimally chosen levels (θ∗t )
and the levels that would be predicted directly by the forecasting function using the previous
set of coeffi cients for all periods t. That is, we compute an error term (not the regression
error term) obtained in (each of the J) current simulations of the equilibrium immigration
quota

(
θ∗t,s
)
, which use perfect foresight and which assume that the future effects d ln(1+θt+1)

d lnκt+1

are given by (A.30). The error of prediction for each one of the J simulations (for each of
the J initial conditions) when the expectation function uses coeffi cients of iteration s, for

time t is given by et,j,s+1 = θ∗t,j− ĝ (κt, µ̂s) . Then SSRj,s+1 =

T∑
t=0

(et,j,s+1)2 . If this distance

27More than one point can be used (i.e (κ0j , θ
∗
0j) and (κ1j , θ

∗
1j) for the j − th initial condition. We don’t

do this step because the next set of points are closer to each other (converging toward the steady state) and
in practice didn’t change the coeffi cients. When only the first point is used, we control exactly which points
on the grid we want to approximate, which is a good thing when approximating numerically a particular
function.
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is at a minimum, then a solution has been found, but if not at a minimum, continue with
the next step.28

Step 4. Given the new set of pairs
{
θ∗0,j , κ0,j

}J
j=1
, run the non-linear regression

(
1 + θ∗0,j

)
= exp

(
n∑
i=0

µi (ln (κ0,j))
i

)
+ error

where the estimates for coeffi cients that parameterize this function when this is the
(s+ 1) time that this step is performed are given by µ̂s+1. Given the new coeffi cients, go
back to step 2 and repeat the steps until max [SSR1,s+1, ..SSRJ,s+1] has been minimized.29

An example. Consider the case with the parameters as discussed in the text with
α = 1

3 , η = 1.25
1.12 , γ = 4, β = .412 and ε = 1.9321. We use n = 3 (a polynomial of

the third degree) in order to minimize the distance. The steady state yields θ∗ = 8.00%

and κ∗ = .0739, with an elasticity
d ln(1+θ∗t+1)
d lnκt+1

evaluated at steady state of 7.04%. In our
experiments, adding more monomial terms to the expectation function doesn’t result in
more accuracy. The Markovian strategy of equilibrium is described in this case by

(1 + θ∗t ) = exp

(
3∑
i=0

µ̃i ln (κt,j)
i

)
with coeffi cients {µ̃0, µ̃1, µ̃2, µ̃3} given by {0.261032563347811, 0.0698516558436102, -0.000699103908625326,
-0.000150142686729684}, and max {SSR1, ...SSRJ} = .5 ∗ 10−15. The algorithm required
11 iterations in order to arrive at the solution where we used T = 20 and N = 24. The
optimal policy function in Markov strategies for this particular example is shown below.

The optimal markovian policy function
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28Alternatively, we can define this algorithm in terms of finding the coeffi cients µ∗ such that, using the
forecast g (κ;µ∗) the model equations yields a set of pairs {κj , θj}Jj such that µ

∗ also solves the regression
problem. That is, returns the same coeffi cients used in the simulation of the model.
29The coeffi cients used for the perfect foresight simulation of the model (vector µ̃) can be those directly

dictated by the regression (µ̂), or as den Haan and Marcet do, a linear combination of the estimated
coeffi cients for the current iteration and the estimates used in the previous iteration can be used. That is,
for the ith iteration if the regression coeffi cients are µ̂i and the coeffi cients that are fed into the model in
the previous iteration are µ̃i−1, then the next iteration uses coeffi cients given by µ̃i = ρµ̂i + (1− ρ) µ̃i−1,
for a specific 0 < ρ < 1. For our model we can update the new coeffi cients directly (ρ = 1).
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Robustness. This algorithm is robust with respect to many variations in the procedure:
to the number of periods T (Using T = 10 or T = 200 yields identical solutions in θ∗t up
to several decimal points), the number of initial conditions J (can use J of at least 4 and
get very accurate results provided we use the same grid), as well as the number of pairs
used for the regression procedure (can use pairs

{
θ∗t,j , κt,j

}J
j=1

for t = {0} or t = {0, 1}, or
t = {0, 1, 2} in the regression and still obtain the same results). Variations in the size of the
state grid don’t seem to affect the steady state results even when we used a much smaller
grid given by

[
.99κ1, 1.10κ1

]
.

Simplified Version. For n = 1, the projection (A.29) reduces to a log-linear approx-
imation around the steady state. For purposes of computing steady states—our objects of
main interest—the only relevant feature of g is the elasticity λ∗ = g′(κ∗)κ∗

1+g(κ∗) = d ln(1+θ∗)
d lnκ at the

steady state capital stock κ∗, because only λt+1 appears in (25). Log-linearization yields an
analytical solution for g′(κ∗), which means {κ∗, θ∗, λ∗} can be written as a system of three
non-linear equations that can be solved numerically (i.e., without having to approximate g
away from κ∗). The log-linearizations turn out to provide values for θ∗ that are very close
to values obtained from solutions to the PEA algorithm. For example, using the parameters
discussed above, the log-linearization yields θ∗ = 7.98%, as compared to θ∗ = 8.00% with
PEA.

G Analysis in Section 5.3

We claim in Section 5.3. that the CRRA model with persistence has a first order condition
that can be used to compute optimal solutions.

Proof: In the CRRA model with persistence, Rt+1,j depends on the state j = I, II, as
in Section 4.1. Now θIt+1 = gp(κt+1) and θIIt+1 = θt. The individual problem (A.8) again
implies (A.9), where

Bt =

(κt+1)(γ−1)(1−α)βα(1−γ)

∑
j

pj · (1 + θt+1,j)
(1−γ)(1−α)

1/γ

= (κt+1)φEt

is decomposed multiplicatively into a function of κt+1 and the expectational term

Et = β
1
γα
−(1− 1

γ
)

∑
j

pj · (1 + θt+1,j)
(1−γ)(1−α)

 1
γ

.

Note that κt+1 = ψtwt
Bt

1+Bt
, where ψt = (1+θt)

η(1+εθt)
. Hence

Bt = (κt+1)φEt = (ψtwt
Bt

1 +Bt
)φEt = zt(

Bt
1 +Bt

)φ

is (implicitly) a function Bt = B(zt), where zt = (ψtwt)
φEt.

Voters maximize Ut = 1
1−γw

1−γ
t [1 +Bt]

γ by choice of θt. This implies

dUt
dθt

=
(1− γ)Ut

wt

dwt
dθt

+
γUt

1 +B(zt)
B′(zt)

dzt
dθt
, or

d lnUt
(1− γ)dθt

=
d lnwt
dθt

− εB(zt)

1− 1/γ

d ln zt
dθt
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where εB(zt) = B′(zt)zt
1+B(zt)

= Bt
1−φ+Bt

. Hence interior solutions require

1

εB(zt)

d lnwt
dθt

=
1

1− 1/γ

d ln zt
dθt

. (A.31)

Taking derivatives:

d ln zt
dθt

=
d lnEt
dθt+1,II

+
d lnEt
dθt+1,I

∂θt+1,I

∂ lnκt+1

∂ lnκt+1

∂θt
+ φ

(
d lnwt
dθt

+
d lnψt
dθt

)
;

d lnEt
dθt+1,II

= −(1− 1

γ
)

1− α
1 + θt

PII , where

PII = PII(θ
II
t+1, Et) = p

βα(1−γ)(1 + θIIt+1)(1−γ)(1−α)

Eγt
;

d lnEt
dθt+1,I

∂θt+1,I

∂ lnκt+1
=

1

γ
(1− PII)(1− γ)(1− α) · λt+1;

lnκt+1 = lnψt + lnwt + lnBt − ln(1 +Bt) implies

∂ lnκt+1

∂θt
=

(
d lnwt
dθt

+
d lnψt
dθt

)
+

1

Bt

∂Bt
∂θt
− 1

1 +Bt

∂Bt
∂θt

=

(
d lnwt
dθt

+
d lnψt
dθt

)
+
εB(zt)

Bt

d ln zt
dθt

; and

d lnwt
dθt

+
d lnψt
dθt

=
α

(1 + θt)
+

1

(1 + θt)

ε− 1

(1 + εθt)
,

one obtains,

d ln zt
dθt

= −(1− 1

γ
)

1− α
1 + θt

PII + φ

(
d lnwt
dθt

+
d lnψt
dθt

)
− (1− PII)φλt+1

[(
d lnwt
dθt

+
d lnψt
dθt

)
+
εB(zt)

Bt

d ln zt
dθt

]
,

d ln zt
dθt

=
−(1− 1

γ ) 1−α
1+θt

PII + φ
(

α
(1+θt)

+ 1
(1+θt)

ε−1
(1+εθt)

)
[1− (1− PII)λt+1]

1 + φ
1−φ+Bt

(1− PII)λt+1φ
.

provided 1 + φ
1−φ+Bt

(1 − PII)λt+1φ > 0. Inserting into (A.31) and combining terms, the
first order condition is

1

εB(zt)

d lnwt
dθt

=

1
1−1/γ

∂ lnEt
∂θt

+ (1− a)
(
d lnwt
dθt

+ d lnψt
dθt

)
[1− (1− PII)λt+1]

1 + (1− PII)λt+1φ
εB(zt)
Bt

Using 1
εB(zt)

= 1−φ+Bt
Bt

= 1 + 1−φ
Bt
, this can be written as

1

Bt
=

(
1− a+

(
1−α
α

)
ε−1

(1+εθt)

)
[1− (1− PII)λt+1] +

(
1−α
α

)
PII − 1

1− φ+ φ(1− PII)λt+1
. (A.32)

A-19



This first order condition generalizes (25). QED.
Note that in any steady state, θIt+1 = θIIt+1 = θ∗ implies PII = p. Constant Bt = B∗ and

θt = θ∗ imply

1

B∗
=
p
(

1−α
α

)
+
(

1− a+
(

1−α
α

)
ε−1

(1+εθ∗)

)
[1− (1− p)λ∗]− 1

1− φ+ (1− p)λ∗φ , and

B∗ = β
1
γ

(
1− α

αη(1 + εθ∗)

B∗

1 +B∗

)1− 1
γ

where λ∗ = g′(κ∗)κ∗

1+g(κ∗) depends on the policy function at κ
∗. Hence given a numerical approx-

imation for g, a steady state {B∗, θ∗, λ∗} can be characterized as solution to this system of
non-linear equations. We obtain steady states numerically in two ways: by approximating
g using PEA (as discussed above); and by deriving an analytical solution for g′(κ∗) from
log-linearizing (A.32) and (A.18), and then solving the steady state equations numerically.
In our applications, both approaches yield virtually identical answers.

A-20


