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Abstract

People prefer paying lower taxes. Lower taxes at one income can be fi-

nanced by higher taxes at other incomes, which we term revenue extraction.

We study revenue extraction when taxpayers elect representatives who set

incentive-compatible tax policy and a minimum-utility constraint limits what

can be taken from the poor. Revenue extraction by median-income voters is a

Condorcet outcome, and resulting policy broadly resembles U.S. policy: taxes

are progressive, the poor receive subsidies but face high effective marginal rates,

and high-income taxpayers pay most taxes.
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I. INTRODUCTION

Substantial tax revenue comes from people with high income. In 2007, for

instance, the top 40 percent of U.S. households paid 85.4 percent of total Federal

taxes and 98.7 percent of Federal individual income taxes (CBO, 2010). We describe

this as an implication of a median-voter theorem: median-income voters gain if higher

taxes are imposed on high-income taxpayers and the revenue is used to keep taxes low

at median income; and a candidate must attract the votes of median-income voters

to be elected.1

To model this revenue-extraction-by-voting, we follow Mirrlees (1971) and

Meltzer and Richard (1981) in assuming individuals differ only in productivity. Pro-

ductivity determines income. Policy is an incentive-compatible income-tax function

without linearity or other shape restrictions, as in Mirrlees. Such policies are infinite-

dimensional.

A key assumption is that elections are between candidates who each represent a

single productivity. This assumption suffices to eliminate the cycles that would occur

generally if policies were set by coalitions of individuals with different productivities,

and allows us to focus on the voting clout of the underlying productivities.2 Techni-

cally, the assumption restricts the domain of policies under consideration, ruling out

1The analysis is consistent with “Director’s Law,” Stigler’s (1970) observation that the middle

classes sometimes gain most from public programs. See also Gouveia (1997), Dixit and Londregan

(1998).
2Linearity is sometimes used to restrict cycles (Romer, 1975; Roberts, 1979; Meltzer and Richard,

1981; Krusell and Ŕios-Rull, 1999) but revenue extraction may give the lowest tax at a middle income,

which cannot occur under a linear tax. (To see why cycling occurs generally if nothing restricts

coalitions, consider an electorate of three individuals with different fixed endowments. Starting

from any set of endowment taxes that sum to zero, it is always possible to find two individuals

who would gain by forming a coalition and voting to extract from the third, which would happen if

nothing restricts it.)
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policies that are compromises among different productivities but are not optimal for

any single productivity.

For brevity, a candidate’s productivity, income, taxes, or utility here means

the productivity, income, taxes, or utility of the constituents the candidate represents.

We take as a starting point that trust in the stability of a politician’s position matters

enough to voters so politicians do not deviate from maximizing constituent utility.3

Policy must satisfy two constraints. First, net revenue must cover given spend-

ing on public goods. Second, forced labor is not allowed and there is a limit to how

little a taxpayer can be left to consume, which means policy must also satisfy a

minimum-utility constraint. The winner gains from a tax system that extracts rev-

enue from all others to give a low tax at the own income, but revenue extraction from

low-income individuals is restricted by the minimum-utility constraint.

When voters compare two candidates, they see the income tax functions the

candidates would set and vote for the candidate whose tax function would provide

greater utility. We provide conditions under which all individuals with productivity

below a crossover vote for the candidate with lower productivity, and all individuals

above the crossover vote for the candidate with higher productivity. This implies

that median-productivity voters are always on the winning side, and that a median-

productivity candidate, who would maximize the utility of median-productivity indi-

viduals, is a Condorcet winner. This is a fairly general median-voter theorem.4

3Work on entry into politics in representative democracy by Osborne and Slivinski (1996) and

Besley and Coate (1997) assumes candidates and constituents have the same economic interests

and candidates set policy to maximize own utility, so candidates can be counted on to maximize

constituent utility if elected. Either this assumption or the trust/reputation assumption we take as a

starting point would suffice for our work. (Our work differs from the other papers in that we assume

two candidates are exogenously given and we search for a Condorcet tax policy when individuals

differ by productivity, instead of studying the two candidates’ entry decisions.)
4In an unpublished paper that uses a somewhat different approach, Röell (1996) gives a single-
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The analysis is positive in that it predicts the outcome of democratic voting

on taxes, while Mirrleesian analyses of the taxes that maximize welfare defined as

a specific function of individual utilities are more normative. In these normative

analyses, the point of redistribution is to benefit those with low productivity. Here,

on the other hand, the result is that redistribution in democracy may largely end up

benefiting those with median or close-to-median productivity.

The tax function a candidate with median or close-to-median productivity

would set has broad features of the U.S. tax system:

1. Revenue is extracted from higher-income individuals.

2. Taxes are progressive in the middle of the income distribution.

3. Low-income individuals receive welfare (negative overall taxes) but face high

marginal taxes.5

Both major U.S. political parties have been responsive to voting pressure from

the middle. For instance, the current Democratic administration has stressed increas-

ing taxes for those earning above about $250,000/year, and the previous Republican

administration stressed middle-class tax cuts.

Section II describes the model. Section III describes how revenue-extracting

income taxes are optimal for an election winner. Section IV studies elections and

crossing (crossover) result when utility is quasi-linear so there are no income effects, and the

minimum-utility constraint does not bind. As discussed in section V, the more empirically rele-

vant case seems to be when the minimum-utility constraint binds. Our results assume utility is a

general strictly concave function of consumption and leisure and hold whether or not the minimum-

utility constraint binds. We also allow government to spend on public goods. The generality of the

median-voter results in a static setting is central here, which partly explains why we do not consider

extensions to a dynamic Mirrleesian setting.
5Empirically, means-testing gives welfare recipients high marginal taxes–see e.g. Browning and

Johnson (1979), Dickert et al. (1995), Keane and Moffitt (1998).
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provides median-voter results. Section V studies the shape of the winner’s tax func-

tion in more detail. Proofs are in an appendix (included here for reviewers, not for

publication).

II. MODEL

As in Mirrlees (1971), the setting is static. Individuals have identical prefer-

ences over consumption c ≥ 0 and leisure 0 ≤ l ≤ 1 but differ in productivity x.

Productivity has distribution F (x) on an interval [x−, x+] with 0 ≤ x− < x+ ≤ ∞,

where F has finite mean and continuous density f with f > 0 on (x−, x+). Individual

income is y ≡ nx where n ≡ 1 − l is labor. The government can tax income but

not leisure or productivity. An individual consumes c ≡ y − T (y) where T (y) is net

income taxes.

Income taxes T are determined by the winner of a majority-rule election be-

tween two exogenously given candidates.6 The winner sets policy to maximize the

utility of individuals with productivity denoted xe; the two candidates have differ-

ent values of xe. Individuals first vote for the candidate whose policy would provide

greater utility; then with T set by the winner, they choose income y (or equivalently

labor supply n) to maximize utility u(c, l) = u(y − T (y), 1− y
x
). We make standard

assumptions on u, including agent-monotonicity.7

Income taxes T are obtained from the solution to a control problem with

incentive and other constraints. The controls are a profile {U(x), Y (x)} of functions

6As is common, we leave unmodelled the processes by which individuals become candidates.
7Namely, u is strictly increasing, strictly concave, and three times differentiable. To ensure l > 0,

we assume liml→0 ul(c, l)/uc(c, l) = ∞ for any c > 0, where subscripts denote partial derivatives.

We make the agent-monotonicity assumption that nul(c, 1 − n)/uc(c, 1 − n) increases strictly in n

for all c > 0. This ensures that individual income choices do not decrease with productivity. Agent

monotonicity holds if consumption is normal or utility is separable.
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on [x−, x+] that specify distributions of utility and income across individuals.8 This

profile determines profiles of: (i) labor n = Y
x
; (ii) consumption c = c∗(U, n), where

c∗(U, n) defined by U = u(c∗, 1− n) is the consumption that provides utility U given

labor supply n; and (iii) taxes t(U, Y, x) ≡ Y − c∗(U, Y
x
). Taxes t imply income taxes

T (Y (x)) ≡ t(U(x), Y (x), x) for all incomes in [Y (x−), Y (x+)].

Mirrlees (1971, 1986) shows that the incentive constraints are captured by the

combination of differential equations

U(x̃)− U(x−) =

∫ x̃

x−

ω(U(x), Y (x), x)dx (1)

for x̃ ≥ x− where ω(U, Y, x) ≡ ul(c
∗(U(x), Y (x)

x
), 1 − Y (x)

x
)Y (x)

x2
≥ 0, plus the require-

ment that Y (x) be non-decreasing.9 To ensure this income-monotonicity, we use the

income derivative ψ(x) ≡ dY
dx

as a control, impose

ψ(x) ≥ 0 (2)

for all x, and treat Y (x) as a state variable.10 The incentive constraints (1) with

ω ≥ 0 imply that U(x) is also non-decreasing.

Tax revenue must cover exogenous public-good spending G ≥ 0 so the govern-

ment budget constraint is
∫ x+

x−

t(U(x), Y (x), x)dF (x) ≥ G, (3)

where the integral is total tax revenue.

Policy must also satisfy the minimum-utility constraint

U(x−) ≥ u(α, 1), (4)

8A profile here means a function or collection of functions on [x−, x+]. We omit braces when

referring to single-function profiles. If the functions are defined only on a subset S ⊂ [x−, x+], the

profile is denoted {}S.
9An additional requirement from Mirrlees is Y (x) < x, but this holds under assumptions made

on u in footnote 7.
10This is the “second-order approach”–see Brito and Oakland (1977), Ebert (1992).
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where α ≥ 0 and u(α, 1) > −∞. Because U(x) is non-decreasing, (4) ensures U(x) ≥

u(α, 1) for all x, so if the minimum-utility constraint binds, it binds for those with

lowest productivity. If α = 0, (4) says the government cannot make anyone worse

off than a person who consumes zero and does not work; this assumes a person

always has the option of dropping out of the organized economy, not working and

consuming nothing. The minimum-utility constraint is needed to rule out forced

labor: without (4) when α = 0, government could leave individuals with utility below

u(0, 1), which requires l < 1 and would mean people are forced to work in return for

zero consumption.11 The (reasonable) case with a positive consumption floor α allows

dropouts to earn and consume positive income outside the organized economy.12

An election winner xe ∈ [x−, x+] maximizes U(xe) subject to incentive (1, 2),

budget (3), and minimum-utility (4) constraints by choice of {U(x), Y (x), ψ(x)}. To

ensure that a solution exists, we assume α and G satisfy G < R̂(α) where R̂(α)

is the maximum revenue that can be raised with incentive-compatible tax functions

satisfying the minimum-utility constraint for given α; formally R̂(α) is the value of

the revenue integral in:

maximize

∫ x+

x−

t(U(x), Y (x), x)dF (x) (R̂M)

subject to (1), (2), and (4)

by choice of {U(x), Y (x), ψ(x)} for given α. The Hamiltonian for R̂M is

H(U, Y, ψ, ξ, µ, x) ≡ t(U, Y, x) · f(x) + ω(U, Y, x) · ξ(x) + ψ(x) · µ(x),

11By limiting extraction from the poor, the minimum-utility constraint provides a balancing pres-

sure here on governments looking for revenue. The constraint is usually omitted in Mirrleesian

analyses of welfare-maximizing taxes, where the point of redistribution is to aid those with low

productivity. An exception is Berliant and Page (2001), who implicitly impose the constraint by

assuming “essentiality of leisure” and that T (0) is well-defined and non-positive.
12An alternative interpretation is that all individuals have altruistic preferences defined over the

minimal consumption in society, and all prefer a consumption floor of α over any other floor.
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where ξ and µ are the costates for U and Y. We assume H is strictly concave in (U, Y )

and that a solution to R̂M exists with continuous U and Y , piecewise continuous ψ,

and continuous and piecewise continuously differentiable ξ and µ.13 Under these

assumptions, the profile that solves R̂M, {Û(x), Ŷ (x)}, is unique.14

For any candidate xe, there is a utility profile that would result if the candidate

were to win. For any pair of candidates, the winner is the candidate who would give

higher utility to a majority.

III. REVENUE-EXTRACTING TAX FUNCTIONS

A generic winner’s constituents end up earning some income ye ≥ 0 and paying

taxes T (ye), so they end up with utility u(ye − T (ye), ye/xe). Given ye, the winner

maximizes this utility by imposing a tax function that extracts maximal revenue

from all taxpayers to make T (ye) as low as possible. This makes income ye maximally

tax-preferred.

To characterize the income tax functions that extract maximal revenue and

make T (ye) as low as possible, consider an arbitrary ye and a specific value Te of

the tax payment at ye. The tax payment Te is feasible if and only if, given (ye, Te),

the maximum revenue R(ye, Te) that can be extracted from all taxpayers by varying

{U(x), Y (x), ψ(x)} satisfies R(ye, Te) ≥ G.

Because others with sufficient productivity to earn ye cannot be stopped from

13These assumptions ensure that the conditions of the Maximum Principle describe an optimum.

We do not look for conditions on primitives that imply the assumptions, or that imply assumptions

CON and LB below. Simple conditions on primitives are elusive: Mirrlees (1986, p. 1235) states

that “obscure” existence conditions that restrict third-order partials are unavoidable in variational

problems of this type.
14If ψ has points of discontinuity, there is a trivial multiplicity in ψ(x) because ψ can be altered

at such points without altering {U(x), Y (x)}. Hence we call a solution unique if it has a unique

profile {U(x), Y (x)}.

7



also earning ye and paying taxes Te, the profile underlying R(ye, Te) must give each

individual x ≥ ye at least the utility Ue(x) ≡ u(ye − Te, 1 − ye/x) that x would get

from earning ye and paying Te:

U(x) ≥ Ue(x). (5)

If ye is tax-preferred, a set of individuals may opt to earn ye, that is, different x

may “bunch” at income ye. Formally, R(ye, Te) is the maximized value of the revenue

integral in:

maximize

∫ x+

x−

t(U(x), Y (x), x)dF (x) (RM)

subject to (1), (2), (4), and (5)

by choice of {U(x), Y (x), ψ(x)}.

Some (ye, Te) pairs are uninteresting in that Ue(x) ≤ Û(x) for all x, so no one

would be better off picking (ye, Te) than they would be under R̂M. For such pairs,

it will turn out that: the solution to R̂M also solves RM so R(ye, Te) = R̂(α) > G,

which says revenue exceeds required spending on public goods; and no winner would

ever pick such a pair.

For all other pairs, Ue(x) > Û(x) for some x so someone would be better off

picking (ye, Te) than under R̂M. The set of these pairs is P ≡ {(ye, Te) | Ue(x) > Û(x)

for some x}. For (ye, Te) ∈ P , solutions to RM and R̂M differ so there is at least one

value x at which (5) binds. Let xb denote such an x, so U(xb) = Ue(xb). Given xb,

proposition 1 below shows that RM can be solved by separately: maximizing revenue

from individuals with productivities below xb and incomes below ye; and maximizing

revenue from individuals with productivities above xb and incomes above ye.

The two maximizations are conditional on (xb, ye, Te) and have ranges of inte-
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gration and control below (B) and above (A) productivity xb:

maximize

∫ xb

x−

t(U(x), Y (x), x)dF (x) (RMB)

subject to (1), (2), (4), U(xb) = Ue(xb), and Y (xb) ≤ ye

by choice of {U(x), Y (x), ψ(x)}x≤xb; and

maximize

∫ x+

xb

t(U(x), Y (x), x)dF (x) (RMA)

subject to (1), (2), (4), U(xb) = Ue(xb), and Y (xb) ≥ ye

by choice of {U(x), Y (x), ψ(x)}x≥xb . Let RB(xb, ye, Te) and RA(xb, ye, Te) denote max-

imal values of the revenue integrals in the respective problems. Taxpayers x ≤ xb earn

income Y (x) ≤ Y (xb) ≤ ye and taxpayers x ≥ xb earn income Y (x) ≥ Y (xb) ≥ ye,

so the two revenue maximizations yield separate segments of the income tax function

for incomes below ye and for incomes above ye.
15

Figure 1 illustrates. The minimum-utility constraint anchors income taxes at

−α.16 The top tax function, from the solution to R̂M, is the upper boundary of P .

Consider a winner who earns income ye, who would pay taxes T̂e at this income under

R̂M. A small reduction in the tax from T̂e to T ′e would raise the winner’s utility. Such a

reduction pulls down the entire tax function, but pulls it down particularly at income

ye: conditioning on (ye, Te) with Te < T̂e gives an incentive-compatible tax function in

which income ye is tax-preferred relative to all other incomes in that (ye, Te) delivers

15The two inequalities suggest that xb earns Y (xb) = ye. This is correct if x− < xb < x+ (see

proposition 1), but not necessarily if xb is at the boundary of [x−, x+]. Intuitively, if ye is very low,

solutions to RM may have xb = x− and Y (x−) > ye, and if ye is very high, solutions may have

xb = x+ and Y (x+) < ye. We allow Y (xb) �= ye to account for these boundary cases.
16All figures consider the empirically plausible case in which the minimum-utility constraint binds

(U(x−) = u(α, 1)), α > 0, and some individuals earn zero income (Y (x−) = 0), so T (0) = −α. The

propositions below also cover cases with U(x−) > u(α, 1), α = 0, and Y (x−) > 0. The range of

implied shapes of the tax function is explained in section V.
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taxes Te at income ye, and imposes taxes at all other incomes to maximize revenue.

It will turn out that any such tax function has a kink at ye.

Figure 1. Revenue-Extracting Income Tax Functions

To fund G, the lowest feasible tax at income ye is the value Te defined by

R(ye, Te) = G. If this is repeated for all values of ye, the result is the function T ∗e

that gives the lowest feasible tax at different incomes ye. In figure 1, T ∗e is the grey

curve, and the value Te defined by R(ye, Te) = G equals T ∗e (ye).

To deal with existence and uniqueness of solutions, we first extend the as-

sumptions made earlier about R̂M to RMB and RMA, as the Hamiltonians are the

same:

CON: For (ye, Te) ∈ P and xb ∈ {x | Û(x) ≤ Ue(x)}, H is strictly concave in

(U, Y ), and RMB and RMA each have a solution with continuous U and Y , piecewise

continuous ψ, and continuous and piecewise continuously differentiable ξ and µ.

Second, we impose a limited-bunching condition (LB) to ensure that solutions

to RMB and RMA vary smoothly with (ye, Te). Bunching of different productivities

at a common income of ye must be allowed because ye is tax-preferred, and bunching
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at zero income is sometimes implied by the minimum-utility constraint. Bunching at

incomes other than zero and ye, however, would introduce discontinuities and make

it difficult to derive firm results. The regularity condition we impose limits bunching

to incomes of zero and ye:

LB: For (ye, Te) ∈ P , Y (x) increases strictly for 0 < Y (x) < ye in RMB, and

increases strictly for Y (x) > ye in RMA.

LB ensures that income tax functions are continuous except at kinks at tax-

preferred incomes ye, and also provides regularity in proofs of voting results below.

Then (proofs of propositions are in an appendix):

Proposition 1 (Revenue Maximization) RM has a unique solution for any (ye, Te).

1. For (ye, Te) ∈ P:

(a) There is a bunching interval [x1, x2] with U(x) = Ue(x) for x ∈ [x1, x2],

and U(x) > Ue(x) for x /∈ [x1, x2].

(b) If [x1, x2] includes any x ∈ (x−, x+), then x1 < x2 and Y (x) = ye for

x ∈ [x1, x2]. If [x1, x2] ∩ (x−, x+) = ∅, then either x1 = x2 = x− and

Y (x−) ≥ ye, or x1 = x2 = x+ and Y (x+) ≤ ye.

(c) For any xb ∈ [x1, x2], the solution to RMB on [x−, xb] together with the

solution to RMA on [xb, x+] solve RM, and R(ye, Te) = RB(xb, ye, Te) +

RA(xb, ye, Te) is the same for all xb.

2. The function T ∗e defined by R(ye, T
∗
e (ye)) = G exists and is differentiable for

ye ∈ [0, x+).

The function T ∗e in part 2 is the grey curve in the figures that gives the mini-

mum feasible tax at income ye. The feasible set of incomes and taxes for any winner
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is therefore {(ye, Te | Te ≥ T ∗e (ye))}, with lower boundary T ∗e , as in figure 2. The

winner’s identity xe does not enter the objective function or the constraint set of RM,

so the set of feasible (ye, Te) pairs is the same for all candidates.

Figure 2. The Winner’s Income Choice

Indifference curves in (ye, Te) space are inverted-U-shaped, as in figure 2. Dif-

ferentiating the winner’s utility u(ye − Te, 1−
ye
xe
), the slope of an indifference curve

is 1 − ul
ucxe

< 1. When ye is low so consumption is scarce and leisure plentiful, indif-

ference curves may have positive slope, as drawn. As income increases, consumption

becomes plentiful and leisure scarce so indifference curve slopes fall, become negative,

and reach an asymptote at or before xe, where leisure goes to zero. At any ye, lower

Te means higher utility.

The winner’s optimal choice is on the lowest indifference curve that touches

T ∗e (ye), at income y∗e in figure 2. Because T ∗e is continuous and ye ∈ [0, xe] is bounded,

there is at least one solution. Because the feasible set is not necessarily concave,

however, the winner may be indifferent between multiple income values. Denote the

set of optimal income values

Y∗e (xe) ≡ {0 ≤ ye ≤ xe | ye = argmaxu(ye − T ∗e (ye), 1− ye/xe)}.
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Interior solutions (ye > 0) satisfy the first-order condition

1−
ul

ucxe
= ∂T ∗e /∂ye,

with ul and uc evaluated at the tangency point (y∗e − T ∗e (y
∗
e), 1 − y∗e/xe). As in the

figure, the slope of the winner’s indifference curve equals the slope of T ∗e .
17

Proposition 2 shows that the procedure of conditioning on (ye, Te), maximizing

revenue RM to set Te = T ∗e (ye), and then choosing ye to maximize u(ye − T ∗e (ye), 1−

ye/xe) fully solves the winner’s problem of choosing a profile {U(x), Y (x), ψ(x)} to

maximize U(xe), and also shows that any solution to the winner’s problem can be

interpreted as extracting maximal revenue:

Proposition 2 (Solution to the Winner’s Problem) For any xe ∈ [x−, x+]:

1. The solution {U(x), Y (x), ψ(x)} to RM for (ye, T
∗
e (ye)) at any ye ∈ Y

∗
e (xe) also

maximizes U(xe) subject to (1,) (2), (3), and (4).

2. Any profile {U(x), Y (x), ψ(x)} that maximizes U(xe) subject to (1), (2), (3),

and (4) also solves RM for (Y (xe), T
∗
e (Y (xe))) ∈ P, and Y (xe) ∈ Y

∗
e (xe).

From part 2, the winner picks tax-preferred income ye = Y (xe) and the pair

(ye, T
∗
e (ye)) lies in P .

IV. ELECTIONS

We study elections between pairs of candidates xL < xH .

Income Monotonicity

The productivity of a candidate’s constituents determines the income the con-

stituents would earn and hence the income-tax function the candidate would set
17If 0 ∈ Y∗e (xe) then 1−

ul
ucxe

< ∂T ∗e /∂ye is possible. A corner solution with ye = xe can be ruled

out because 1− ul
ucxe

→−∞ as ye → xe. Hence all solutions with ye > 0 are interior.
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if elected. Seade (1982) shows that agent monotonicity implies an individual with

greater productivity chooses greater income. Applied to election winners, this means

that Y∗e (xe) increases strictly as follows:

Proposition 3 (Income Monotonicity) Let xL < xH be candidates with yL ∈

Y∗e (xL) and yH ∈ Y
∗
e (xH). Then yL < yH if yH > 0; otherwise yL = yH = 0.

Figure 3 illustrates. All potential election winners face the same feasible set.

Agent monotonicity implies that the slope of indifference curves through any point

(ye, Te) increases strictly with x, as drawn at point a. Thus greater xe shifts the tan-

gency point toward greater ye so yL < yH except at a corner with yH = 0.

Figure 3. Income Choices of xL and xH

An implication of proposition 3 is that individuals with median productivity

earn median income.

From propositions 1 and 2, the winner’s problem has exactly as many distinct

solutions as there are elements in Y∗e (xe). Because Y
∗
e is increasing under proposition

3, it is single-valued except at isolated xe-values. Thus the winner’s problem has a

unique solution for almost all winners. To encompass the non-generic cases in which

a candidate has several optimal ye values, we express the policy of an election winner
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with given ye ∈ Y
∗
e (xe) as a function of ye, denoting the associated income and utility

profile {U(x | ye), Y (x | ye)} and the implied income-tax function T (y | ye).

For now, we take tax-preferred incomes yL ∈ Y
∗
e (xL) and yH ∈ Y∗e (xH) as

given; later we consider candidates’ optimal income choices when Y∗e (xL) and/or

Y∗e (xH) are multi-valued.

Single-Crossing of Utility Profiles

We now show that the utility profiles set by two candidates xL < xH cross

only once at a productivity denoted x× with xL < x× < xH . From proposition 3,

candidates xL < xH would impose tax functions T (y | yL) and T (y | yH) with different

tax-preferred incomes yL < yH as long as yH > 0, as in figure 4. The tax-preferred

pairs of income and taxes are at the kink points a and c; these lie on T ∗e , the grey

curve in previous figures, which is suppressed in figures 4 and 5.

A taxpayer compares the point of highest utility on T (y | yL) against the point

of highest utility on T (y | yH), and votes for the candidate whose tax policy would

give greater utility. The taxpayer’s productivity x determines the position of the

taxpayer’s indifference curves. The taxpayer with the indifference curve drawn in fig-

Figure 4. A Taxpayer’s Opportunity Set with Candidates xL < xH .
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ure 4 has a relatively low x. This taxpayer would have greater utility if xL imposes

policy and the taxpayer chooses to earn income y∗ = Y (x | yL).

Agent monotonicity implies that the indifference curve at any point (y, T (y))

become steeper as x rises. Starting from the tangency in figure 4, this means that as

productivity rises successively, indifference curve maps and peaks move to the right

and the tangency moves to the right along T (y | yL) until it reaches the kink at a. As

x rises further and indifference maps shift further to the right, a productivity denoted

x× is reached for which an indifference curve simultaneously touches somewhere on

segment ab and somewhere on segment bc. A possible configuration is in figure 5.

Figure 5. Taxpayer x×

A taxpayer with productivity x× gets the same utility from candidates xL

and xH . Taxpayers x < x× get strictly greater utility from candidate xL (unless the

taxpayer has very low productivity and would end up getting utility u(α, 1) from

both candidates). By similar logic, taxpayers x > x× get strictly higher utility from

candidate xH . That is, utility profiles cross once. Because x×’s indifference curve

is steeper at each point than the indifference curve of a winner who would set yL,

and flatter than the indifference curve of a winner who would set yH , it follows that

16



xL < x× < xH .

Let Xu(α,1)(ye) = {x | U(x | ye) = u(α, 1)} denote the set of individuals who

would obtain the minimum utility u(α, 1) under a tax function with tax-preferred

income ye.
18 Then

Proposition 4 (Single Crossing of Utility Profiles) Consider candidates xL <

xH with given yL ∈ Y
∗
e (xL) and yH ∈ Y∗e (xH), and yH > 0. Then utility profiles

U(x | yH) and U(x | yL) cross at a unique point x× ∈ (xL, xH) and:

1. Individuals x > x× have U(x | yH) > U(x | yL);

2. Individuals x < x× with x /∈ Xu(α,1)(yL) have U(x | yL) > U(x | yH);

3. Individuals x = x× have U(x | yL) = U(x | yH); and

4. Individuals in Xu(α,1)(yL) have U(x | yL) = U(x | yH) = u(α, 1).

Two groups are indifferent between candidates xL and xH : those with produc-

tivity x× (who have measure zero) and those in Xu(α,1)(yL).
19

Median-Voter Results

Proposition 4 forms the basis for median-voter results. If Xu(α,1)(yL) has mea-

sure zero and Y∗e is single-valued at xL and xH , the logic is simple. Individuals x > x×

have U(x | yH) > U(x | yL) and hence vote for xH , and almost all individuals x < x×

18Because U is increasing, Xu(α,1)(ye) is an interval that starts at x−, or else is either empty

(if U(x | ye) > u(α, 1) for all x) or consists of the single point x− (in the borderline case with

U(x | ye) = u(α, 1) only for x = x−).
19As shown in the proof of proposition 4 in the appendix, the set of voters held at utility u(α, 1)

expands as the tax-preferred income increases: Xu(α,1)(yL) ⊆ Xu(α,1)(yH) for yL < yH . Thus

an individual in Xu(α,1)(yL) is also in Xu(α,1)(yH) and receives u(α, 1) from both candidates. An

individual in Xu(α,1)(yH) but not in Xu(α,1)(yL) is covered in part 2.
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have U(x | yL) > U(x | yH) and hence vote for xL. Let xM ≡ F−1(1/2) denote the me-

dian productivity. If xM < x×, a majority that includes median-productivity voters

therefore vote for xL, and if xM > x×, a majority that includes median-productivity

voters vote for xH . Thus the candidate who attracts the vote of median-productivity

voters wins.

If Xu(α,1)(yL) has positive measure, assumptions about how indifferent indi-

viduals vote matter. Three alternative assumptions might be made: individuals in

Xu(α,1)(yL) vote for xL, who is closer to the individual’s own productivity and income

(voting by closeness);20 they abstain; or they randomize. Randomization is formally

similar to abstention under simple assumptions about how randomization occurs, so

we consider only voting by closeness and abstention.

If Xu(α,1)(yL) has positive measure and voters in Xu(α,1)(yL) vote by closeness,

proposition 4 again implies that the candidate who attracts the votes of median-

productivity voters wins. If Xu(α,1)(yL) has positive measure and voters in Xu(α,1)(yL)

abstain, the statement of the median-voter result changes: the candidate who attracts

median among voters who do not abstain wins. Summarizing:21

Proposition 5 (Median-Voter Theorem) Consider candidates xL < xH and as-

sume Y∗e (xL) = {yL} and Y∗e (xH) = {yH} are single-valued with yH > 0:

20In the spirit of Bénabou and Ok (2001), a preference for xL by a nonworker with current utility

u(α, 1) would be expected in an extended model in which future productivity is random and there

is a positive probability the individual will work and have utility greater than u(α, 1) during some

part of the winner’s term of office.
21A key underlying assumption is that the winner imposes an unrestricted tax function. Although

linearity is sometimes imposed in other contexts to rule out cycling, ad hoc shape restrictions such as

a finite number of brackets, or a quadratic form for T may cause utility profiles to cross several times,

which can lead to cycles here. Formally, proposition 4 relies on incentive constraints that restrict

utility differences of individuals close in productivity, with individuals treated monotonically better

the closer they are to the election winner. Shape restrictions may disrupt this monotone link.
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1. If Xu(α,1)(yL) has measure zero, then the candidate who provides greater utility

to median-productivity individuals wins.22

2. If Xu(α,1)(yL) has positive measure and

(a) indifferent individuals vote by closeness, then the candidate who provides

greater utility to median-productivity individuals wins, or

(b) indifferent individuals abstain, then the candidate who provides greater util-

ity to the median of [x−, x+]\Xu(α,1)(yL) wins.

The requirement that yH > 0 excludes the trivial case in which both xL and

xH impose T (y | 0).

Parts 1 and 2a of Proposition 5 immediately imply:

Proposition 6 (Condorcet Winner) Assume Y∗e (xM) = {yM} is single-valued with

yM > 0. If either Xu(α,1)(yM) has measure zero or indifferent individuals vote by close-

ness, then xM wins against any other candidate.

That is, xM is the Condorcet winner if yM > 0. If yM = 0 then xM is not

quite a Condorcet winner because any candidate xe < xM would also set tax-preferred

income ye = 0 and taxes T (y | 0), and would tie against xM . Because xM would win

against any xe who would set ye > 0, however, the tax function T (y | 0) preferred

by xM is always implemented. If Xu(α,1)(yM) has positive measure and indifferent

voters abstain (as in case 2b of proposition 5), the existence of a Condorcet winner is

not guaranteed because the set of individuals who vote then depends on the specific

candidate pair.23

22That is, if U(xM | yL) > U(xM | yH) then xL wins, and if U(xM | yL) < U(xM | yH) then xH

wins. In the non-generic case in which x× = xM so U(xM | yL) = U(xM | yH), the vote is tied.
23In detail: a simple fixed-point argument implies there is a smallest productivity xm ∈ (xM , x+)
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Matters are more complicated but results are similar if Y∗e has multiple val-

ues at xL, xH , or xM . Such cases are non-generic because Y∗e is monotone and

therefore single-valued except at isolated xe. If Y
∗
e (xL) has multiple values, choosing

yL = max{Y∗e (xL)} gives xL the largest vote share against any yH provided either

Xu(α,1)(max{Y∗e (xL)}) has measure zero or voters in Xu(α,1)(yL) vote by closeness,

because from the logic of proposition 4, higher yL then raises U(x | yL) in a neighbor-

hood of x× and expands the interval [x−, x×]. Similarly if Y
∗
e (xH) has multiple values,

choosing yH = min{Y∗e (xH)} gives xH the largest vote share against any yL provided

yH > 0 (so xH and xL do not both set ye = 0). Thus candidates have incentives to ap-

peal to the median voter by picking high yL and low yH , and given these choices of yL

and yH , the candidate who provides greater utility to median-productivity individuals

wins as in proposition 5, parts 1 and 2a.24

Similarly, we show in the appendix that if Y∗e (xM) has multiple values, then

xM wins with any yM ∈ Y∗e (xM) against any other candidate provided min{Y∗e (xM)}

> 0. That is, proposition 6 does not require the assumption that Y∗e (xM) is single-

that is median in [x−, x+]\Xu(α,1)(ym), the set of voters who would not abstain if xm were to set

ym. By proposition 5 (part 2b), xm wins against any xe > xm, and no candidate other than xm

can be a Condorcet winner. Because xL < xm may draw individuals in Xu(α,1)(ym) to the polls,

however, xL may win against xm and because xL is below the median in [x−, x+]\Xu(α,1)(yL), xL

would lose against some xl ∈ (xL, xm), who may in turn lose against xm, forming a cycle. If xm

wins against all xL < xm, however, then xm is a Condorcet winner. This occurs if no xL induces

enough individuals in Xu(α,1)(ym) to vote.
24If individuals in Xu(α,1)(yL) abstain and Xu(α,1)(max{Y

∗

e (xL)}) has positive measure, then yL =

max{Y∗e (xL)}may not give xL the greatest vote share because abstentions may rise with yL. Then by

choosing an income lower than max{Y∗e (xL)}, the lower-productivity candidate may gain the votes

of some individuals who would abstain if xL chose income max{Y∗e (xL)}. In this case, determining

the winner requires inspecting voting outcomes for all elements of Y∗e (xL) against min{Y
∗

e (xH)}. If

there is a yL ∈ Y
∗

e (xL) such that xL captures the median-productivity voter in [x−, x+]\Xu(α,1)(yL)

when xH picks min{Y∗e (xH)}, then xL wins by choosing this yL; if not, xH wins.

20



valued. If 0 ∈ Y∗e (xM) then xM wins against any candidate who would set ye > 0 so

the election outcome always gives xM maximum utility.

V. THE SHAPE OF THE WINNER’S TAX FUNCTION

We describe in more detail the marginal tax schedule dT (y)/dy set by the win-

ner. Although the analysis above suggests that election winners are likely to have me-

dian or close-to-median productivity, the analysis in this section is general and allows

the winner to have any income ye ≥ 0. Recall that T is defined on [Y (x−), Y (x+)].
25

Under LB, T is differentiable and Y −1(y) is single-valued except at y = ye and

possibly at y = 0. At incomes where T is differentiable, the taxpayer’s first-order

condition for maximizing u(y − T (y), 1− y
x
) is dT (y)

dy
= 1− ul

ucx
. The derivative of the

tax profile t(U, Y, x) ≡ Y − c∗(U, Y
x
) with respect to Y is τ(x) ≡ tY (U(x), Y (x), x) =

1− ul
ucx

. Therefore the marginal tax rate is

dT (y)

dy
= τ (Y −1(y)) (6)

on [Y (x−), Y (x+)], except at y = ye and possibly at y = 0.

We evaluate τ (x) using the solution to RMB for x < x1 and the solution

to RMA for x > x2; both are conditional on (xe, ye, T
∗
e (ye)). The Euler equation

HY = τ(x) · f(x) + ωY (U, Y, x) · ξ(x) = 0 implies

τ(x) = −
ωY (U, Y, x)

f(x)
ξ(x), (7)

where ωY (U, Y, x)/f(x) > 0, so τ(x) has the same sign as − ξ(x). The proof of the

following proposition derives results by studying ξ. (As with Mirrleesian taxation in

other contexts, the density f also enters (7). The fine structure of how the marginal

25To extend the range of T and preserve continuous differentiability when Y (x−) > 0, one may

define T (y) for y < Y (x−) by u(y − T (y), 1− y/x−) = U(x−), which lets the tax function coincide

with x−’s indifference curve at utility U(x−).
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rate changes with income therefore depends on precisely how f varies with x, about

which we make no assumptions.)

Proposition 7 (Net-Income-Tax Function Chosen by xe) For xe ∈ (x−, x+)

with ye > 0, T is continuously differentiable on [Y (x−), Y (x+)] except at y = ye,

with dT (y)/dy = τ(Y −1(y)) for y > 0. Moreover:

1. τ(x1) = limy↑yedT (y)/dy < τ (x2) = limy↓yedT (y)/dy.

2. For y > ye, dT (y)/dy > 0 except that dT (Y (x+))/dy = τ(x+) = 0 if x+ <∞.

3. For y < ye:

(a) T may increase strictly.

(b) T may increase strictly from Y (x−) to a local maximum at Y (xτ ), then

decrease strictly to ye. This occurs if and only if τ (xτ ) = 0 for some

xτ ∈ (x−, x1)\{x | Y (x | ye) = 0}.

(c) T may decrease strictly. A sufficient condition for this is that the minimum-

utility constraint (4) does not bind.

Figure 6 shows the three possible shapes of the income tax schedule under

proposition 7 given the empirically reasonable assumption that Y (x−) = 0; the three

shapes reflect the three possibilities at incomes y < ye under part 3.
26 To keep the

statement of the proposition simple, special cases in which the winner is xe = x− or

xe = x+, or in which the winner earns income ye = 0, are not covered. These cases are

degenerate in that ye is at the boundary of [Y (x−), Y (x+)] so revenue maximization

is one-sided with either RB = 0 or RA = 0. Parts 2 and 3, respectively, still hold.27

26T (ye) may be positive or negative in panels a and b, but must be negative in panel c.
27The proposition also does not cover dT/dy at y = 0. Because Y (x) is non-decreasing, {x | Y (x |

ye) = 0} is either empty, contains only x−, or is an interval with lower endpoint x−. If {x | Y (x |
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Figure 6. Possible Shapes of Income Tax Functions

Part 1 of the proposition says that the marginal tax jumps upward at the

winner’s own income ye, so T has a kink at ye. The single kink in the highly stylized

setting here fits the U.S. structure of rising marginal (individual income tax) rates in

the middle of the income distribution.28

ye) = 0} is empty then nobody earns y = 0 so the marginal tax rate is defined on [Y (x−), Y (x+)]

except at y = ye. If {x | Y (x | ye) = 0} = {x−}, then Y
−1(0) is single-valued so (6) holds at y = 0.

If {x | Y (x | ye) = 0} is an interval, the definition dT (0)/dy ≡ τ(max{x | Y (x | ye) = 0}) makes

dT/dy continuously differentiable at y = 0. Note that in case 3c with Y (x−) > 0, it can be shown

that dT (Y (x−))/dy = τ(x−) = 0, analogous to results in Seade (1977, 1982) at x+. (In cases 3a

and 3b, however, τ(x−) > 0.)
28We assume a static setting in which people know their productivities, whereas real people do

not know their future productivities. We conjecture that generalizing the analysis along the lines

of Bénabou and Ok (2001) to allow for uncertain future earnings might result in a smoother tax
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Part 2 says that taxes always rise with income above the winner’s income;

this extracts revenue from those with higher incomes. As in Seade (1977, 1982), the

marginal rate is zero at the maximum productivity x+ in the special case with finite

x+.

Part 3 says that T is either increasing, inverted-U-shaped, or decreasing at

incomes below ye. The range of possible outcomes reflects a range of possible specific

conditions that may describe a real-world situation. For instance, if the winner’s

productivity is only slightly above x− and substantial revenue is available from higher-

productivity individuals, the winner may set a large net transfer (negative tax) at the

own income and extract from those with productivities below xe by setting lower net

transfers at lower incomes, as in panel 6c for Y (x−) ≤ Y (x) < Y (xe); this is case

3c.29 If the winner has productivity quite a bit above x−, on the other hand, the

minimum-utility constraint may bind so case 3a or 3b applies.

Empirically, marginal taxes are positive in most countries as in panel 6a (case

3a). Case 3a requires not only a binding minimum-utility constraint but also positive

G and/or α. Namely, in a stripped-down model of revenue extraction with G = α = 0,

a binding minimum-utility constraint implies positive taxes for individuals with posi-

tive incomes and zero taxes at zero income so T (Y (x−) ≥ 0,30 and a winner somewhere

in the middle would use revenue extracted from others to provide a negative tax at

the own income, so T (ye) < 0. Therefore taxes must slope down somewhere between

incomes Y (x−) and ye. As revenue requirements G or α rise, the tax function is pulled

function around the winner’s income.
29Case 3c with a non-binding minimum-utility constraint could also arise in a hypothetical econ-

omy in which α is small and the least productive individuals are nonetheless quite productive so

Y (x−) is substantial; then a winner in the middle would plausibly extract revenue from those with

lowest productivity. The tax function in this case would be V-shaped as in panel 6c except that

Y (x−) > 0 and T (Y (x−)) could be positive.
30Details after proof of proposition 7 in appendix.
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up at ye; and as α rises, the intercept T (0) is also pulled down, and case 3a applies if

G and/or α are high enough:

Proposition 8 (Role of G and α in Determining the Slope of T ) Consider

(G,α) ≥ 0 with G < R̂(α):

1. For G in a neighborhood of R̂(α) for given α, the tax function T increases on

[Y (x−), Y (x+)].

2. For α in a neighborhood of R̂−1(G) for given G, the tax function T increases

on [Y (x−), Y (x+)].

This all suggests that a binding minimum-utility constraint and positive rev-

enue requirements G and α are important elements in an empirically plausible model

of a national economy. If revenue requirements are high enough, middle-income voters

may pay substantial taxes, which is the European pattern. If revenue requirements

are smaller, middle-income voters may pay lower taxes, which is the U.S. pattern.

Note that revenue extraction has different consequences below and above ye

because of the minimum-utility constraint. Importantly, revenue extraction tends to

imply high marginal taxes at the lowest incomes. This shows up in panels a and b

of figure 6, where the tax function is anchored at T (0) = −α by the minimum-utility

constraint and has a kink at ye. Together, these yield a function that tends31 to have

greater slope at very low incomes than just below ye. The high marginal rates help

the winner extract revenue from the bottom half of the income distribution by raising

taxes at incomes intermediate between the lowest income and ye.

31As noted, the exact shape of taxes depends on the shape of f.
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VI. SUMMARY

We study democratic pressures to redistribute income in a static median-voter

setting. To avoid cycling that would obscure tendencies toward a median-voter out-

come, we assume that individuals differ only in productivity and that electoral com-

petition is between representatives for two different single productivities. The winner

sets the redistributional tax function that is optimal for the productivity the winner

represents, and voters know the tax functions a candidate would set if the candidate

were to win. Then median-productivity voters always vote on the winning side, and a

representative for median-productivity voters would beat any other candidate. With

a binding minimum-utility constraint that restricts what can be extracted from the

poor, resulting policy roughly describes redistributional taxation in the U.S.: taxes

are progressive, the poor receive subsidies but face high effective marginal tax rates,

and high-income taxpayers pay most taxes.
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MATHEMATICAL APPENDIX: PROOFS — FOR ONLINE

PUBLICATION

Proposition 1 (Revenue Maximization)

Proposition 1 is proved in a sequence of lemmas by constructing the revenue-

maximizing policy conditional on (ye, Te), verifying that this policy is in fact optimal,

and then establishing the claims in the proposition. Lemmas 1.1-1.3 first characterize

solutions to R̂M, RMB, and RMA, from which the solution to RM is constructed.

Solution profiles are marked naturally so {Û(x), Ŷ (x)} solve R̂M, {UB(x), YB(x)}

solve RMB, etc. From the definition of P, Ue lies above Û for some x if (ye, Te) ∈ P ,

so

xs ≡ inf{x ∈ [x−, x+] | Ue(x) > Û(x)}

exists and is well-defined. (Throughout, when x+ = ∞, we take [x−, x+] to mean

[x−,∞).) Figure A1 illustrates the construction for the interior case in which x− <

xs < x1 < x2 < x+. (The proof is general and allows for corners in

Figure A1– Construction of the Revenue-Maximizing Policy
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which one or more of these inequalities are equalities.)

To construct x1 and x2, start at xs and consider RMA given (xs, ye, Te). In the

figure, the utility profile UA that solves this is the vertically-hatched curve that starts

at point S and runs upward to the right as productivity runs toward x+. Lemma 1.4

shows that in general,

x2 ≡ sup{x ∈ [xs, x+] | UA(x) = Ue(x)}

exists under the solution to RMA and is finite. Lemma 1.5 shows that this solution

has a segment on [xs, x2] with utility UA(x) = Ue(x) and (provided x2 < x+, as in the

figure) a segment on [x2, x+] with UA(x) > Ue(x). Given x2, now consider RMB given

(x2, ye, Te). The utility profile UB that solves this is the vertically-hatched curve that

starts from point 2 and runs down and to the left as productivity runs toward x−.

Lemma 1.6 shows that

x1 ≡ inf{x ∈ [x−, x2] | UB(x) = Ue(x)}

is well-defined and that the solution to RMB has a segment on [x1, x2] with utility

UB(x) = Ue(x) and (provided x1 > x−, as in the figure) a segment on [x−, x1] with

UB(x) > Ue(x). Thus UB for x ≤ x2 matches UA for x ≥ x1 from the solution to

RMA; in the figure this occurs between points 1 and 2. Lemmas 1.7-1.9 show that

the profile URM obtained by combining UB and UA at any xb ∈ [x1, x2], which is the

upper hatched curve in the figure, is the unique solution to RM. Lemmas 1.10-1.11

show existence and differentiability of T ∗e . Finally, proposition 1 is proved from the

lemmas.

We suppress the dependence of Ue, xs, x1, and x2 on (ye, Te) when considering

given (ye, Te). Define the following boundary conditions separately for R̂M, RMB,

and RMA:

Boundary conditions for R̂M: U(x−) = u(α, 1), Y (x−) ≥ 0, µ(x−) ≤ 0,
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and µ(x−)Y (x−) = 0 at x−; and ξ(x+) = 0 at x+. (Throughout, conditions at x+ are

limit conditions if x+ =∞; e.g. here ξ(x+) = limx→∞ ξ(x) = 0.)

Boundary conditions for RMB: U(xb) = Ue(xb), Y (xb) ≤ ye, µ(xb) ≤

0, and µ(xb) [Y (xb)− ye] = 0 at xb; and U(x−) ≥ u(α, 1), ξ(x−) ≤ 0, and ξ(x−)

[U(x−)− u(α, 1)] = 0 at x−.

Boundary conditions for RMA: U(xb) = Ue(xb), Y (xb) ≥ ye, µ(xb) ≤ 0,

and µ(xb) [Y (xb)− ye] = 0 at xb; and ξ(x+) = 0 at x+.

Lemma 1.1: Solutions to R̂M, RMB, and RMA and must satisfy the following

necessary conditions for optimality: (i) ψ(x) ≥ 0, µ(x) ≤ 0, and µ(x)ψ(x) = 0 for

x ∈ [x−, x+]; (ii) the Euler equations

∂H/∂Y = HY (U, Y, ξ, x) = tY (U, Y, x) · f(x) + ωY (U, Y, x) · ξ(x) = −µx(x), (A.1)

∂H/∂U = HU(U, Y, ξ, x) = tU(U, Y, x) · f(x) + ωU(U, Y, x) · ξ(x) = −ξx(x), (A.2)

for x ∈ [x−, x+], where the definition of t and the properties of c∗ imply tY = 1 −

ul/(ucx) and tU = −1/uc; and (iii) the differential equations for the state variables,

which are (1) and Y (x̃)−Y (x−) =
∫ x̃
x−

ψ(x)dx for x̃ ∈ [x−, x+]; and (iv) the boundary

conditions above.

Proof: R̂M, RMB given any (xb, ye, Te), and RMA given any (xb, ye, Te) have

the same Hamiltonian H and differ only in boundary conditions. Let ζ(x) ≥ 0 be the

Kuhn-Tucker multiplier on (2). The Maximum Principle requires that the generalized

Hamiltonian H(U, Y, ψ, ξ, µ, x)+ ζ(x)ψ(x) satisfy the Euler equation ∂(H+ζψ)/∂ψ =

µ(x)+ζ(x) = 0 for all x. Hence µ(x) = −ζ(x) ≤ 0 for all x so (2) and the Kuhn-Tucker

conditions ζ(x) ≥ 0 and ζ(x)ψ(x) = 0 imply (i). Conditions (ii) and (iii) follow

directly from the Maximum Principle. Because ∂H/∂Y and ∂H/∂U do not depend

on µ and ψ, they can be written as functions of (U, Y, ξ, x) only. For RMB and RMA,

the boundary conditions in (iv) follow directly from the problems’ constraints, noting

that Kuhn-Tucker conditions apply in case of inequality constraints. For R̂M, the
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boundary conditions also follow directly from the problem’s constraints, except that

(4) directly implies Û(x−) ≥ u(α, 1), ξ̂(x−) ≤ 0, and ξ̂(x−)
[
Û(x−)− u(α, 1)

]
= 0.

To show that the boundary condition Û(x−) = u(α, 1) holds with equality, note from

(A.2) that

ξ̂x(x) = −tU(Û , Ŷ , x) · f(x)− ωU(Û , Ŷ , x) · ξ̂(x).

Because tU(Û , Ŷ , x) ·f(x) > 0 for all x, ξ̂x(x) > 0 whenever ξ̂(x) is in a neighborhood

of zero. Hence the boundary condition ξ̂(x+) = 0 implies ξ̂(x) < 0 for all x, which

implies ξ̂(x−) < 0. Thus the Kuhn-Tucker conditions reduce to Û(x−) = u(α, 1).

QED.

Remark: Because µ(x) = −ζ(x) for all x, we streamline the exposition below

by expressing the multiplier on (2) in terms of µ, which makes ζ redundant.

Lemma 1.2: Under CON: (i) problems R̂M, RMB, and RMA have solutions

with unique utility and income profiles {U(x), Y (x)};32 (ii) the conditions in lemma

1.1 are sufficient for optimality; (iii) ψ(x) is uniquely defined except at points where

Y is not differentiable.

Proof: From the Mangasarian sufficiency theorem (e.g. Seierstad and Syd-

saeter 1987, p. 287), CON implies that R̂M, and RMB and RMA given (xb, ye, Te),

each have a solution with unique profiles {U(x), Y (x)} and that the necessary con-

ditions for optimality are also sufficient. Because Y is unique, its derivative ψ is

uniquely defined except at points where Y is not differentiable. QED.

Lemma 1.3: In any solution to R̂M, RMB, or RMA, if U(x) = Ue(x) and

dU
dx

= dUe
dx
, then Y (x) = ye. If U(x) = Ue(x) and

dU
dx
− dUe

dx
�= 0, then Y (x)− ye has the

same sign as dU
dx
− dUe

dx
.

Proof: From (1), dU
dx
(x) = ω(U(x), Y (x), x) and dUe

dx
(x) = ω(Ue(x), ye, x).

32When referring to profiles that may solve either R̂M, RMB or RMA, we omit the hats or

subscripts used to mark solutions to these problems.
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Agent monotonicity implies ωY (U, Y, x) > 0 for Y > 0, so ω is invertible with re-

spect to Y ; moreover, for given x and given U(x) = Ue(x), Y (x) increases strictly

with dU
dx
. Hence Y (x)− ye has the same sign as dU

dx
− dUe

dx
, and Y (x) = ye if and only

if dU
dx

= dUe
dx
. QED.

Lemma 1.4: For given (ye, Te) ∈ P, the solution to RMA given (xs, ye, Te)

satisfies x2 <∞.

Proof: The claim is trivial if x+ < ∞ because x2 ≤ x+ so suppose x+ = ∞.

Agent monotonicity implies that the marginal tax rate

tY (Ue(x), ye, x) = 1−
ul(ye − Te, 1− ye/x)

uc(ye − Te, 1− ye/x)x

increases strictly in x. Moreover, ul(ye−Te,1−ye/x)
uc(ye−Te,1−ye/x)x

→ 0 as x → ∞ so there is a value

xτ < ∞ such that tY (Ue(x), ye, x) > 0 for x ≥ xτ . Assume for contradiction that

x2 = ∞. Then from lemma 1.3, {UA(x), YA(x)}x≥xs = {Ue(x), ye}x≥xs solves RMA.

Moreover, tY (UA(x), YA(x), x) = tY (Ue(x), ye, x) > 0 for x > xτ . Hence a marginal

increase in Y (x) for x ∈ (xτ , x+], holding U(x) = Ue(x) constant, would increase

t(U(x), Y (x), x) for x ∈ (xτ , x+], satisfy the constraints of RMA, and yield higher

revenue. This would contradict the optimality of {Ue(x), ye}x≥xs, so x2 <∞. QED.

Lemma 1.5: For (ye, Te) ∈ P, let {UA(x), YA(x), ξA(x), µA(x)}x≥xs denote

the profile that solves RMA given (xs, ye, Te). (1) If xs > x− then x2 > xs. (2) If

xs = x− then x2 ≥ xs. (3) If x2 > xs (for any xs ≥ x−) then: (i) UA(x) = Ue(x)

and YA(x) = ye for x ∈ [xs, x2]; (ii) UA(x) > Ue(x) and YA(x) > ye for x > x2; (iii)

for any xb ∈ [xs, x2], the segment {UA(x), YA(x), ξA(x), µA(x)}x≥xb solves RMA given

(xb, ye, Te).

Proof: (1) Note that xs < x+ because {x | Ue(x) > Û(x)} �= ∅ for (ye, Te) ∈ P

and Ue − Û is continuous in x. Hence xs > x− implies xs ∈ (x−, x+). Continuity of

Ue and Û then imply Ue(xs) = Û(xs). Because Ue(x) > Û(x) in a neighborhood of

x > xs, differentiability of Ue and Û imply dUe
dx
(xs) −

dÛ
dx
(xs) ≥ 0. Hence Ŷ (xs) ≤ ye

A-5



from lemma 1.3. Because x2 ≥ xs by construction, x2 > xs holds if we can rule out

x2 = xs.

Suppose to the contrary that x2 = xs. Then UA(x) > Ue(x) for x > xs, so

YA(x) > ye for x > xs and µA(xs) = 0. Define ỹe ≡ Ŷ (xs) and T̃e ≡ T̂ (Ŷ (xs)), and

let {Ũ(x), Ỹ (x), ξ̃(x), µ̃(x)}x≥xs denote the profile that solves RMA given (xs, ỹe, T̃e).

Because ỹe ≤ ye implies µ̃(xs) = 0, the two RMA-problems satisfy the same bound-

ary conditions: Ũ(xs) = UA(xs), µA(xs) = µ̃(xs) = 0, and ξA(xs) = ξ̃(x+) = 0.

By lemma 1.2, profiles {Ũ(x), Ỹ (x)}x≥xs and {UA(x), YA(x)}x≥xs must be identical.

However, Ỹ (xs) = Ŷ (xs) with Ỹ increasing implies dÛ
dx
(x) ≥ d

dx
Ũe(x) for x ≥ xs,

so {Û(x), Ŷ (x)}x≥xs satisfies all constraints of RMA given (xs, ỹe, T̃e), and hence

{Û(x), Ŷ (x)} satisfies Û(x) ≥ Ue(x) for all x, contradicting (ye, Te) ∈ P. Thus

x2 > xs.

(2) Trivial because the definition of x2 implies x2 ≥ xs.

(3) Given xs < x2, the constraint UA(x) ≥ Ue(x) implies UA(x) > Ue(x) for

x > x2 and UA(x) = Ue(x) for x ∈ [xs, x2]. The latter implies dUA
dx

(x) = dUe
dx
(x) for

x ∈ [xs, x2], so by lemma 1.3, YA(x) = ye for x ∈ [xs, x2]. Consider x > x2 in a

neighborhood of x2. Then UA(x) > Ue(x) implies
dUA
dx

(x) > dUe
dx
(x), so YA(x) > ye

by lemma 1.3. Because YA is increasing, YA(x) > ye for x > x2. Inspection of the

sufficient conditions (see lemma 1.1) then shows that {UA(x), YA(x), ξA(x), µA(x)}x≥xb

solves RMA given (xb, ye, Te) for any xb ∈ [xs, x2]. QED.

Lemma 1.6: For given (ye, Te) ∈ P, let {UB(x), YB(x), ξB(x), µB(x)}x≤x2

denote the profile that solves RMB given (x2, ye, Te). (1) If x− < x2 < x+, then

x1 < x2. (2) If x2 = x+ or x2 = x−, then x1 ≤ x2. (3) If x1 < x2 (for any x2), then (i)

UB(x) = Ue(x) and YB(x) = ye for x ∈ [x1, x2]; (ii) UB(x) > Ue(x) and YB(x) < ye for

x < x1; and (iii) for any xb ∈ [x1, x2], the segment {UB(x), YB(x), ξB(x), µB(x)}x≤xb

solves RMB given (xb, ye, Te).

Proof: (1) From lemma 1.5, x2 > x− implies x2 > xs, and x2 > xs implies
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UA(x2) = Ue(x2) and YA(x2) = ye. Because x1 ≤ x2 by construction, x1 < x2 if we

can rule out x1 = x2.

Suppose to the contrary that x1 = x2, where x− < x2 < x+. Then the solutions

to RMB and RMA given (x2, ye, Te) can be combined as follows: By construction,

UB(x2) = UA(x2) and YB(x2) = YA(x2). Because YB(x) �= ye for x < x2, µB(x2) = 0

in a neighborhood of x2, so
d
dx

µB(x2) = 0. Similarly, YA(x) �= ye for x > x2 implies

µA(x2) = 0 and d
dx

µA(x2) = 0. From (A.1), matching values of U , Y , and µx at x2

imply ξA(x2) = ξB(x2). Because all state and costate variables match, the profile

obtained by combining solutions to RMB given (x2, ye, Te) and RMA given (x2, ye, Te)

are continuous at x2 and satisfy the conditions in lemma 1.1. Moreover, because

RMB satisfies the boundary conditions for R̂M at x− and RMA satisfies the boundary

conditions for R̂M at x+, the combined profile satisfies the sufficient conditions for

R̂M, which contradicts the assumption (ye, Te) ∈ P . Thus x1 < x2.

(2) Trivial because the definition of x1 implies x1 ≤ x2.

(3) Given x1 < x2, UB(x) = Ue(x) for x ∈ [x1, x2] implies
dUB
dx

(x) = dUe
dx
(x)

and hence YB(x) = ye. Because UB(x) > Ue(x) for x < x1 in a neighborhood

of x1,
dUB
dx

(x) < dUe
dx
(x), so YB(x) < ye by lemma 1.3. Because YB is increasing,

YB(x) < ye for x < x1. Inspection of the sufficient conditions (see lemma 1.2)

shows that {UB(x), YB(x), ξB(x), µB(x)}x≤xb solves RMB given (xb, ye, Te) for any

xb ∈ [x1, x2]. QED.

Lemmas 1.5-1.6 suggest a candidate solution for RM:

Definition: Consider (ye, Te) ∈ P . If x− < x2 < x+, define

{URM(x), YRM(x)}x≤x2 ≡ {UB(x), YB(x)}x≤x2 , and

{URM(x), YRM(x)}x>x2 ≡ {UA(x), YA(x)}x>x2;

if x2 = x−, define {URM(x), YRM(x)} ≡ {UA(x), YA(x)}; and if x2 = x+, define
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{URM(x), YRM(x)} ≡ {UB(x), YB(x)}.
33 Also, let RRM(ye, Te) ≡ RA(x2, ye, Te) +

RB(x2, ye, Te) be resulting revenue.
34

The next lemma shows that revenue from any feasible profile {U0(x), Y0(x)} is

bounded by revenues obtained from RMB and RMA combined at a suitable point xb0.

This is then used in lemmas 1.8 and 1.9 to show that {URM(x), YRM(x)} generates

greater revenue than all other profiles that combine segments solving RMB and RMA,

and hence is optimal.

Lemma 1.7: Consider any (ye, Te) ∈ P and any profile {U0(x), Y0(x)} (not

necessarily continuous) that satisfies the constraints of RM given (ye, Te), and let R0

be its revenue. Then for some xb0 ∈ [x−, x+] and some Te0 ≤ Te, solutions to RMB

and RMA given (xb0, ye, Te0) yield revenue RA(xb0, ye, Te0) +RB(xb0, ye, Te0) ≥ R0.

Proof: There are three cases: (i) Suppose Y0(x) ≥ ye for some x ∈ [x−, x+].

Then define xb0 = inf{x ∈ [x−, x+] | Y0(x) ≥ ye} and define Te0 by U0(xb0) =

u(ye − Te0, 1 −
ye
xb0

). Because U0(xb0) ≥ u(ye − Te, 1 −
ye
xb0

), Te0 ≤ Te. By con-

struction: U0(xb0) = u(ye − Te0, 1− ye/x); Y0(x) ≤ ye for x ≤ xb0; and Y0(x) ≥ ye for

x ≥ xb0. Hence {U0(x), Y0(x)}x≤xb0 satisfies the constraints of RMB given (xb0, ye, Te0)

and {U0(x), Y0(x)}x>xb0 satisfies the constraints of RMA given (xb0, ye, Te0). Be-

cause solutions to RMB and RMA maximize revenue on their respective domains,

RA(xb0, ye, Teb) +RB(xb0, ye, Teb) ≥ R0.

(ii) Suppose Y0(x) < ye for all x ∈ [x−, x+], and x+ < ∞. Then define

xb0 = x+, define Teb by U0(x+) = u(ye − Teb, 1 −
ye
x+
), and note that {U0(x), Y0(x)}

satisfies the constraints of RMB given (x+, ye, Te0), so RB(x+, ye, Te0) ≥ R0. Because

RA(x+, ye, Te0) = 0, RA(xb0, ye, Te0) +RB(xb0, ye, Te0) ≥ R0.

33The use of x2 in this definition is without loss of generality. One could have used any xb ∈

[x1, x2] to split [x−, x+] into segments for which solutions to RMB and RMA are used to define

{URM(x), YRM(x)}.
34The definition of RRM also applies to the border cases x2 = x− and x2 = x+ because

RB(x−, ye, Te) = 0 and RA(x+, ye, Te) = 0, respectively.
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(iii) Suppose Y0(x) < ye for all x ∈ [x−, x+], and x+ =∞. There is a xτ <∞

such that tY (U0(x), Y0(x), x) > 0 for x ≥ xτ , because
ul(c

∗(U0(x),Y0(x)/x),1−Y0(x)/x)
uc(c∗(U0(x),Y0(x)/x),1−Y0(x)/x)x

→ 0

as x → ∞. Define xb0 = xτ . Define Y0alt by Y0alt(x) = Y0(x) for x < xb0 and

Y0alt(x) = ye for x ≥ xb0. Then by arguments analogous to the proof of lemma 1.4,

{U0(x), Y0alt(x)} generates revenue R0alt > R0. Moreover, profile {U0(x), Y0alt(x)} sat-

isfies the assumptions of case (i) above, which impliesRA(xb0, ye, Te0)+RB(xb0, ye, Te0) ≥

R0alt > R0. QED

Lemma 1.8: For (ye, Te) ∈ P : (1)RA(xb, ye, Te)+RB(xb, ye, Te) = RRM(ye, Te)

for any xb ∈ [x1, x2]; (2) RA(xb0, ye, Te) + RB(xb0, ye, Te) < RRM(ye, Te) for xb0 /∈

[x1, x2]; and (3) RRM(ye, Te0) < RRM(ye, Te) for Te0 < Te.

Proof: Part 1 follows directly from lemmas 1.5-1.6, parts 3. In part 2, either

xb0 < x1 or xb0 > x2. If xb0 < x1,

RA(xb0, ye, Te) =

∫ x+

xb0

t(U(x), Y (x), x)dF (x)

=

∫ x2

xb0

t(UA(x), YA(x), x)dF (x) +RA(x2, ye, Te)

from lemma 1.5, part 3. Because {URM(x), YRM(x)}x≤x2 is the unique solution to

RMB given (x2, ye, Te), RB(x2, ye, Te) >
∫ x2
xb0

t(UA(x), YA(x), x)dF (x)+RB(xb0, ye, Te).

Adding:

RA(xb0, ye, Te) +RB(xb0, ye, Te)

< RA(x2, ye, Te) +RB(x2, ye, Te) = RRM(ye, Te).

(3) For any Te0 < Te, u(ye − Te0, 1 −
ye
x
) > u(ye − Te, 1 −

ye
x
). Hence the

profiles that solve RMB and RMA given (x2, ye, Te) satisfy the constraints of RMB

and RMA given (x2, ye, Te0), which implies RRM(ye, Te) ≤ RRM(ye, Te0). Moreover,

RRM(ye, Te) �= RRM(ye, Te0) because the profiles given (x2, ye, Te) and given (x2, ye, Te0)

differ and the optimal solution is unique by lemma 1.2. HenceRRM(ye, Te) < RRM(ye, Te0).

QED.
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Lemma 1.9: For any (ye, Te) ∈ P , the unique solution to RM is {URM(x), YRM(x)},

and R(ye, Te) = RRM(ye, Te).

Proof: From lemma 1.7, revenue R0 for any profile that satisfies the constraints

of RM is bounded by RA(xb0, ye, Te0)+RB(xb0, ye, Te0) ≥ R0 for some xb0 and Te0 ≤ Te.

From lemma 1.8, RA(xb0, ye, Te0)+RB(xb0, ye, Te0) ≤ RRM(ye, Te), with strict inequal-

ity unless Te0 = Te and xb0 ∈ [x1, x2]. Hence RRM(ye, Te) ≥ R0, so {URM(x), YRM(x)}

solves RM.

From lemma 1.7 and the inequalities above, a profile {U0(x), Y0(x)} cannot

yield R0 = RRM(ye, Te) unless it satisfies the constraints of RMB and RMA given

(xb, ye, Te). From lemma 1.2, {URM(x), YRM(x)} is the only profile that satisfies these

constraints and attains revenue RRM(ye, Te), so the solution is unique. QED.

The next two lemmas are used to prove proposition 1 part 2. Define Py ≡

{ye | (ye, Te) ∈ P for some Te}. Also define R(ye, Te) = R̂(α) for (ye, Te) /∈ P, so R is

defined for all (ye, Te).

Lemma 1.10: (1) For any ye ∈ [Ŷ (x−), Ŷ (x+)], (ye, Te) ∈ P if and only if

Te < T̂ (ye); (2) for any ye ∈ Py\[Ŷ (x−), Ŷ (x+)], there is a critical value Ť (ye) such

that (ye, Te) ∈ P if and only if Te < Ť (ye); and (3) if x+ <∞, then Py ⊇ [0, x+).

Proof: (1) Because Ŷ is continuous and non-decreasing, there is an xb0 such

that ye = Ŷ (xb0) for any ye ∈ [Ŷ (x−), Ŷ (x+)]. For Te < T̂ (Ŷ (xb0)), Ue(xb0) =

u(y − Te, 1 −
ye
xb0

) > Û(xb0), so (ye, Te) ∈ P by the definition of P. Conversely if

Te ≥ T̂ (Ŷ (xb0)), then Ue(xb0) ≤ Û(xb0). Because Ŷ is non-decreasing, Ŷ (x) ≤ ye

for x < xb0 and Ŷ (x) ≥ ye for x > xb0. From lemma 1.3, this implies dÛ
dx
≤ dUe

dx
for

x < xb0 and
dÛ
dx
≥ dUe

dx
for x > xb0, so Ue(x) ≤ Û(x) for all x. Thus (ye, Te) /∈ P .

(2) If ye ∈ Py\[Ŷ (x−), Ŷ (x+)] then either (i) ye < Ŷ (x−), (ii) Ŷ (x+) < ye <

x+, or (iii) ye = x+. (i) For ye < Ŷ (x−), which implies Ŷ (x−) > 0, define Ť (ye) by

u(y− Ť (ye), 1−
ye
x−
) = Û(x−), so (ye, Ť (ye)) provides utility Û(x) at x = x−. Then (as

in part 1 above) Te < Ť (ye) implies Ue(x−) > Û(x−) so (ye, Te) ∈ P, and Te ≥ Ť (ye)
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implies Ue(x) ≤ Û(x) for all x so (ye, Te) /∈ P. (ii) For Ŷ (x+) < ye < x+, which

implies Ŷ (x+) < x+, define Ť (ye) by u(y − Ť (ye), 1 −
ye
x+
) = Û(x+), so (ye, Ť (ye))

provides utility Û(x) at x = x+. Then Te < Ť (ye) implies Ue(x+) > Û(x+) so

(ye, Te) ∈ P, and Te ≥ Ť (ye) implies Ue(x) ≤ Û(x) for all x so (ye, Te) /∈ P. (iii)

For ye = x+, which implies x+ < ∞, there are two cases. If u(c, l) → −∞ as l → 0,

then u(y − Ť (ye), 1 −
ye
x−
) → −∞ as x → x+ so there is no finite Ť (x+), whence

Py = [0, x+). And if u(c, 0) is finite, u(y − Ť (x+), 0) = Û(x+) is defined as in case

(ii), so (x+, Te) ∈ P for Te < Ť (x+), whence Py = [0, x+].

(3) By the construction of Ť in part 2, Py = [0, x+) unless x+ < ∞ and

u(c, 0) <∞, in which case Py = [0, x+]. Either way, Py ⊇ [0, x+). QED.

Definition: Define T̂ (ye) ≡ Ť (ye) for ye ∈ Py\[Ŷ (x−), Ŷ (x+)] so T̂ is defined

for ye ∈ Py.

Lemma 1.11: R is (i) strictly increasing in Te and (ii) continuously differen-

tiable in (ye, Te) for (ye, Te) ∈ P .

Proof: From standard value-function results, RB and RA are continuous and

differentiable, so R = RB + RA is continuous and differentiable.

(i) To sign ∂R/∂Te when x1 < x2, choose any fixed xb ∈ (x1, x2). We write

(x | ye, Te) to emphasize (when needed) that profiles depend on (ye, Te). Then

∂R/∂Te = ∂RB(xb, ye, Te)/∂Te + ∂RA(xb, ye, Te)/∂Te

= [ξB(xb | ye, Te)− ξA(xb | ye, Te)] · uc(ye − Te, 1− ye/xb). (A.3)

From lemmas 1.5-1.6, parts 3, the domain of ξB can be extended to [x−, x2] by con-

sidering RMB given (x2, ye, Te) and the domain of ξA can be extended to [x1, x+] by

considering RMA given (x1, ye, Te), and these RMB and RMA problems have the same

utility and income profiles on [x1, x2]. (However, the costate variables differ, as shown

below.)

For x ∈ [x1, x2], subtract (A.2) for RMA given (x1, ye, Te) from (A.2) for RMB
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given (x2, ye, Te) to obtain

d

dx
ξB(x)−

d

dx
ξA(x) = −ωU(Ue(x), ye, x) · (ξB(x)− ξA(x)), for x ∈ [x1, x2]. (A.4)

Because this is a homogenous linear differential equation, ξB− ξA cannot change sign

on [x1, x2]. Taking similar differences of Euler equations (A.1) and integrating over

[x1, xb] for any given xb ∈ [x1, x2]:

I(xb) ≡

∫ xb

x1

ωY (Ue(x), ye, x) · [ξB(x)− ξA(x)]dx (A.5)

= µA(xb) + µB(x1)− µA(x1)− µB(xb). (A.6)

Because µB(x), µA(x) ≤ 0 from lemma 1.1 and because the optimality conditions for

RMB and RMA imply µB(x1) = 0 and µA(x2) = 0, it follows that I(x2) ≥ 0 and

hence ξB(xb)− ξA(xb) ≥ 0.

To show ξB(xb) > ξA(xb), suppose for contradiction that ξB(xb) = ξA(xb).

Then (A.4) implies ξB(x) = ξA(x) for x ∈ [x1, x2] so I(x2) = 0, whence µA(x1) =

µB(x2) = 0. Then (as in the proof of lemma 1.6) RMB and RMA can be combined

to obtain profiles that satisfy the sufficient conditions for a solution to R̂M, a contra-

diction. Thus

ξB(xb)− ξA(xb) > 0, (A.7)

so (A.3) implies ∂R/∂Te > 0.

In the corner case x1 = x2 = x−, the transversality condition ξA(x+) = 0 and

(A.2) imply ξA(x−) < 0 so ∂R/∂Te = −ξA(x−) · uc > 0. In the corner case x1 = x2 =

x+, the solution to RMB given (x+, ye, Te) has ξB(x+) ≥ 0. The case ξB(x+) = 0

can be ruled out because it would imply (by arguments as in the proof of lemma 1.1)

that RMB given (x+, ye, Te) would satisfy the sufficient conditions for a solution to

R̂M, contradicting (ye, Te) ∈ P. Hence ξB(x+) > 0, so ∂R/∂Te = ξB(x+) · uc > 0.

Therefore ∂R/∂Te > 0 for (ye, Te) ∈ P.
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(ii) Note that

∂R/∂ye = ∂RB(xb, ye, Te)/∂ye + ∂RA(xb, ye, Te)/∂ye

= µA(xb | ye, Te)− µB(xb | ye, Te) (A.8)

+∂Ue(xb)/∂ye[ξA(xb | ye, Te)− ξB(xb | ye, Te)],

where ∂Ue(x)/∂ye = uc(ye − Te, 1 − ye/xb) − ul(ye − Te, 1 − ye/xb)/xb is continuous.

From (A.3) and (A.8), the derivatives ∂R/∂Te and ∂R/∂ye are continuous if the

costate variables ξA, ξB, µA, and µB are continuous in (ye, Te) at xb.

Consider first the continuity of ξA and µA. On [x2, x+], LB implies µA(x) =

0 in (A.1) so HY (UA, YA, ξA, x) = 0. Because HY Y < 0 by CON, income Y ≡

y(U, ξ, x) is an implicit function defined by HY (U, Y, ξ, x) = 0 and is differentiable

in (U, ξ). Moreover, (A.1) and (A.2) with Y replaced by y(UA(x | ye, Te), ξA(x |

ye, Te), x) is a system of two differential equations in UA and ξA, which determine

{UA(x | ye, Te), ξA(x | ye, Te)}x≥x2 . Because the system is saddle-path stable (with

characteristic matrix having a zero trace and, using CON, a negative determinant) and

has boundary conditions UA(x2 | ye, Te) = u(ye−Te, 1−ye/x2) and ξA(x+ | ye, Te) = 0

that are continuous in (ye, Te), it follows that ξA(x | ye, Te) = 0 is continuous in (ye, Te)

for x ≥ x2.

On [xb, x2], (A.2) is a linear differential equation for ξA, which has a solution

that is continuous in the boundary value ξA(x2 | ye, Te). Hence ξA(xb | ye, Te) is also

continuous in (ye, Te). Because µA(x2 | ye, Te) = 0, integration of (A.1) over [xb, x2]

implies that µA(xb | ye, Te) is a function of ξA and (ye, Te), and hence is continuous

in (ye, Te). Thus, ξA(xb) and µA(xb) are continuous.

The costate variables ξB and µB are continuous by analogous arguments.

Hence ∂R/∂Te and ∂R/∂ye are continuous. QED.

Proof of proposition 1: Existence of a unique solution to RM follows from

lemma 1.9 for (ye, Te) ∈ P and from the uniqueness of a solution to R̂M for (ye, Te) /∈
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P. The claims in part 1a and 1c follow directly from lemma 1.6, parts 1-3, and

lemma 1.5, part 3. If [x1, x2] includes any x ∈ (x−, x+), part 1b also follows from

lemma 1.6. If [x1, x2] does not include any x ∈ (x−, x+), then either x1 = x2 = x−

or x1 = x2 = x+. If x1 = x2 = x−, RM solves RMA given (x−, ye, Te), which includes

ye ≤ Y (x−) as a constraint. If x1 = x2 = x+, RM solves RMB given (x+, ye, Te),

which includes ye ≥ Y (x−) as a constraint. This proves part 1b.

In part 2, existence of T ∗e requires showing that for any ye ∈ Py, R(ye, Te) = G

for some Te. Recall that Ť defined in lemma 1.10 satisfies R(ye, Ť (ye)) = R̂ > G,

and that R decreases strictly as Te falls below T̂ (ye). Taxes for y < ye are bounded

by T (y) ≤ y < x because c ≥ 0, l > 0, and taxes for y ≥ ye are bounded by T (y) ≤

Te+y−ye < Te+x−ye; otherwise u(y−T (y), 1− y
x
) ≥ Ue(x) > u(ye−Te, 1−

y
x
). Thus

R(ye, Te) ≤
∫ x+
x−

xdF (x)+(Te−ye)(1−F (xb)) for some F (xb) < 1, so R(ye, Te)→ −∞

as Te → −∞. Hence for any G ≥ 0 and any ε > 0 there is a value T̃ (ye | G − ε)

so that R(ye, T̃ (ye | G − ε)) ≤ G − ε. By the mean-value theorem, there is a unique

T ∗e (ye) ∈ (T̃ (ye | G−ε), Ť (ye)) that satisfies R(ye, T
∗
e (ye)) = G. Differentiability of T ∗e

follows from the implicit function theorem because from lemma 1.11, R is continuously

differentiable. QED.

Proposition 2

To relate the winner’s problem (maximize U(xe) by choice of {U(x), Y (x), ψ(x)}

subject to (1)-(4)) to problem RM, define the winner’s modified problem as maxi-

mize Ue(xe) = u(ye−Te, 1−ye/xe) by choice of {U(x), Y (x), ψ(x)} and values (ye, Te),

subject to (1)-(5). The modified problem explicitly gives the winner the additional

choice of (ye, Te), but subjects the winner to the additional constraint (5). Then:

Lemma 2.1: A pair (ye, Te) and a profile {U(x), Y (x), ψ(x)} solve the mod-

ified problem if and only ye ∈ Y
∗
e (xe), Te = T ∗e (ye), and {U(x), Y (x), ψ(x)} solve RM

given (ye, Te).
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Proof: (i) Suppose (ye, Te, {U(x), Y (x), ψ(x)}) satisfies the constraints (1)-(5)

of the modified problem, and letRe denote the revenue obtained under {U(x), Y (x), ψ(x)}.

By the definition of RM, (ye, Te, {U(x), Y (x), ψ(x)}) satisfy the constraints of RM

given (ye, Te), which implies R(ye, Te) ≥ Re. Because Re ≥ G from (3), it follows that

R(ye, Te) ≥ G so Te ≥ T ∗e (ye). By the construction of T ∗e , profile {U(x), Y (x), ψ(x)}

that satisfies (1), (2), (4), and (5) cannot satisfy (3), so values Te < T ∗e (ye) are not

feasible for the modified problem. Hence solutions to the modified problem must

satisfy Te ≥ T ∗e (ye). Thus feasible (ye, Te) necessarily satisfy Te ≥ T ∗e (ye). Note that

Te = T ∗e (ye) is feasible for any ye by construction.

(ii) Suppose (ye0, Te0, {U0(x), Y0(x), ψ0(x)}) solves the modified problem. Be-

cause u(ye − Te, 1 − ye/xe) decreases strictly in Te and Te ≥ T ∗e (ye) from (i), solu-

tions to the modified problem must satisfy Te0 = T ∗e (ye0). Hence ye0 must maximize

u(ye − T ∗e (ye), 1− ye/xe), so by the definition of Y∗e , ye0 ∈ Y
∗
e (xe). Because the solu-

tion to RM given (ye0, T
∗
e (ye0)) is unique, {U0(x), Y0(x), ψ0(x)} must solve RM given

(ye, Te).

(iii) Suppose ye1 ∈ Y∗e (xe), Te1 = T ∗e (ye1), and {U1(x), Y1(x), ψ1(x)} solve

RM given (ye1, Te1), and let U1 = u(ye1 − Te1, 1− ye1/xe) denote the winner’s utility.

Because RM given (ye1, Te1) satisfies (1), (2), (4), and (5) and because R(ye1, Te1) = G

satisfies (3), (ye1, Te1, {U1(x), Y1(x), ψ1(x)}) satisfies the constraints of the modified

problem. Because ye1 ∈ Y
∗
e (xe), U1 ≥ u(ye−T ∗e (ye), 1− ye/xe) ≥ u(ye−Te, 1− ye/xe)

for all ye and Te ≥ T ∗e (ye). Because Te ≥ T ∗e (ye) is necessary for feasibility, (ye1, Te1)

maximizes the winner’s utility. QED.

Lemma 2.2: All solutions to the modified problem satisfy xe ∈ [x1, x2] and

U(xe) = Ue(xe). If xe ∈ (x−, x+), then Y (xe) = ye. If xe ∈ {x−, x+}, solutions with

ye �= Y (xe) are possible but inessential in that profiles {U(x), Y (x), ψ(x)} that solve

RM given (ye, T
∗
e (ye)) are identical (everywhere) to the profile that solves RM given

(Y (xe), T
∗
e (Y (xe))), which have ye = Y (xe).
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Proof: Solutions to the modified problem satisfy U(xe) ≥ Ue(xe) because (5)

holds at x = xe. If U(xe) > Ue(xe) then xe could raise own utility by choosing

(Y (xe), T (xe)) (which is feasible) instead of (ye, Te), contradicting optimality. Thus

U(xe) = Ue(xe). From proposition 1, part 1a, this implies xe ∈ [x1, x2]. For xe ∈

(x−, x+), proposition 1, part 1b implies Y (xe) = ye.

To show that ye �= Y (xe) is possible for xe ∈ {x−, x+}, first suppose xe = x−

and consider any ye0 ∈ Y
∗
e (x−). Note that RM given (ye0, T

∗
e (ye0)) is solved by RMA

given (x−, ye0, T
∗
e (ye0)), where (ye0, T

∗
e (ye0)) constrains RMA only through U(x−) =

Ue(x−). If Y (x−) > 0, which is possible, then for any ye ≤ Y (x−) there is a value

Te such that u(ye − Te, 1 −
ye
x−
) = U(x−) = u(ye0 − T ∗e (ye0), 1 −

ye0
x−
) at productivity

x−. Consider values (ye−, Te−) with these properties. By construction, RMA given

(x−, ye−, Te−) is solved by the same profile {U(x), Y (x), ψ(x)} that solves RMA given

(x−, ye0, T
∗
e (ye0)). Because RMA given (x−, ye−, Te−) attains the maximum revenue,

it must be that Te− = T ∗e (ye−). Hence the profile {U(x), Y (x), ψ(x)} that solves RM

given (ye0, T
∗
e (ye0)) also solves RM given (ye−, T

∗
e (ye−)) for ye− < Y (x−), which means

Y∗e (x−) = [0, Y (x−)]. Thus Y
∗
e (x−) includes values ye < Y (xe).

Second, suppose xe = x+ <∞ and consider any ye0 ∈ Y
∗
e (x+). Note that the

solution satisfies Y (x+) < x+ and is also the solution to RMB given (x+, ye0, T
∗
e (ye0)).

Reasoning as in the first case, RM given (ye, T
∗
e (ye)) for ye > Y (x+) is solved by the

same profile {U(x), Y (x), ψ(x)}, so Y∗e (x+) = [Y (x+), x+) includes values ye > Y (xe).

QED.

Remark: The special cases with ye �= Y (xe) for xe ∈ {x−, x+} are noted

for mathematical completeness but are economically uninteresting because the utility

and income profile that obtains for any ye �= Y (xe) is same as the profile obtained

for ye = Y (xe). Intuitively, (ye, T
∗
e (ye)) are pairs on the winner’s highest indifference

curve. The proof also shows that Y∗e (x−) = [0, Y (x−)] and that, if x+ <∞, Y∗e (x+) =

[Y (x+), x+), so there are examples with multiple solution to xe’s modified problem.
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Lemma 2.3: (1) If profile {U(x), Y (x), ψ(x)} solves the winner’s (origi-

nal) problem, then (Y (xe), T
∗
e (Y (xe)), {U(x), Y (x), ψ(x)}) solves the winner’s mod-

ified problem. (2) If (ye, Te, {U(x), Y (x), ψ(x)}) solves the modified problem, then

{U(x), Y (x), ψ(x)} solves the original problem.

Proof: Profile {U(x), Y (x), ψ(x)} that is feasible for the original problem is

feasible for the modified problem by taking ye = Y (xe) and Te = T (U(xe), ye, xe).

Therefore utility U(xe) in the original problem is less than or equal to the utility the

winner obtains in any solution to the modified problem. From lemma 2.2, ye = Y (xe)

and U(xe) = Ue(xe) for xe ∈ {x−, x+}, so all solutions to the modified problem

are feasible for the original problem, which means utility the winner obtains in any

solution to the modified problem equals the utility U(xe) in the original problem.

For xe ∈ {x−, x+}, lemma 2.2 implies that solutions to the modified problem with

ye �= Y (xe) have the same profile {U(x), Y (x), ψ(x)} as solutions with ye = Y (xe) and

attain the same utility, so utilities in solutions to the original and modified problems

are again equal.

Given equal utilities, part 1 follows because (Y (xe), T
∗
e (Y (xe)), {U(x), Y (x), ψ(x)})

is feasible for the modified problem and attains maximum utility. Part 2 follows be-

cause, by lemma 2.2, profile {U(x), Y (x), ψ(x)} that solves the modified problem is

the same for ye �= Y (xe) and for ye = Y (xe), so even if ye �= Y (xe) in the modified

problem, {U(x), Y (x), ψ(x)} solves the original problem. QED.

Proof of proposition 2: Follows directly from lemmas 2.1 and 2.3. QED.

Remark: In describing revenue maximization generally, proposition 1 im-

poses no restrictions on ye so cases with ye /∈ [Y (x−), Y (x+)] are possible. Lemma

2.2 implies that there is no loss of generality in restricting attention to revenue max-

imizations with ye ∈ [Y (x−), Y (x+)].
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Proposition 3

The result is stated in Seade (1982) without proof. The proof is facilitated by

the following lemma, which also justifies the graphical intuition in the text.

Lemma 3.1: Agent-monotonicity implies that the slope of indifference curves

through any pair (y, T ) increases strictly in x for all y > 0.

Proof: Let T = y − c∗(U, y
x
) be the tax that yield utility U . Differentiating

with respect to y, the slope of the indifference curve through (y, T ) is

∂T

∂y
= 1−

1

x

∂c∗

∂y
= 1−

1

x

ul(y − T, 1− y
x
)

uc(y − T, 1− y
x
)
≡ S(x | y, T ),

where c = c∗(U, y
x
) = y − T . Agent-monotonicity requires that n ul(c,1−n)

uc(c,1−n)
increase

strictly with n for given c. Because n = y
x
decreases with x for all y > 0, y

x
ul(c,1−y/x)
uc(c,1−y/x)

=

nul(c,1−n)
u(c,1−n)

decreases strictly with x. Hence ∂T
∂y

= 1− 1
y
nul(c,1−n)
u(c,1−n)

increases strictly with

x for any (y, T ) with y > 0. QED.

Proof of proposition 3: (i) Let UL(ye) = u(ye−T ∗e (ye), 1−
ye
xH
) and UH(ye) =

u(ye − T ∗e (ye), 1−
ye
xH
) denote the utility levels of xL and xH at income ye. Note that

∂Ui(ye)

∂ye
= uc(ye − T ∗e (ye), 1−

ye
xi
)

[
1−

1

xi

ul(ye − T ∗e (ye), 1− ye/xi)

uc(ye − T ∗e (ye), 1− ye/xi)
−

∂T ∗e
∂ye

]

= uc(ye − T ∗e (ye), 1−
ye
xi
)

[
S(xi | ye, T

∗
e (ye))−

∂T ∗e
∂ye

]

for i = L,H. By lemma 3.1, S(x | ye, Te) increases strictly with x for ye > 0, so

∂UL(ye)
∂ye

< ∂UH(ye)
∂ye

. For yH ∈ Y∗e (xH) with yH > 0, the optimality condition S(xH |

yH , T ∗e (yH)) =
∂T∗e
∂ye

implies ∂UH(yH)
∂ye

= 0 and hence ∂UL(yH)
∂ye

< 0. This implies UL(yH −

ε) > UL(yH) for some ε > 0, proving that yH /∈ Y∗e (xL). Thus yL �= yH for yH > 0.

(ii) Because yH ∈ Y∗e (xH), UH(ye) ≤ UH(yH) for all ye, so T ∗e (ye) ≥ ye −

c∗(UH(yH),
ye
xH
) for all ye. At (yH , T ∗e (yH)), xH ’s indifference curve with utility UH(yH)

crosses xL’s indifference curve with utility UL(yH). Because S(xH | yH , T ∗e (yH)) >

S(xL | yH , T ∗e (yH)), ye − c∗(UH(yH),
ye
xH
) > ye − c∗(UL(yH),

ye
xL
) for ye > yH in a
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neighborhood of yH ; from lemma 3.1, the latter inequality holds for ye > yH . Hence

T ∗e (ye) ≥ ye − c∗(UH(yH),
ye
xH
) > ye − c∗(UL(yH),

ye
xL
), which implies UL(ye) < UL(yH)

and hence ye /∈ Y∗e (xL) for ye > yH . Thus yL ≤ yH .

(iii) For yH > 0, yL �= yH from (i) and yL ≤ yH from (ii) imply yL < yH

For yH = 0, UH(0) = UL(0) = u(−T ∗e (0), 1). Also, ye
xH

< ye
xL

for ye > 0 implies

ye − c∗(UH(0),
ye
xH
) > ye − c∗(UL(0),

ye
xL
). As in (ii), ye /∈ Y∗e (xL) for ye > yH , so

yL = yH = 0. QED.

Proposition 4

For given x, we compare U(x | yL) and U(x | yH) by considering U(x | ye) as a

function of ye and integrating ∂U(x | ye)/∂ye over [yL, yH ] to obtain U(x | yH)−U(x |

yL).
35 Because xL < xH and yH > 0, proposition 3 implies yL < yH , so the interval

[yL, yH ] is nondegenerate.

If Y∗e is single-valued, proposition 3 implies that Y∗e has an inverse, denoted

x∗e(ye), that is single-valued, continuous, and increases strictly. However, Y∗e may be

multi-valued for some xe, and ye /∈ Y∗e (xe) is possible for some ye ∈ [inf Y∗e (xe), supY
∗
e (xe)],

so x∗e(ye) may not exists for some ye. To handle such missing values in x∗e(ye),

note that Y∗e (xe) is compact-valued by the Maximum Theorem, so min{Y∗e (xe)} and

max{Y∗e (xe)} exist and x∗e(ye) is well-defined at the boundaries of Y∗e (xe). Hence

one can partition [yL, yH ] into subintervals where x∗e(ye) is single-valued, continuous,

and strictly increasing (henceforth type-S intervals), and subintervals of the form

[min{Y∗e (xe)},max{Y∗e (xe)] for xe where Y
∗
e is multi-valued (type-M intervals).

We prove results separately for each type of interval. Because type-M intervals

are closed, type-S intervals can be taken as open for purposes of defining a non-

35Profiles conditional on ye should be interpreted as objects generated by RM for (ye, Te) =

(ye, T
∗

e (ye)), so Te implicitly varies with ye. This differs from the treatment in the proof of proposition

1, where ye and Te varied independently. Values x1 and x2 also depend on (ye, T
∗

e (ye)).
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overlapping partition. However, boundary points can be included when studying a

particular interval. To streamline the notation associated with variations in ye, we

use primes to denote partial derivatives with respect to ye (e.g., U
′(x | ye) ≡ ∂U(x |

ye)/∂ye).

Lemma 4.1: Consider ye ∈ (yL, yH) with x∗′e (ye) > 0, so ye lies in a type-S

interval, and xe = x∗e(ye). The solution to the winner’s problem satisfies x1 < xe < x2.

Proof: Because x1 ≤ xe ≤ x2 from lemma 2.2, and x− ≤ x∗e(yL) < xe =

x∗e(ye) < x∗e(yH) ≤ x+, proposition 1 (part 1a) implies x1 < x2. Thus one must show

that xe �= x1 and xe �= x2.

Because xe ∈ [x1, x2], proposition 1 (parts 1a,b) and proposition 2 (part 2)

imply that the solution to the winner’s problem solves RMA given (xe, ye, T
∗
e (ye)) and

RMB given (xe, ye, T
∗
e (ye)), with UA(xe) = UB(xe) = Ue(xe) and YA(xe) = YB(xe) =

ye, and the optimal ye implies ∂T ∗e (ye)/∂ye = S(xe | ye, T
∗
e (ye)). From (A.3) and

(A.8) in the proof of lemma 1.11, where ∂Ue(xe)/∂ye = [uc− ul/x] = ucS(xe | ye, Te),

we have

∂R

∂ye
= µA(xe | ye, Te)− µB(xe | ye, Te) + S(xe | ye, Te)uc[ξA(xe | ye, Te)− ξB(xe | ye, Te)]

= µA(xe | ye, Te)− µB(xe | ye, Te)− S(xe | ye, Te)
∂R

∂Te
.

Differentiating R(ye, T
∗
e (ye)) = G totally, ∂R

∂ye
+ ∂R

∂Te
· ∂T ∗e (xe)/∂ye =

∂R
∂ye

+ ∂R
∂Te
· S(xe |

ye, Te) = 0, so µA(xe | ye, Te) = µB(xe | ye, Te).

Because ξB(xb) > ξA(xb) for all xb ∈ [x1, x2], as shown in the proof of lemma

1.11, (A.1) implies ∂
∂x

µA(xb) >
∂
∂x

µB(xb). Because YB is increasing in a neighborhood

below x1, µB(x) = 0 so ∂
∂x

µB(x1) = 0 and ∂
∂x

µA(x1) > 0. Similarly, YA is increasing

above x2, which implies µA(x) = 0 and ∂
∂x

µA(x2) = 0, so ∂
∂x

µB(x2) < 0.

To show xe �= x1, note that xe = x1 would imply µA(xe) = µA(x1) = 0. Com-

bined with ∂
∂x

µA(x1) > 0, this would imply µA(x) > 0 for some x > x1, contradicting

the optimality condition µA(x) ≤ 0 in lemma 1.1. To show xe �= x2, note that xe = x2
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would imply µB(xe) = µB(x2) = 0. Combined with ∂
∂x

µB(x2) < 0, this would imply

µB(x) > 0 for some x < x2, contradicting the optimality condition µB(x) ≤ 0 in

lemma 1.1. QED.

Lemma 4.2: Consider ye ∈ (yL, yH) with x∗′e (ye) > 0, so ye lies in a type-S

interval. Then U ′(x | ye) < 0 for x ∈ [x1, xe), U ′(x | ye) > 0 for x ∈ (xe, x2], and

U ′(xe | ye) = 0.

Proof: Because U(x | ye) = Ue(x) for x ∈ [x1, x2],

U ′(x | ye) = dUe(x)/dye = [uc − ul/x]− uc · ∂T
∗
e /∂ye (A.9)

= uc · [S(x | ye, T
∗
e (ye))− ∂T ∗e /∂ye] = uc · [S(x | ye, T

∗
e (ye))− S(xe | ye, T

∗
e (ye)].

Hence U ′(xe | ye) = 0, and the inequalities for x < xe and x > xe follow because S

increases strictly in x from lemma 3.1. QED.

Lemma 4.3: Consider ye ∈ (yL, yH) with x∗′e (ye) > 0, so ye lies in a type-S

interval. Then U ′(x | ye) > 0 for x ∈ [x2, x+].

Proof: Recall that {U(x | ye), Y (x | ye), ξ(x | ye), µ(x | ye)}x≥x2 solves RMA

for (ye, T
∗
e (ye)). In (A.1), LB implies µ(x) = 0 and µx(x) = 0, so HY (U, Y, ξ, x) = 0

for all x. Because HY Y < 0 by CON, HY (U, Y, ξ, x) = 0 defines a unique income level

Y ≡ y(U, ξ, x), which can be used to replace Y (x) in (1) and (A.2). By the implicit

function theorem, y is differentiable in (U, ξ) for given x. Hence (1) and (A.2) imply

that U(x | ye) and ξ(x | ye) satisfy the differential equations

Ux(x | ye) = ω(U(x | ye), y(U(x | ye), ξ(x | ye), x), x)

ξx(x | ye) = −tU(U(x | ye), y(U(x | ye), ξ(x | ye), x), x)f(x) (A.10)

−ξ(x | ye) · ωU(U(x | ye), y(U(x | ye), ξ(x | ye), x), x).

System (A.10) is saddle-path stable because the characteristic matrix has a

zero trace and, from CON, a negative determinant. Hence, a solution to (A.10) (which

exists by CON) is uniquely determined by two boundary conditions, which are U(x2 |
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ye) = Ue(x2) and ξ(x+ | ye) = 0. For any given ye, (A.10) and Y = y(U, ξ, x) uniquely

determine {U(x | ye), Y (x | ye)} on [x2, x+]. The derivative U ′(x) ≡ ∂U(x | ye)/∂ye

exists for x ≥ x2 and is found in two steps: First, differentiate (A.10) with respect to

ye to obtain

U ′
x(x | ye) = γ(U, ξ, x) · U ′(x | ye) + γU ′ξ(U, ξ, x) · ξ′(x | ye) (A.11)

ξ′x(x | ye) = γξ′U(U, ξ, x) · U ′(x | ye)− γ(U, ξ, x) · ξ′(x | ye),

where γ(U, ξ, x) = ωU −ωY ·HY U/HY Y , γU ′ξ(U, ξ, x) = −ωY Y > 0 and γξ′U(U, ξ, x) =

−[HY Y ·HUU −HY U ·HY U ]/HY Y > 0. Second, solve (A.11) subject to the boundary

conditions that U ′(x2 | ye) is given by (A.9) and ξ′(x+ | ye) = 0. (These are the

derivatives of the boundary conditions for (A.10).) Because (A.10) has a characteristic

matrix with a zero trace and a negative determinant, it is saddle-path stable. Because

U ′(x2 | ye) = dUe(x2)/dye > 0 from lemma 4.2, saddle-path stability implies U ′(x |

ye) > 0 for x ∈ [x2, x+]. QED.

The analysis of U(x | ye) and U ′(x | ye) for x ∈ [x−, x1] requires multiple case

distinctions because RMB for (ye, T
∗
e (ye)) is constrained by U(x− | ye) ≥ u(α, 1) and

Y (x− | ye) ≥ 0, each of which may hold with inequality or equality, and each with zero

or non-zero shadow values (ξ(x− | ye) ≤ 0, µ(x− | ye) ≤ 0). To organize the cases,

define x0(ye) ≡ inf{x ≥ x− | Y (x | ye) > 0}, which is the maximum productivity in

the set of non-workers if the set is non-empty and x0(ye) = x− otherwise, and define

the sets

Ξa ≡ {ye ∈ Py | x0(ye) = x−, U(x− | ye) = u(α, 1)},

Ξb ≡ {ye ∈ Py | x0(ye) = x−, ξ(x− | ye) = 0},

Ξc ≡ {ye ∈ Py | Y (x− | ye) = 0, U(x− | ye) = u(α, 1)},

Ξd ≡ {ye ∈ Py | Y (x− | ye) = 0, ξ(x− | ye) = 0},

where {U(x | ye), Y (x | ye), ξ(x | ye)}x≤x1 denotes the solution to RMB given
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(ye, T
∗
e (ye)). The following properties describe RMB:

Lemma 4.4: For ye ∈ Py, ye ∈ Ξj for some j ∈ {a, b, c, d}.

Proof: Because ξ(x− | ye)[U(x− | ye) − u(α, 1)] = 0 from lemma 1.1, ξ(x− |

ye) = 0 or U(x− | ye) = u(α, 1) (or both) for ye. Because x0(ye) > x− implies

Y (x− | ye) = 0, it must be that x0(ye) = x− or Y (x− | ye) = 0 (or both) for ye. Hence

ye ∈ Ξj for some j ∈ {a, b, c, d}. QED.

Remark: The sets Ξj define possible configurations of boundary conditions.

Not all of them necessarily occur; that is, Ξj = ∅ for some j is possible. (For example,

if α = 0, x− > 0, uc/ul →∞ as c→ 0, and tax rates are bounded away from 100%,

then Y (x− | ye) > 0, so Ξc = Ξd = ∅.) The task is to prove the proposition for all

possible cases.

Lemma 4.5: Consider ye ∈ (yL, yH) with x∗′e (ye) > 0, so ye lies in a type-S

interval. Then U ′(x | ye) < 0 for x ∈ [x−, x1]\Xu(α,1)(ye).

Proof: Recall that {U(x | ye), Y (x | ye), ξ(x | ye), µ(x | ye)}x≤x1 solves RMB

given (ye, T
∗
e (ye)). As in lemma 4.3, LB implies Y (x | ye) = y(U, ξ, x) for x ∈

[x0(ye), x1], so U(x | ye) and ξ(x | ye) satisfy (A.10) and (A.11). One boundary

condition for (A.10) is U(x1 | ye) = Ue(x1), which is invoked in all cases below. The

corresponding condition for (A.11) is U ′(x1 | ye) = dUe(x1)/dye, so U ′(x1 | ye) < 0

from lemma 4.2. Additional boundary conditions for (A.10) and (A.11), and their

implications, require case distinctions:

(a) For ye ∈ Ξa, x0(ye) = x− implies that (A.10) holds on [x−, x1], and U(x− |

ye) = u(α, 1) provides the second boundary condition, so there is a unique solution.

The analysis of (A.11) is analogous to the proof of lemma 4.3: {U ′(x | ye), ξ
′(x | ye)}

for x ≤ x1 solves (A.11), with boundary conditions that (i) U ′(x1 | ye) satisfies

(A.9) and (ii) U ′(x− | ye) = 0, which follows from U(x− | ye) = u(α, 1). Saddle-

path stability (as detailed in the proof of lemma 4.3) and U ′(x1 | ye) < 0 (from

lemma 4.2) imply U ′(x | ye) < 0 for x ∈ (x−, x1]. Because Y > 0 for x > x−
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implies U(x | ye) > u(α, 1), it follows that Xu(α,1)(ye) = {x−}, so U ′(x | ye) < 0 for

[x−, x1]\Xu(α,1)(ye).

(b) For ye ∈ Ξb, cases with U(x− | ye) = u(α, 1) imply ye ∈ Ξa so the results

in (a) apply. Otherwise U(x− | ye) > u(α, 1), which means ye ∈ Ξb\Ξa. Then

x0(ye) = x− implies that (A.10) applies on [x−, x1] and ξ(x− | ye) = 0 provides the

second boundary condition, again ensuring a unique solution. Taking derivatives,

{U ′(x | ye), ξ
′(x | ye)}x≤x1 is determined by (A.11) with boundary conditions that

(i) U ′(x1 | ye) satisfies (A.9) and (ii) ξ′(x− | ye) = 0. Saddle-path stability and

U ′(x1 | ye) < 0 imply U ′(x | ye) < 0 for x ∈ [x−, x1]. Also, U(x− | ye) > u(α, 1) for

ye ∈ Ξb\Ξa implies Xu(α,1)(ye) = ∅.

(c) For ye ∈ Ξc, cases with x0(ye) = x− imply ye ∈ Ξa so the results in (a)

apply. Otherwise x0(ye) > x−, which means ye ∈ Ξc\Ξa. Then for x ≤ x0 ≡ x0(ye),

Y = 0 implies constant U , so U(x | ye) = U(x− | ye) = u(α, 1). Because Y > 0 in a

neighborhood of x > x0, so ψ(x) > 0, lemma 1.1 implies µ(x) = 0 whence µx(x0) = 0;

also, Y > 0 implies U(x | ye) > u(α, 1) for x > x0. Thus Xu(α,1)(ye) = [x−, x0]. From

(A.1) with µx(x0) = 0, HY (u(α, 1), 0, ξ(x0 | ye), x0) = 0. Because LB holds for (x0, x1),

(A.10) holds on [x0, x1], and the second boundary condition is the open endpoint

condition at x0 that U(x0 | ye) = u(α, 1) and HY (u(α, 1), 0, ξ(x0 | ye), x0) = 0. It is

straightforward to show that x0 is continuous in ye and that U(x | ye) and ξ(x | ye)

are differentiable in ye on [x0, x1]. Taking derivatives at x0, U ′(x0 | ye) = 0 and

ξ′(x0 | ye) = 0, so {U ′(x | ye), ξ
′(x | ye)}[x0,x1] is determined by (A.11) with boundary

conditions that (i) U ′(x1 | ye) satisfies (A.9) and (ii) at x0, U ′(x0 | ye) = 0 and

ξ′(x0 | ye) = 0. Saddle-path stability and U ′(x1 | ye) < 0 imply U ′(x | ye) < 0 for

x ∈ (x0, x1]. Also, Xu(α,1)(ye) = [x−, x0] because U(x | ye) = u(α, 1) iff x ≤ x0. Thus

U ′(x | ye) < 0 for [x−, x1]\Xu(α,1)(ye).

(d) If ye ∈ Ξd, cases with U(x− | ye) = u(α, 1) imply ye ∈ Ξa ∪Ξc so results in

(a) or (c) apply. Cases with U(x− | ye) > u(α, 1) and x0(ye) = x− imply ye ∈ Ξb\Ξa
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so the results in (b) apply. In all other cases, x0(ye) > x− and U(x− | ye) > u(α, 1),

which means ye ∈ Ξd\(Ξa ∪ Ξb ∪ Ξb). Then for x ≤ x0, Y = 0 implies constant

U , so U(x | ye) = U(x− | ye) > u(α, 1) and Xu(α,1)(ye) = ∅. Because Y > 0

in a neighborhood of x > x0, it follows that µ(x) = 0 so µx(x0) = 0, and hence

HY (u(α, 1), 0, ξ(x0 | ye), x0) = 0 follows as in (c). Because LB holds for x ∈ (x0, x1),

(A.10) applies on [x0, x1] with an open endpoint condition at x0. To derive the latter,

note that (A.2) for [x−, x0] implies ξx(x | ye) = −HU(U(x0 | ye), 0, ξ(x | ye), x), which

can be integrated to obtain

ξ(x0 | ye) = F (x0)/uc(c
∗(U(x0 | ye), 0), 1), (A.12)

using the boundary condition ξ(x− | ye) = 0. Taking derivatives at x0,

ξ′(x0 | ye) = F (x0)(−
ucc(c

∗(U(x0 | ye), 0), 1)

uc(c∗(U(x0 | ye), 0), 1)3
) · U ′(x0 | ye). (A.13)

Thus {U ′(x | ye), ξ
′(x | ye)}[x0,x1] is determined by (A.11) with boundary conditions

(i) that U ′(x1 | ye) satisfies (A.9) and (ii) condition (A.13) at x0. Saddle-path

stability and U ′(x1 | ye) < 0 imply U ′(x | ye) < 0 for x ∈ [x0, x1]. For x ≤ x0,

U(x | ye) = U(x0 | ye) implies U ′(x | ye) = U ′(x0 | ye), so U ′(x | ye) < 0 for

x ∈ [x−, x1].

By lemma 4.4 (part 1), cases a-d cover all possible configurations of boundary

conditions, so U ′(x | ye) < 0 for [x−, x1]\Xu(α,1)(ye). QED.

Lemma 4.6: Consider a set ΞS ⊆ [yL, yH ] with x∗′e (ye) > 0 for ye ∈ ΞS,

which means ΞS is a type-S interval. Then for any yl, yh ∈ ΞS with yl < yh, (1)

Xu(α,1)(yl) ⊆ Xu(α,1)(yh) and (2) x0(yh) > x0(yl) whenever maxXu(α,1)(yh) > x−.

Proof: (1) Either (i) yh ∈ (Ξb ∪ Ξd)\(Ξa ∪ Ξc) or (ii) yh ∈ Ξa or (iii) yh ∈

Ξc\ Ξa. (i) For yh ∈ (Ξb ∪ Ξd)\(Ξa ∪ Ξc), U(x− | yh) > u(α, 1) by definition and

U ′(x− | ye) < 0 from lemma 4.5, so U(x− | yl) > U(x− | yh) > u(α, 1). Hence

Xu(α,1)(yl) = ∅ = X u(α,1)(yh) so Xu(α,1)(yl) ⊆ Xu(α,1)(yh). (ii) For yh ∈ Ξa, U(x |
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yh) > u(α, 1) for x > x− by definition and U ′(x− | ye) < 0 from lemma 4.5, so U(x |

yl) > U(x | yh) > u(α, 1) for x ∈ (x−, x1]. Hence Xu(α,1)(yl) ⊆ {x−} = X u(α,1)(yh).

(iii) For yh ∈ Ξc\ Ξa, Xu(α,1)(yh) = [x−, x0(yh)] with x0(yh) > x−. Because Y

satisfies HY (U, Y, ξ, x) = 0 for x > x0(yh) and Y is continuous, Y (x0 | yh) satisfies

HY (u(α, 1), Y (x0 | yh), ξ(x0(yh) | yh), x0) = 0 at x0 = x0(yh). Taking derivatives

with respect to ye for given x0, ∂Y (x0 | yh)/∂ye = (−HY Y )
−1ωY ξ

′(x0 | yh). Because

HY Y < 0, ωY > 0, and (A.13) plus U ′(x0 | ye) < 0 imply ξ′(x0 | yh) < 0, ∂Y (x0 |

yh)/∂ye < 0 at given x0. Because Y (x0 | yh) = 0, x0 must increase to satisfy

Y (x0 | ye) ≥ 0, so x0(ye) increases strictly with ye. Hence x0(yl) < x0(yh) and

Xu(α,1)(yl) = [x−, x0(yl)] ⊂ [x−, x0(yh)] = X u(α,1)(yh). (2) Because maxXu(α,1)(yh)

> x− implies yh ∈ Ξc\ Ξa, x0(yh) > x0(yl) follows from the argument in (iii) that

x0(ye) increases strictly in ye. QED.

Lemma 4.7: Consider a set ΞS ⊆ [yL, yH ] with x∗′e (ye) > 0 for ye ∈ ΞS, so

again ΞS is a type-S interval. For any yl, yh ∈ ΞS with yl < yh, denote xh = x∗′e (yh)

and xl = x∗′e (yl). Then U(x | yh)−U(x | yl) > 0 for x ≥ xh, U(x | yh)−U(x | yl) < 0

for x ∈ [x−, xl]\Xu(α,1)(yl), and U(x | yh) = U(x | yl) = u(α, 1) for x ∈ Xu(α,1)(yl).

Proof: For any x ∈ [x−, x+], U(x | yh) − U(x | yl) =
∫ yh
yl

U ′(x | ye)dye. For

x ≥ xh, lemma 4.3 implies U ′(x | ye) > 0 for ye ∈ [yl, yh], so U(x | yh)−U(x | yl) > 0.

For x ≤ xl, lemma 4.6 implies that Xu(α,1)(yl) ⊆ Xu(α,1)(yh), so [x−, xl]\Xu(α,1)(yl) is

the union of [x−, xl]\Xu(α,1)(yh) and Xu(α,1)(yh)\Xu(α,1)(yl), and [x−, xl]\Xu(α,1)(yh) ⊆

[x−, xl]\Xu(α,1)(yl). For x ∈ [x−, xl]\Xu(α,1)(yh), lemma 4.5 implies U ′(x | ye) < 0

for ye ∈ [yl, yh], so U(x | yh) − U(x | yl) < 0. For x ∈ Xu(α,1)(yh)\Xu(α,1)(yl),

U(x | yl) > u(α, 1) = U(x | yh) by the definition of Xu(α,1), so U(x | yh) − U(x |

yl) < 0. For x ∈ Xu(α,1)(yl), lemma 4.6 implies Xu(α,1)(yl) = Xu(α,1)(yl) ∩ Xu(α,1)(yh),

so U(x | yh) = U(x | yl) = u(α, 1) by the definition of Xu(α,1). QED.

Remark: Although lemma 4.7 proves results that resemble the claims of

proposition 4, a general proof of lemma 4.7 requires treatment of multi-valued Y∗e (xe)
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(within [yL, yH ]). To do this, we use the following definitions.

Definitions: If Y∗e (xe)∩ [yL, yH ] has multiple elements for some xe ∈ [xL, xH ],

define yemin(xe) ≡ min{Y∗e (xe) ∩ [yL, yH ]} and yemax(xe) ≡ max{Y∗e (xe) ∩ [yL, yH ]}.

Let ΞM(xe) = [yemin(xe), yemax(xe)] formally define a type-M interval. Let Ũ ∗(xe) ≡

U(xe | ye) where ye ∈ Ξ∗M(xe) denote xe’s maximum utility. Let Ξ∗M(xe) = ΞM(xe) ∩

Y∗e (xe) be the subset of ΞM(xe) for which U(xe | ye) = Ũ ∗(xe). For ye ∈ ΞM(xe),

define T̃ (ye) by u(ye − T̃ (ye), 1 −
ye
xe
) = Ũ ∗(xe), and let {Ũ(x | ye), Ỹ (x | ye), ξ̃(x |

ye), µ̃(x | ye)} denote the solution to RM for (ye, T̃ (ye)).

Remark: Because Y∗e (xe) is not necessarily an interval, some elements of

ΞM(xe) may not maximize the winner’s utility. This is a complication because if

U(xe | ye) varies on ΞM(xe), one cannot rule out U
′(xe | ye) �= 0. Hence the analysis of

type-S intervals in lemmas 4.2-4.3, which relies on U ′(xe | ye) = 0, does not generalize

to type-M intervals. To sidestep this complication, we consider problems RM for

(ye, T̃ (ye)) instead of RM for (ye, T
∗
e (ye)), having constructed T̃ such that Ũ(xe | ye)

is constant for ye ∈ ΞM(xe), which implies Ũ ′(xe | ye) = 0. As the following lemmas

show, this will allow us to derive results about U(xe | ye).

Lemma 4.8: Consider xe ∈ [xL, xH ] with yemin(xe) < yemax(xe). Then: (1)

U(xe | ye) = Ũ(xe | ye) for ye ∈ Ξ∗M(xe); and (2) ∂Ũ(xe | ye)/∂ye = 0, ∂Ũ(x |

ye)/∂ye ≥ 0 for x ≥ xe and ∂Ũ(x | ye)/∂ye ≤ 0 for x ≤ xe, for ye ∈ ΞM(xe).

Proof: (1) For ye ∈ Ξ∗M(xe), U(xe | ye) = Ue(xe) implies u(ye − T̃ (ye), 1 −

ye
xe
) = Ũ ∗(xe) = U(xe | ye) = u(ye − T ∗e (ye), 1 −

ye
xe
). Hence T̃ (ye) = T ∗e (ye) and

U(xe | ye) = Ũ(xe | ye). (2) For ye ∈ ΞM(xe), u(ye − T ∗e (ye), 1 −
ye
xe
) ≤ Ũ ∗(xe) =

u(ye − T̃ (ye), 1−
ye
xe
) implies T̃ (ye) ≤ T ∗e (ye), whence R(ye, T̃ (ye)) ≤ R(ye, T

∗
e (ye)) =

G < Ĝ and (ye, T̃ (ye)) ∈ P. Thus proposition 1 ensures the existence of an interval

[x1, x2] with Ũ(x | ye) = u(ye − T̃ (ye), 1 −
ye
x
) and Ỹ (x | ye) = ye for x ∈ [x1, x2].

Moreover, xe ∈ [x1, x2] holds by the same arguments as the proof of lemma 2.2.

(Note, however, that the arguments for xe �= x1, x2 in the proof of lemma 4.1 do
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not have an analogy here, so xe = x1 or xe = x2 are possible.) As in the proof

of lemma 4.2, Ũ ′(x | ye) − Ũ ′(xe | ye) = uc · [S(x | ye, T
∗
e (ye)) − S(xe | ye, T

∗
e (ye)]

where Ũ ′(xc | ye) = 0 by construction. Following the proofs of lemmas 4.2-4.3,

Ũ ′(x | ye) ≥ 0 for x > xe (with strict inequality if x2 > xe), and following the proofs

of lemmas 4.4-4.6, Ũ ′(x | ye) ≤ 0 for x < xe (with strict inequality if x1 < xe and

Ũ(x | ye) > u(α, 1)). QED.

Lemma 4.9: Consider xe ∈ [xL, xH ] with yemin(xe) < yemax(xe). Then for

any yl ∈ Ξ∗M(xe) and yh ∈ Ξ∗M(xe) with yl < yh: U(xe | yh) = U(xe | yl); U(x |

yh) ≥ U(x | yl) for x > xe; U(x | yh) ≤ U(x | yl) for x ∈ [x−, xe)\Xu(α,1)(yl); and

U(x | yh) = U(x | yl) = u(α, 1) for x ∈ Xu(α,1)(yl).

Proof: From yl ∈ Ξ∗M(xe), yh ∈ Ξ∗M(xe), and lemma 4.8 (part 1), Ũ(x |

yh)−Ũ(x | yl) =
∫ yh
yl

Ũ ′(x | ye)dye = U(x | yh)−U(x | yl). Hence U(x | yh) ≥ U(x | yl)

for x > xe and U(x | yh) ≤ U(x | yl) for x < xe follow from lemma 4.8 (part 2). Also,

U(xe | yh) = U(xe | yl) because yl ∈ Ξ∗M(xe) and yh ∈ Ξ∗M(xe). From X (yl) ⊆ X (yh)

and the definition of Xu(α,1), U(x | yh) = U(x | yl) = u(α, 1). QED.

Proof of proposition 4: Because xL < xH , [yL, yH ] includes at least one

type-S interval. If [yL, yH ] includes type-M intervals, for each of them either yemin(xe) =

yL or yemin(xe) = maxΞS is the upper endpoint of a type-S interval; and either

yemax(xe) = yH or yemax(xe) = minΞS for another interval of type S. Hence [yL, yH ]

decomposes into alternating type-S and type-M intervals. Pick any type-S interval

and denote it [yl, yh] so yL ≤ yl < yh ≤ yH . Then:

(a) For x ∈ [xH , x+], lemmas 4.7 and 4.9 imply U(x | yH) ≥ U(x | yh) > U(x |

yl) ≥ U(x | yL).

(b) For x ∈ [x−, xL], lemmas 4.7 and 4.9 imply U(x | yH)− U(x | yL) ≤ U(x |

yh) − U(x | yl) ≤ 0. Within [x−, xL]: (i) if x ∈ Xu(α,1)(yL), Xu(α,1)(yL) ⊆ Xu(α,1)(yH)

implies U(x | yH) = U(x | yL) = u(α, 1); (ii) if x ∈ Xu(α,1)(yH)\Xu(α,1)(yL), U(x |

yL) > U(x | yH) = u(α, 1) by the definition of Xu(α,1); (iii) if x ∈ [x−, xL]\Xu(α,1)(yH),
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then x ∈ [x−, xL]\Xu(α,1)(yl), so lemma 4.7 implies U(x | yH) ≤ U(x | yh) < U(x |

yl) ≤ U(x | yL).

(c) For x ∈ (xL, xH), U(x | yH)− U(x | yL) is continuous in x, negative at xL

and positive at xH , so the mean-value theorem implies the existence of a crossing point

x× ∈ (xL, xH) with U(x | yH)−U(x | yL) = 0. The uniqueness of x× in [xL, xH ] follows

from agent monotonicity. A unique crossing point implies U(x | yH)− U(x | yL) > 0

for x ∈ (x×, xH) and U(x | yH)− U(x | yL) < 0 for x ∈ (xL, x×).

Then proposition 4 part 1 follows from steps (a) and (c-i) above, part 2 follows

from steps (b-ii, iii) and (c-ii), part 3 follows from step (c), and part 4 follows from

step (b-i). QED.

Proposition 5

Proof : Voting decisions of individuals x /∈ Xu(α,1)(yL) follow from proposition

4 (parts 1-3). In detail: (1) If Xu(α,1)(yL) has zero measure, then U(xM | yL) >

U(xM | yH) implies that x× > xM and that (x−, x×) is a majority. Because voters

in [x−, x×)\Xu(α,1)(yL) ⊇ (x−, x×) prefer xL over xH , xL wins. If U(xM | yL) <

U(xM | yH), analogous arguments imply that xH wins. If U(xM | yL) = U(xM | yH)

and x× = xM then (x−, x×) and (x×, x+] both have measure 1/2 and the vote is

tied. (2a) If indifferent individuals vote by closeness, then because Xu(α,1)(yL) is an

interval that starts at x−, individuals x ∈ Xu(α,1)(yL) vote for xL and hence voting

choices are as if Xu(α,1)(yL) had zero measure. (2b) If Xu(α,1)(yL) has positive measure

and x ∈ Xu(α,1)(yL) abstain, let x′M denote the median of [x−, x+]\Xu(α,1)(yL). Then

U(x′M | yL) > U(x′M | yH) implies x× > x′M , so (x−, x×) has greater measure than

(x×, x+] and xL wins. The reverse applies if U(x′M | yL) < U(x′M | yH). QED.
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Proposition 6

Proof : Immediate from proposition 5 (parts 1 and 2a).

Remark: As noted in the text, proposition 6 generalizes to (non-generic)

cases with multi-valued Y∗e (xM). We prove this here as a lemma:

Lemma 6.1: (1) Suppose 0 /∈ Y∗e (xM) and either Xu(α,1)(yM) has zero measure

for yM = min{Y∗e (xM)} or indifferent individuals vote by closeness. Then xM wins

against any other candidate. (2) Suppose 0 ∈ Y∗e (xM). Then: xM wins against any

other candidate who sets ye > 0; xM ties against candidates who sets ye = 0; and

regardless of opponent and election outcome, the winner’s tax function maximizes

xM ’s utility.

Proof: (1-i) Suppose 0 /∈ Y∗e (xM) and Xu(α,1)(yM) has zero measure for yM =

min{Y∗e (xM)}. (Note that taking the minimum ye ∈ Y
∗
e (xM) is least restrictive be-

cause low ye minimizes the measure of Xu(α,1)(ye).) For opponents with given xe > xM ,

proposition 3 implies that ye > yM > 0 for any ye ∈ Y∗e (xe). Hence proposition

4 with xH = xe, xL = xM , and yH ∈ min{Y∗e (xe)} > 0 implies x× > xM and

U(x | yM) > U(x | ye) for x ∈ [x−, x×)\ Xu(α,1)(yM). Because Xu(α,1)(yM) has zero

measure, [x−, x×)\ Xu(α,1)(yM) ⊇ (x−, x×), which is a majority; so xM wins. For

opponents with xe < xM , proposition 4 with xH = xM , xL = xe, and yH = yM > 0

implies x× < xM and U(x | yM) > U(x | ye) for x ∈ (x×, x+]. Because (x×, x+] is a

majority, xM wins.

(1-ii) Suppose 0 /∈ Y∗e (xM) and indifferent individuals vote by closeness. Then

as in (1-i), proposition 4 with xe > xM implies x× > xM . Moreover, voting by

closeness implies that individuals in Xu(α,1)(yM) vote for xM , so x ∈ [x−, x×) vote for

xM ; because this is a majority, xM wins. Also as in (1-i), proposition 4 with xe < xM ,

implies x× < xM and U(x | yM) > U(x | ye) for x ∈ (x×, x+]; because (x×, x+] is a

majority, xM wins.
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(2) Suppose 0 ∈ Y∗e (xM). By proposition 3, candidates who set ye > 0 must

have xe > xM , so proposition 4 with xH = xe, xL = xM implies x× > xM . Note that

Xu(α,1)(0) = ∅ because candidates who set ye = 0 maximize U(x | 0), which implies

U(x | 0) > u(α, 1). Hence, U(x | 0) > U(x | ye) for x ∈ [x−, x×), which is a majority.

Thus by choosing yM = 0, xM wins. Opponents who set ye = 0 are trivially tied if xM

chooses yM = 0 so both candidates set the same policy. If Y∗e (xM) is multi-valued and

xM chooses yM > 0, 0 ∈ Y∗e (xM) implies x× = xM , so the vote is tied. In all cases,

the winner implements U(x | 0), which maximizes U(xM | 0) because 0 ∈ Y∗e (xM).

QED.

Proposition 7

From t(U, Y, x) ≡ Y − c∗(U, Y
x
), T (Y (x)) = t(U(x), Y (x), x) determines T for

all y ∈ [Y (x−), Y (x+)]. Continuity of U , Y , and t implies continuity of T . From

CON, Y has a piecewise continuous derivative ψ, so d
dy
T (Y (x))·ψ(x) = tU(U, Y, x)dU

dx
+

tY (U, Y, x)ψ(x) + tx, except at x where ψ is discontinuous. From (1) and t(U, Y, x) ≡

Y − c∗(U, Y
x
), tU(U, Y, x)dU

dx
+ tx = −c∗U · ω(U, Y, x) + c∗n · Y/x2 = (−1/uc) · ulY/x2 +

(ul/uc) · Y/x2 = 0, so d
dy
T (Y (x)) · ψ(x) = tY (U, Y, x) · ψ(x).

From LB, Y −1 exists for all y ∈ [Y (x−), Y (x+)] except possibly at y = 0 and

y = ye. Moreover, ψ(Y −1(y)) > 0 wherever Y −1 is defined, and ψ is continuous, so

d
dy
T (Y (x)) = tY (U, Y, x) = τ (x) whence dT (y)/dy = tY (U, Y, x) = τ(Y −1(y)). For

any yd ∈ [Y (x−), Y (x+)]\{0, ye} at which ψ(Y −1(yd)) is discontinuous, dT (y)/dy =

τ(Y −1(y)) in a neighborhood of yd (excluding yd), so dT (yd)/dy = limy→yddT (y)/dy =

τ(Y −1(yd)) is well-defined. Thus, (6) holds for all y ∈ [Y (x−), Y (x+)]\{0, ye}. If 0 ∈

[Y (x−), Y (x+)], then dT (0)/dy ≡ limy→0dT (y)/dy = τ (max{x | Y (x | ye) = 0}) is

well-defined. Thus, T is continuously differentiable on [Y (x−), Y (x+)]\{ye}. (Because

Y −1(0) is undefined if {x | Y (x | ye) = 0} is an interval, (6) may not hold at y = 0.)

1. On [x1, x2], τ(x) = S(x | ye, Te), which increases strictly in x from agent
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monotonicity. Thus τ(x2) > τ (x1). The one-sided limits follow from the continuity

of dT (y)/dy = τ(Y −1(y)) for y < ye in a neighborhood of ye and for y > ye in a

neighborhood of ye.

2. Monotonicity of Y implies Y (x) ≥ ye. Because (ye, Te) ∈ P by proposition

2, proposition 1 (2b) requires that {U(x), Y (x)} solve RMA on [xe, x+] and RMB on

[x
−
, xe]. Integrating the Euler equation (A.2):

ξA(x) = −

∫ x+

x

η(x, z)

uc(c∗(U(z), Y (z)/z), 1− Y (z)/z)
dF (z) + ξA(x+), (A.14)

where η(x, z) ≡ exp[
∫ z
x
ωU(U(z̃), Y (z̃), z̃)dz̃] > 0. The transversality condition for

RMA is ξA(x+) = 0, which implies ξA(x) < 0 on [xe, x+). In (A.1) for RMA, LB

implies µx(x) = 0 for x ≥ x2, so τ(x) = 1 − ul
ucx

= −[ωY (U, Y, x)/f(x)]ξA(x). It is

straightforward to show that agent monotonicity implies ωY > 0. Because f > 0 and

ξA(x) < 0, it follows that τ(x) > 0 on [x2, x+), and because ξA(x+) = 0, it follows

that τ (x+) = 0 if x+ <∞.

3. Monotonicity of Y implies Y (x) ≤ ye. Integrating the Euler equation (A.2):

ξB(x) =

∫ x

x−

η(x, z)

uc(c∗(U(z), Y (z)/z), 1− Y (z)/z)
dF (z) + ξB(x−). (A.15)

Because (4) holds if and only if U(x−) ≥ u(α, 1), the transversality conditions for

RMB are [U(x−) − u(α, 1)] · ξB(x−) = 0 and ξB(x−) ≤ 0. Because η/uc > 0, ξB is

strictly increasing. Thus there are three possibilities: ξB < 0 for x < x1; ξB switches

sign from negative to positive at a point xτ ∈ (x−, x1) where ξB(xτ ) = 0; or ξB ≥ 0

for x < x1. As above, (A.1) and LB imply that ξB(x) and τ(x) have opposite signs

on [x0, x1].

If ξB < 0 for x < x1 then τ(x) > 0 on [x0, x1) so T increases strictly; this is

case c. If ξB(xτ ) = 0 for some xτ ∈ (x−, x1), the shape of T depends on xτ and x0.

If xτ > x0, (A.1) and LB imply τ (xτ ) = 0, τ(x) > 0 on (x0, xτ ), and τ(x) < 0 on

(xτ , x1); this is the inverted U-shaped case b. Finally, if xτ < x0 or if ξB ≥ 0 for
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x < x1, (A.1) and LB imply τ(x) < 0 on [x0, x1), so T increases strictly; this is case

(a). If (4) does not bind (ξB(x−) = 0), then (A.15) implies ξB > 0 on (x−, x1], which

is case a. Q.E.D.

Remark: If (4) binds with α = 0, then taxes at x− are non-negative. To

see this, consider Y (x−) = 0 and Y (x−) > 0 separately. If Y (x−) = 0 then

u(0, 1) = u(0−T (Y (x−)), 1) so T (Y (x−)) = 0. If Y (x−) > 0, then U(x−) = u(0, 1) =

u(Y (x−)− T (Y (x−)), 1− Y (x−)/x−). Extend T by defining u(y− T (y), 1− y/x−) =

U(x−) for y ∈ [0, Y (x−)], so T follows xe’s indifference curve. By agent monotonicity,

the extension does not alter the income choice of any x > x− so the extended tax

function implements the same allocation as the original function. From proposition

7, parts 3(a,b), τ (Y (x−)) > 0 so tY (u(0, 1), Y (x−), x−) = 1 − ul/(ucx−) > 0. By

concavity of indifference curves, tY (u(0, 1), y, x−) ≥ tY (u(0, 1), Y (x−), x−) > 0 for all

y ∈ [0, Y (x−)]. Therefore T (Y (x−)) =
∫ Y (x−)
0

tY (u(0, 1), y, x−)dy > 0.

Proposition 8

The Euler equations for R̂M imply that the costate variable associated with

Û , denoted ξ̂, satisfies (A.14) for all x. Because η/uc > 0 and ξ̂(x+) = 0, it follows

that ξ̂(x) < 0 for x < x+. By (A.1), τ̂ (x) > 0 for x < x+ and hence for x ∈ [x−, xe]

in the solution to R̂M. As {U(x), Y (x)} → {Û(x), Ŷ (x)}, we have τ(x) → τ̂ (x)

pointwise. Because [x−, xe] is compact, the convergence τ (x) → τ̂(x) > 0 is uniform

on [x−, xe]. Hence there is a neighborhood of (Ĝ(α), α) such that τ(x) > 0 for all

[x−, xe]. Because τ (x) ≥ τ (xe) > 0 on [xe, x2] and τ(x) > 0 for x ≥ x2, it follows that

τ(x) > 0 for all x ∈ [x−, x+]. Q.E.D.
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