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Abstract

Meltzer-Richard (1981) show that voting over linear (one-dimensional) taxes

leads to a positive tax rate and government transfer under plausible distribu-

tional assumptions. Their result provides a theory of welfare to low-productivity

individuals. We study voting over general non-linear (multi-dimensional) tax

schedules. We assume the tax schedule is set by an elected politician; this

assumption eliminates cycling. Voting outcomes are consistent with Director's

law: net taxes favor the middle class.

Preliminary{Comments Very Welcome
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INTRODUCTION

Meltzer and Richard (1981) show that labor is taxed to provide a positive

per-individual lump-sum transfer in direct democracy with majority rule if taxes are

constrained to be linear and the median voter's income is less than average income.

Their result provides a non-altruistic theory of welfare to the poor; roughly, the

equilibrium linear tax under majority rule with purely sel¯sh voters transfers from a

smaller number of higher-productivity voters to a larger number of lower-productivity

voters.

Although a linear tax has two parameters (a tax rate and a per-capita trans-

fer amount), policy is one-dimensional in Meltzer-Richard because the government

budget balances so the choice of the tax rate fully determines the size of the per-

capita transfer. The linear-tax (one-dimensional policy) restriction matters; without

it, voting equilibrium fails generically to exist.1 This can be seen by considering an

electorate of three voters: any tax policy can be upset by a coalition of two voters

who support a new policy that would e®ectively take resources from the third voter.

The linear-tax restriction imposed in Meltzer-Richard is not the outcome of

a political process. We assume that policy is determined in a simple form of rep-

resentative democracy and extend the ideas in Meltzer-Richard to general nonlinear

(multi-dimensional) tax policy.2 Voters elect a single agent who, once elected, imple-

ments his/her own most preferred policy.3 The elected agent maximizes own utility
1For instance, Hindriks and de Donder (2000), study a case in which rich and poor voters together

extract resources from middle-income voters.
2Roemer (1999) assumes a quadratic tax function and shows that progressive taxation results

from a political process in which party positions in a general election re°ect compromise between

internal factions in each party.
3Osborne and Slivinski (1996) consider such a setting, which they term one of \citizen-
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by choosing a net tax function that transfers resources from individuals with pro-

ductivities di®erent from his/her own.4 The maximization is technically similar to

that in Mirrlees (1971) in which an integral of utilities is maximized by choosing

a tax function that transfers resources to those with greater e®ective weight in the

welfare function. Voters know the policy that would be implemented by each candi-

date. As in Mirrlees (1971), policy must satisfy incentive-compatibility and budget

constraints but is not restricted to any functional form. We end up with a theory of

Director's Law instead of a theory of welfare to the poor.5 Although taxes are still

progressive at higher incomes, equilibrium policy tends to transfer net resources from

lower-productivity to middle-productivity individuals.6

To understand the main forces, consider an election between two candidates

who are members of a population of voters. Individuals di®er only in productivity,

so voter heterogeneity is one-dimensional. The candidate who receives the majority

of the votes is elected. This elected agent chooses to impose a negative (low) net

tax on himself/herself and generally higher net taxes on others. Suppose: candi-

dates di®er in productivity and in the tax functions they would impose; one of the

candidates has median productivity; and no voters abstain. Along the single dimen-

sion of productivity, voter choices are monotone: any voter with productivity greater

than both candidates' productivities prefers the tax function set by the candidate

with the greater productivity, and any voter with productivity lower than both can-

didates' productivities prefers the tax function set by the candidate with the lower

candidates." See also Beasley and Coate (1997).
4The net tax is the level of payments to government net of transfers from government.
5See Stigler (1970), who argued that the middle classes sometimes have relatively great political

clout and also disproportionately bene¯t from many government spending programs. Recent analyses

of such spending programs are in Gouveia (1997) and Dixit and Longregan (1998).
6We use equilibrium to mean that a policy that would win an election against any alternative

policy.
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productivity.

Monotonicity implies that the candidate that receives the vote of median-

productivity voters wins under majority rule. A corollary is that a candidate with

median productivity beats any other candidate who would choose a di®erent policy.

Speci¯cally, if the other candidate has less-than-median productivity, the median-

productivity candidate obtains all votes of those with greater-than-median produc-

tivity and some votes of those with less-than-median productivity, and if the other

candidate has greater-than-median productivity, then the median-productivity can-

didate obtains all votes of those with less-than-median productivity and some votes

of those with greater-than-median productivity. In this way, the assumption of rep-

resentative democracy helps rule out cycling, and gives a median-voter outcome.

Resulting positive marginal (net) tax rates at higher incomes are techni-

cally similar to progressive taxation in Meltzer-Richard and Mirrlees. Di®erent from

Meltzer-Richard and Mirrlees is that individuals with below-median productivity are

taxed more than on those with median productivity. This implies that marginal

rates at incomes just below that earned by median-productivity individuals may be

negative.

Such negative net marginal taxes at \lower-middle" incomes need not occur

if government also ¯nances non-redistributional spending or if agents are altruistic.

(Meltzer and Richard focus on the implications of self-interested behavior and thus ab-

stract from altruism; they also abstract from non-redistributional spending.) Specif-

ically, positive non-redistributional spending e®ectively gives government a revenue

requirement that can make predicted marginal rates positive at all incomes. Similarly,

a strong altruistic preference to provide a utility °oor for all individuals e®ectively

gives government a positive revenue requirement that can cause uniformly positive

marginal rates.

Predicted negative or at least low marginal net are consistent with spending
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programs that transfers resources more to middle-income individuals than to lower-

income individuals. Such programs make the net tax fall with income more than

it otherwise would have, which tends to push net marginal rates down and possibly

make them negative.

Section I describes the model. Because Mirrlees-type models are technically

complex, section II uses a numerical example to provide an intuition for the results.7

Formal analysis and a su±cient condition for a median voter to be the elected agent

are in sections III-IV. The analysis is by backward induction. First, we characterize

the tax functions that would be set by agents with di®erent productivities if they

were elected. Second, we characterize the pro¯les of individual utilities that would

be induced if agents with di®erent productivities were elected. An individual votes

in a two-candidate election for the candidate who would give the individual greater

utility. We show that a median-productivity agent wins an election against a candi-

date that would implement any policy other that the median agent's policy. Section

V shows that inclusion of non-redistributional spending or altruism can cause the

elected agent's tax function to have non-negative marginal rates throughout. Section

VI concludes.

I. MODEL

We follow Meltzer-Richard and Mirrlees in assuming that tax-paying units

(henceforth, \individuals") di®er only in productivity so heterogeneity among indi-

viduals is one-dimensional. Speci¯cally, we assume that all individuals have the same

utility function and that there is no non-labor wealth. There is a unit mass of in-
7Numerical techniques are often used to gain insight into the shape of the welfare-maximizing

tax function|see Mirrlees, (1971), Tuomala (1984), Kanbur and Tuomala (1990), Diamond (1998).

A survey is in Tuomala (1994). Numerical simulation has also been used to evaluate dynamic voting

models|see Krusell and R¶ios-Rull (1999).
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dividuals. Productivity x has distribution function F (x) with continuous density f

and ¯nite mean over support [x¡; x+], with x+ > x¡ ¸ 0; x+ may be in¯nite. Below,

\all x" means \all x 2 [x¡; x+]" and \some x" means \some x 2 [x¡; x+]:"

Each individual has strictly increasing, di®erentiable, weakly concave utility

u de¯ned over consumption c ¸ 0 and leisure l; where 0 · l · 1. Each maximizes

utility by choosing how much to labor to supply, n ´ 1¡ l; which determines income,

y ´ nx; and hence consumption, c ´ y ¡ T , where T is the tax the individual

pays. To ensure that labor supply is always strictly less than one, we assume that

liml¡>0 ul(c; l)=uc(c; l) = 1 for any c > 0; where subscripts denote partial derivatives

here and below.8

Prior to making labor-leisure choices, individuals elect one of their members

(the \elected agent," denoted e) to form a government that ¯nances transfers and

possibly other government spending out of tax revenue. The government can observe

individuals' incomes but not their productivities or work e®orts, and hence it im-

poses a tax function T ¤ that speci¯es the positive or negative net taxes paid by each

individual as a function of the individual's income.

Elections are between two exogenously given candidates and are settled by

majority rule. Each individual is a potential voter. If the two candidates' tax func-

tions give a voter di®erent utilities, then the voter votes for the candidate that would

provide the higher utility. We characterize the electoral winner according to the Con-

dorcet criterion, asking whether there is a tax function such that a candidate who

would impose that function would beat a candidate who would impose any alternative

tax function.

The elected agent maximizes own utility by choosing a net-income-tax function

T ¤ subject to a government budget constraint
R x+
x¡
T ¤(Y (x))dF (x) ¸ G; where G ¸ 0

8Meltzer and Richard make similar assumptions. Our analysis also applies to preferences with

¯nite ul(c; 0)=uc(c; 0) provided l ¸ 0 is not a binding constraint.
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is an exogenous level of non-redistributional spending and Y is the pro¯le of incomes

chosen by all individuals when the tax function is T ¤. Meltzer and Richard (1981)

assume G = 0; we allow G > 0 to show how government spending in°uences the

shape of the tax function.

We assume that tax functions T ¤ exist that strictly satisfy the government

budget. Let Ĝ denotes the supremum of levels of G that can be ¯nanced. Speci¯cally,

we assume that Ĝ > 0 and G 2 [0; Ĝ):

A key constraint on government's power to tax is the \threat" of citizens not

to work.9 We express this as a minimum utility constraint of the form

U (x) ¸ umin > ¡1; for all x; (1)

where U(x) is the utility obtained by an individual with productivity x under the tax

function chosen by e. (We suppress dependence of U , Y , T ¤ and other functions on

e here and below when no ambiguity arises.) The natural interpretation is that umin

is the utility of a non-worker with zero taxes, umin = u(0; 1):10

Following Mirrlees (1971) and Seade (1982), we make the agent monotonicity

assumption that nul(c; 1 ¡ n)=uc(c; 1 ¡ n) is strictly increasing in n for all c > 0.

This ensures that the marginal rate of substitution between c and l declines with x

so income is a signal for productivity. Su±cient conditions for agent monotonicity

are that consumption is normal or that utility is separable. Meltzer and Richard take

consumption to be normal, which is slightly stronger.
9Intuitively, taxation without the right to refuse work could lead to tax policies that force low

productivity individuals to work essentially all the time (n ¼ 1) and to pay almost their entire

income in taxes. Such slavery-like solutions seem uninteresting.
10If u is unbounded, then umin = u(0; 1) = ¡1 could occur, violating (1). In such cases, we

rede¯ne c to be consumption ¯nanced from taxed income, and assume that individuals also obtain

consumption from home production, underground labor, or altruistic transfers. These assumptions

make u(0; 1) is ¯nite, and the analysis below goes through we the rede¯ned variable c:
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Agent e's utility maximization induces pro¯les of indirect utilities fU (x)gx
and incomes fY (x)gx for each individual under the policy implemented by e. To

characterize the policy choices of a given elected agent e, we follow Mirrlees (1971,

1986) by transforming the controls into the choice of a utility and income pro¯les

and then invoking the revelation principle to formulate the problem as a standard

control problem. Speci¯cally, the elected agent's problem of choosing the net-income-

tax function T ¤ is equivalent to choosing a tax pro¯le fT (x)gx and an income pro¯le

fY (x)gx subject to incentive-compatibility constraints requiring that any individual

with productivity x be induced to work n(x) = Y (x)=x in order to earn the assigned

income Y (x). Because utility, income, and taxes are linked by the identity

U(x) ´ u(Y (x) ¡ T (x); 1 ¡ Y (x)=x); for all x; (2)

the choice of tax and income pro¯les is equivalent to the choice of utility and income

pro¯les.

To express the incentive-compatibility constraints as functions of the controls

fU(x)gx and fY (x)gx; denote the consumption level that provides utility U at work

e®ort n by c¤(U; n); this function is de¯ned by the identity U = u(c¤; 1¡n): Incentive-
compatibility then requires

U(x) ¸ u(c¤(U(z); Y (z)=z); 1 ¡ Y (z)=x); for all x and z satisfying x ¸ Y (z);
(3)

which says that income and utility pro¯les must be such that an individual with true

productivity x does not prefer the income-and-tax package of any other individuals

(z) to his own. The constraints apply only for Y (z) · x because an individual with

productivity x cannot earn an income Y (z) > x within the time constraint n · 1.

From Mirrlees (1971, 1986), the incentive-compatibility constraints (3) are
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equivalent to the combination of a di®erential equation

U(x) ¡ U(x¡) =
Z x

x¡
!(U (z); Y (z); z)dz;

where !(U; y; z) ´ ul(c¤(U (z); y(z)=z); 1 ¡ y(z)=z) ¢ y(z)=z2; (4)

plus requirements that Y (x) be monotone non-decreasing on [x¡; x+] and that Y (x) <

x:11 We therefore replace (3) by (4 below, and impose monotonicity by using the

income derivative

Ã(x) ´ dY=dx ¸ 0

as a piecewise continuous control constrained to be non-negative; this treats U and Y

as state variables.12 Our assumption that liml¡>0 ul(c; l)=uc(c; l) = 1 for any c > 0

ensures that Y (x) < x always holds.

The government budget constraint can also be expressed in terms of the pro¯les

fU(x)gx and fY (x)gx,
Z x+

x¡
[Y (x) ¡ c¤(U (x); Y (x)=x)]dF (x) ¸ G: (5)

Thus the elected agent solves the problem:

maximize U(xe);

by choice of fÃ(x)gx ¸ 0; subject to (1), (4), and (5),

where xe denotes e's productivity. We refer to this as e's problem. The tax pro¯le

fT (x)gx that solves e's problem is obtained from (2).
11Speci¯cally, theorem 1 in Mirrlees (1971) shows that (3) implies a non-decreasing income pro¯le

and Y (x) < x. Lemma 6.1 in Mirrlees (1986) proves that (3) implies (4) for a lower bound of 0

instead of x¡; taking the di®erence U(x) ¡ U(x¡) yields (4) for any x¡ ¸ 0. That (4) implies (3) is

a special case of Mirrlees (1986) lemma 6.3, as discussed in Mirrlees (1986, p. 1237).
12That is, we follow Brito and Oakland (1977) and Ebert (1992) in using a \second-order" ap-

proach; see Miles (1995) for discussion. Of course, dY (x)=dx is unde¯ned at points where Ã is

discontinuous.

8



II. AN EXAMPLE

This section presents an example that highlights the model's salient features

without dwelling on technical complications.

Diamond (1998) reduces Mirrlees' analysis to a single di®erential equation by

assuming preferences are a±ne: u(c; l) = c + v(l). We follow Diamond in assuming

a±ne preferences with a constant elasticity of labor supply, u(c; l) = c + v0f1 ¡
(1 ¡ l)1+v1g=(1 + v1), where v0 is a constant and v1 is the wage elasticity of labor

supply. In the example, we take v0 = 5, v1 = 1, and assume that F (x) is uniform on

[x¡; x+] = [:2; 1:8].13 We also assume that G = 0: We also assume that G = 0:

Consider an election between a median-productivity individual emed and an

alternative individual ealt whose productivity, x = :84; is at the 40th percentile. The

solid line in ¯gure 1 is the tax function emed would set if elected and the dashed line

is the function ealt would set if elected. Because G = 0 and the government budget

binds, some individuals gain (T < 0) and others lose (T > 0) from either imposed

tax function.

If elected, either individual would impose a low tax rate on himself/herself and

would transfer resources from others by imposing a net tax function that is V-shaped

with a local minimum at the individual's own income ye = y(xe), as in the ¯gure. The

reason for this shape is that the incentive-compatibility constraints imply that voters

with similar productivities cannot be taxed too di®erently. The steepness of the V

balances two forces. A steeper V tends to extract greater resources from others by

raising taxes paid by others, increasing the net transfer to the elected agent. Because

the agent's own income level is tax-favored and taxes are based on income and not

productivity, however, individuals with productivities x 6= xe have an incentive to
13Although a±ne utility violatesour assumption that liml¡>0 ul(c; l)=uc(c; l) = 1, the parameter

values we choose ensure that leisure is bounded away from zero so Y (x) < x:
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change their labor supplies to earn the tax-favored income level ye. This means that

a steeper V also distorts individual incentives toward earning the elected agent's

income, reducing the net transfer to the elected agent.

An individual's incentive to distort labor choice to earn the tax-favored in-

come level decreases with the di®erence between the individual's productivity and e's

productivity. Thus there is an interval of productivities around xe, denoted [x1; x2]

below, such that e's optimal tax function induces all individuals with productivities

in [x1; x2] to earn ye: This gives a mass-point in the income distribution at ye. The

imitation-intervals are illustrated in ¯gure 2, where interval endpoints are slightly

higher if e = emed than if e = ealt: Note that, if the elected agent were to impose a

(suboptimal) tax function with a steeper V, more agents would imitate e's income

and the interval [x1; x2] would expand.

The minimum-utility constraints (1) limit government ability to impose posi-

tive taxes on individuals with low market incomes.14 This explains why the two tax

functions rise from the origin, peak, and then fall at incomes below e's. Without

constraints (1), the model would have very-low-productivity individuals paying more

taxes than median-productivity individuals, a strong form of Director's law. No cor-

responding e®ect is present at higher incomes, so marginal rates are positive at all

incomes above ye: Thus marginal rates in the example are positive at very low incomes

and then negative up to ye, before again becoming positive at higher incomes.

The tax functions in ¯gure 1 yield di®erent utilities for di®erent voters. The

tax function set by emed is better for all voters with productivities greater than 1.0 and

the function set by ealt is better for all voters with productivities less than .84. For

those in between, there is a cut-o® productivity at x = 0:926 such that all individuals

with productivities above the cut-o® receive greater utility if e = emed and all agents
14Meltzer-Richard and Mirrlees only consider cases in which the optimal or equilibrium policy is to

transfer to low-productivity agents, so minimum-utility constraints would not bind in their models.
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below the cut-o® receive greater utility if e = ealt: This is illustrated in ¯gure 3, where

the utility pro¯le induced by the median-productivity agent is the solid line and the

pro¯le induced by the agent with productivity .84 is the dashed line. (The pro¯les

coincide for low-productivity individuals with utility umin.)

It is clear from ¯gure 2 that a majority of individuals would receive higher

utility if the median-productivity candidate were elected. Thus emed would win an

election against ealt: This would also be true for any alternative candidate, not just one

with x = :84: Thus a median-productivity candidate would win an election against

any opponent.

In the sections below, we show that a median-productivity candidate would

win under more general assumptions about F , u; and G. A key to showing this is

to establish the single-crossing property of utility pro¯les in ¯gure 3. With single-

crossing, a median-productivity candidate running against any alternative candidate

with less-than-median productivity would receive the votes of all individuals with

greater-than-median productivities and some individuals with productivities between

those of the two candidates, gaining a majority. Similar electoral arithmetic applies

if the alternative candidate has greater-than-median productivity.

The speci¯cation of simple representative democracy here rules out the cycling

that would occur with an in¯nite-dimensional tax function under Meltzer-Richard's

speci¯cation of direct democracy. With direct democracy, cycling would occur be-

cause it is always possible to ¯nd a majority coalition that would prefer an alternative

tax function. For instance, majority coalition of \rich" and \poor" voters might de-

sign a tax function they prefer over the median voter's function. Were such a coalition

to form in our model, however, either a rich or a poor candidate would have to be

elected to implement the coalition policy, but once elected, this agent would impose

his or her own most preferred policy and not the coalition's.

Figure 4 compares the equilibrium tax function in the example above to the
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Meltzer-Richard outcome, which arises if the tax function in our model is constrained

to be linear. In both cases, a median-productivity candidate is elected. With non-

linear taxation, the elected, median-productivity agent's tax function gives a large

net transfer to the elected agent and a negative net transfer to low-productivity

individuals. This does not occur under a linear-tax constraint because the median-

productivity agent is then constrained to give a large net transfer to low-productivity

individuals in order to obtain a small net transfer for him/herself.

Figure 5 illustrates the impact of government spending G on the equilibrium

tax functions. For G = 0, individuals with incomes near ye receive transfers while

individuals with income near Y (x¡) pay taxes, giving the tax function a mostly

negative slope at the lower end. For higher G values, the minimum utility constraint

rules out increased taxes on low productivity individuals, forcing the elected agent

to impose higher taxes on middle and upper income individuals to collect revenues.

As G approaches Ĝ (about 0:0772 in this example), the negatively sloped segment of

the tax function vanishes. Thus, non-linear taxation is consistent with monotonely

increasing taxes; this is important to avoid misinterpretations of Figures 1-2. Note

that all the equilibrium tax functions display a downward-pointing "kink" at ye. This

re°ects the elected agent's ability to design a tax function favoring the agent's own

equilibrium income level and turns out to be a generic feature of the non-linear tax

model.

III. AN ELECTED AGENT'S POLICY

To solve e's problem, we ¯rst remove the complication that the objective

U(xe) is also a point on the utility pro¯le and hence enters a subset of the incentive-

compatibility constraints. The approach is to consider a modi¯ed version of e's prob-

lem that will turn out to have the same solution as e's problem. In the modi¯ed

problem, e chooses a separate income level ye and tax level Te for him/herself, and
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maximizes ue = u(ye¡Te; 1¡ye=xe) subject to additional incentive compatibility con-

straints that no individual capable of earning ye would prefer earning income ye and

paying taxes Te over his/her assigned point on the income pro¯le. These additional

constraints are

U(x) ¸ Ue(x) for all x ¸ ye; (6)

where Ue(x) ´ u( ye ¡ Te; 1 ¡ ye=x) is the utility an individual with productivity x

would receive from imitating e's income and paying e's level of taxes. Formally, e's

modi¯ed problem is to

maximize ue = u(ye ¡ Te; 1 ¡ ye=xe);

by choice of ye; Te; and fÃ(x)gx ¸ 0; subject to (1), (4), (5), and (6).

A given pair (ye; Te) is feasible if and only if a pro¯le fÃ(x)gx exists that sat-
is¯es (1), (4), and (6), and yields su±cient revenue to fund G: We evaluate feasibility

by solving the conditional revenue problem (CRM):

maximize
Z x+

x¡
[Y (x) ¡ c¤(U(x); Y (x)=x)]dF (x) (7)

by choice of fÃ(x)gx ¸ 0, subject to (1), (4), and (6).

For any pair (ye; Te), the solution fÃ(x)gx (if one exists) implies a revenue value

R(ye; Te) ´
R x+
x¡

[Y (x)¡c¤(U(x); y=x)]dF (x): The pair (ye; Te) is feasible if R(ye; Te) ¸
G:

We solve CRM by breaking it into three problems.15 The ¯rst is the uncon-
15The \simple" approach of applying the maximum principle directly to CRM is problematic be-

cause the inequality constraints (6) cause CRM to violate commonly-assumed regularity conditions|

see Seierstad and Sydsaeter (1987, ch.5).
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ditional revenue problem (URM):

maximize
Z x+

x¡
[Y (x) ¡ c¤(U(x); Y (x)=x)]dF (x)

by choice of fÃ(x)gx ¸ 0, subject to (1), and (4),

with optimal pro¯les denoted fÛ(x); Ŷ (x)gx; this problem is CRM without (6). Be-

cause ye and Te enter CRM only through (6), URM is independent of (ye; Te).

For (ye; Te) pairs with su±ciently low ce = ye ¡ Te, the utility from imitating

e's income and paying e's level of taxes may be low enough so that Û(x) ¸ Ue(x)
for all x; in which case fÛ(x); Ŷ (x)gx satis¯es (6) and therefore solves CRM. For

each such pair (ye; Te) for which Û (x) ¸ Ue(x) for all x, the solution fÛ(x); Ŷ (x)gx
provides maximum revenue to fund G, so R(ye; Te) = Ĝ.

For all other (ye; Te) pairs, Û (x) < Ue(x) for at least one value of x, which

means that fÛ(x); Ŷ (x)gx cannot be a solution to CRM and that (6) must bind at

some (possibly di®erent) value of x in the solution to CRM. Given a (ye; Te) pair with

Û(x) < Ue(x) for at least one x; let xc denote a value of x at which (6) binds in the

solution to CRM, or U (xc) = Ue(xc). For given (xc; ye; Te); problem CRM1 then

focuses on revenue from individuals with x · xc:

maximize R1(xc; ye; Te) =
Z xc

x¡
[Y (x) ¡ c¤(U (x); Y (x)=x)]dF (x)

by choice of fÃ(x)gx ¸ 0; subject to (1), (4); U (xc) = Ue(xc); and Y (xc) · ye.

Similarly, problem CRM2 focuses on revenue from individuals with x ¸ xc:

maximize R2(xc; ye; Te) =
Z x+

xc
[Y (x) ¡ c¤(U(x); Y (x)=x)]dF (x)

by choice of fÃ(x)gx ¸ 0, subject to (1), (4), U(xc) = Ue(xc) and Y (xc) ¸ ye.

Problems URM, CRM1, and CRM2 have the same objective function and

di®erential equations. They di®er only in domains and boundary conditions. Hence
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their Hamiltonians and Euler equations have the same form. The Hamiltonian is

H(U;Y; Ã; »; ¹; x) = [Y ¡ c¤(U; Y=x)] ¢ f(x) + !(U; Y; x) ¢ »(x) + Ã(x) ¢ ¹(x);

where » and ¹ as the costate variables associated with U and Y; and the Euler

equations are

HY = (1 ¡ ul
ucx

) ¢ f(x) + !Y (U; Y; x) ¢ »(x) = ¡¹x(x), (8)

HU = (¡ 1
uc

) ¢ f (x) + !U(U; Y; x) ¢ »(x) = ¡»x(x), (9)

using dc¤=dn = ul=uc and dc¤=dU = 1=uc.

We sidestep the technical complications of existence with:16

ASSUMPTION (CON): URM, CRM1, and CRM2 each have at least one

solution with a Hamiltonian strictly concave in (U; Y ). For CRM1 and CRM2, this

is assumed for all (xc; ye; Te) such that Û(xc) · Ue(xc).
We then have:

Lemma 1 (Revenue Maximization) Assume CON. Then:

1. The solution to URM de¯nes a unique and continuous pro¯le fÛ(x); Ŷ (x)gx for
utility and income.

2. For (ye; Te) such that Û(x) ¸ Ue(x) for all x, fÛ (x); Ŷ (x)gx is the unique

solution to CRM and R(ye; Te) = Ĝ.

3. For (ye; Te) such that Û(x) < Ue(x) for some x, CRM has a unique solution

fU(x); Y (x)g and:
16The assumption that productivity has a continuous distribution makes existence a technically

complicated issue; it would not be had we assumed that productivity had a discrete distribution.
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(a) There is an interval [x1; x2] such that U(x) = Ue(x) and Y (x) = ye on

[x1; x2], and U(x) > Ue(x) for all x =2 [x1; x2].

(b) If U(x) = Ue(x) for any x 2 (x¡; x+) in the interior of [x¡; x+], then

the interval [x1; x2] is non-degenerate (x1 < x2). The degenerate cases

x1 = x2 = x¡ and x1 = x2 = x+ <1 are possible.

(c) For any xc 2 [x1; x2] at which U(xc) = Ue(xc); the solution to CRM1 on

[x¡; xc] together with the solution to CRM2 on [xc; x+] also solves CRM.

The revenue value R(ye; Te) = R1(xc; ye; Te)+R2(xc; ye; Te) does not depend

on the choice of xc.

4. Revenue R is continuous and di®erentiable in (ye; Te); and is strictly increasing

in Te if Û(x) < Ue(x) for some x.

5. The function T ¤e (ye;G) = argminfTejR(ye; Te) ¸ Gg is continuous and di®er-

entiable in (ye; G); and is strictly increasing in G for 0 · G < Ĝ.

Partial Proof (remainder in Appendix): Part 1 follows from CON and the Man-

gasarian su±ciency theorem. In Part 2, u(ye ¡ Te; 1 ¡ ye=x) · Û(x) ensures that (6) is

non-binding. In Part 3, u(ye ¡ Te; 1 ¡ ye=xc) > Û(xc) ensures that fÛ(x); Ŷ (x)gx does

not solve (CRM) and that there is a point xc where (6) binds. Given xc, CON implies that

CRM1 yields a unique pro¯le fU (x); Y (x)g on [x¡; xc], that CRM2 yields a unique pro¯le

fU(x); Y (x)gx on [xc; x+]. One can show (see Appendix) that the values match at xc and

that the pro¯les do not depend on the choice of xc, and one can prove by contradiction

(exploiting continuity) that (6) must bind on an interval around xc (denoted [x1; x2]) except

if xc = x¡ or if xc = x+, and that (6) cannot bind outside this interval; this proves Part

3. Given any xc 2 [x1; x2], CON implies that CRM1 yields a unique pro¯le fU (x); Y (x)g
on [x¡; xc], that CRM2 yields a unique pro¯le fU (x); Y (x)gx on [xc; x+] with matching

values at xc, and that these pro¯les do not depend on the choice of xc; this proves Part 3c
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and the uniqueness of fU(x); Y (x)gx on [x¡; x+]. In Part 4, continuity is standard (e.g.,

Seierstad/Sydsaeter 1987, p.213, theorem 9, applies). The strictly increase with respect to

Te follows from a parametric variation of the boundary condition U(xc) = Ue(xc) in CRM1

and in CRM2 (which is lengthy, though straightforward; see Appendix). Part 5 follows from

the implicit function theorem applied to Part 4. ¥
Lemma 1 shows that for any choice of e's own income ye, the revenue require-

ment R(ye; Te) = G de¯nes a unique value T ¤e (ye;G) of the elected agent's own tax

payment. For given G, the set

Ce = f(ye; ce) ¸ 0jce · ye ¡ T ¤e (ye; G)g (10)

describes e's feasible choices in the income-consumption space. Since income and

leisure are negatively related by the identity l = 1 ¡ y=xe, e's indi®erence curves

are positively sloped, convex, and continuous lines in the same space{lines of the

form f(y; c) ¸ 0jue = u( c; 1 ¡ y=xe)g for given utility values ue. The shape of

the Ce and of the indi®erence curves are illustrated in ¯gure 6, using values from

Example 1. Thus, e's modi¯ed problem reduces to the problem of maximizing ue =

u(ye ¡ T ¤e (ye; G); 1 ¡ ye=xe) by choice of ye. Finding the solution means ¯nding the

highest indi®erence curve that touches the set Ce.

The set Ce is not necessarily convex (as demonstrated by ¯gure 6) and the same

set Ce applies to all potentially elected agents, regardless of their own productivity.

The former suggests that e's problem may have multiple solutions. The latter will

be critical for the voting analysis, because it allows us to compare solutions chosen

by di®erent elected agents. The following Proposition characterizes the e's utility

maximization and shows that the solution solves e's problem as originally stated in

section I.

Proposition 1 (Utility Maximization) For any xe 2 [x¡; x+], e's modi¯ed prob-

lem has at least one optimal solution (ye; Te; fU (x); Y (x)gx). All solutions have the
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following properties:

1. Optimal values of ye maximize ue = u(ye¡T ¤e (ye; G); 1¡ye=xe) for 0 · ye · xe.

2. The solutions to e's problem and e's modi¯ed problem coincide, and are given

by the income values ye 2 fye = argmaxu(ye ¡ T ¤e (ye; G); 1 ¡ ye=xe)g, the

associated tax values Te = T ¤e (ye; G), and the pro¯les fU(x); Y (x)gx that solve

(CRM1) and (CRM2) for (xc; ye; Te) = (xe; ye; T ¤e (ye; G)).

3. For ye > 0, any optimal value ye must satisfy the ¯rst-order condition

@T ¤e =@ye = (1 ¡ ul
ucxe

);

with ul and uc evaluated at (ye ¡ T ¤e (ye; G); 1 ¡ ye=xe).

4. If xe 2 (x¡; x+) and G < Ĝ, then the income pro¯le Y displays bunching on

a non-degenerate interval [x1; x2] that includes xe, i.e., Y (x) = ye for all x 2
[x1; x2].

Proof: Part 1 is a restatement of e's modi¯ed problem, part 3 is the associated

¯rst-order condition, and part 2 referring to the modi¯ed problem follows from lemma 1

(uniqueness). From the continuity of R, R(ye; Te) = G holds at the optimum, that is,

fU(x)gx and fY (x)gx maximize revenue conditional on (ye; Te). Solutions to e's modi¯ed

problem satisfy U(xe) ¸ ue because (6) applies everywhere, including at xe. If U(xe) >

ue held, the program cannot be optimal because e could raise own utility by choosing

(Y (xe); T (xe)) instead of (ye; Te). Therefore (6) binds at xe, proving xe 2 [x1; x2] and

Y (xe) = ye, and showing that any solution to e's modi¯ed problem solves e's original

problem. Conversely, any feasible pro¯le in e's original problem is feasible in the modi¯ed

problem, showing that e's original problem cannot have additional solutions. Since ye

maximizes a continuous function on the compact set [0; xe], at least one solution exists.
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In part 4, G < Ĝ implies ue > Û(xe), so that lemma 1, Part 3 applies; that [x1; x2] is

non-degenerate follows from Lemma 1, Part 3b.¥
The existence of at least one solution is intuitively obvious from ¯gure 6. The

¯rst-order condition simply requires that the slope of e's indi®erence curve, ul
ucxe

,

equal the slope of the constraint set, dce=dye = 1 ¡ @T ¤e =@ye. To emphasize the

unique mapping from ye to the income and utility pro¯les, we will sometimes write the

latter as fU(x; ye)gx and fY (x; ye)gx. Importantly, proposition 1 implies that these

utility and income pro¯les are solutions to problems CRM1 and CRM2 conditional on

(xe; ye; T ¤e (ye; G)). Hence, they satisfy the associated Euler equations and boundary

conditions. This allows us to characterize tax functions.

Speci¯cally, the tax pro¯le fT (x)gx implied by e's problem is directly deter-

mined by the utility and income pro¯les via identity (2). The tax function T ¤ is

de¯ned by T ¤(y) = T (x) for all x and y = Y (x) 2 [Y (x¡); Y (x+)]. To determine

tax rates, note that the term 1 ¡ ul=uc=x in (8) can be interpreted as a marginal tax

rate. To see this, consider the ¯rst-order condition for income for an individual who

maximizes utility u(y ¡ T ¤(y); 1 ¡ y=x)) subject to a given tax function T ¤. If T ¤

is di®erentiable and y > 0, the ¯rst-order condition uc(1 ¡ dT ¤(y)=dy) ¡ ul=x = 0

implies

dT ¤(y)
dy

= 1 ¡ ul(c; 1 ¡ y=x)=x
uc(c; 1 ¡ y=x) : (11)

The marginal rate of substitution on the right-hand side is well-de¯ned even at points

where T ¤ is not di®erentiable, and it is identical to the term 1 ¡ ul=uc=x in (8). We

therefore de¯ne the marginal tax rate for all x by

¿ (x) ´ 1 ¡ ul(c
¤(U(x); Y (x)=x); 1 ¡ Y (x)=x)=x

uc(c¤(U(x); Y (x)=x); 1 ¡ Y (x)=x) : (12)

At points where T ¤ and Y are di®erentiable, we have dT ¤(Y (x))=dy = ¿(x)

and T 0(x) = ¿ (x) ¢ Ã(x). At other points, ¿ (x) can be interpreted as an e®ective or
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shadow marginal tax rate. Since !Y > 0 (as one can show), sign(¿ (x)) = sign(¡»(x))
applies whenever ¹x(x) = 0, that is, whenever Y is increasing. Thus, the sign of »

determines the slope of the tax function.

Given the monotonicity of Y and bunching at ye, we can partition [x¡; x+]

into distinct subintervals that correspond to di®erent income ranges. Individuals with

x 2 (x2; x+] have income Y (x) > ye and face tax rates implied by CRM2. Individuals

in [x1; x2] "mimic" e's income choice and pay taxes Te. For x < x1, there are two

possibilities depending on the value of x0 = inffx ¸ x¡ : Y (x) > 0g. If x0 = x¡,

everyone works (or almost everyone, in case Y (x¡) = 0). If x0 > x¡, there is an

interval [x¡; x0] of non-workers with income bunched at Y = 0, and 0 < Y (x) < ye

hold for x 2 (x0; x1). In both cases, tax rates on [x¡; x1) are determined by CRM1.

The following proposition presents the implications of CRM1 and CRM2,

shows that the main subintervals are connected in a \smooth" manner, covers special

cases, and accounts for the possibility of a binding or non-binding minimum utility

constraint (1). For brevity, we use \the tax functions" to mean the pro¯le T and the

income-tax function T ¤ whenever a result applies to both:

Proposition 2 The shape of e's tax functions for arbitrary e:

1. For a range of productivities [x1; x2] that characterize individuals who earn

Y = ye and that includes xe, the tax pro¯le T is °at, T (x) = Te, and the

tax function T ¤ collapses to the point T ¤(ye) = Te: Marginal tax rates ¿ (x) are

strictly increasing on [x1; x2] and may have either sign.

2. For x 2 [x2; x+], which is non-degenerate unless xe = x+, marginal tax rates are

strictly positive, ¿ (x) > 0; except that ¿ (x+) = 0 if x+ is ¯nite. The tax pro¯le

T is strictly increasing, except at points (if any) where Y is constant, in which

case T is °at. The tax function T ¤ is strictly increasing for all y > Y (x2) = ye.
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3. For x 2 [x¡; x1], which is non-degenerate unless ye = 0 or xe = x¡, marginal

tax rates may be all positive, all negative, or they may switch sign once from

positive to negative at some point x¿ 2 (x¡; x1). The tax functions may be

increasing, decreasing, or inverted-U shaped on [x¡; x1]. The di®erent shapes

are associated with di®erent boundary con¯gurations of CRM1 at x¡:

(a) If the minimum utility constraint (1) does not bind, then marginal tax rates

are strictly negative, ¿ (x) < 0; except that ¿(x¡) = 0. The tax pro¯le T

is strictly decreasing, except at points (if any) where Y is constant, in

which case T is °at. The tax function T ¤ is strictly decreasing for all

y < Y (x1) = ye.

(b) If the minimum utility constraint (1) binds (in the sense that »(x¡) < 0),

then marginal tax rates have a strictly positive segment [x¡; x¿ ), which

may or may not extend to x1. That is, the tax functions are increasing or

inverted-U shaped.

4. If x0 > x¡, the tax pro¯le T is °at on [x¡; x0], and T (x) = T (x0) = T ¤(0) for

all x 2 [x¡; x0].

5. At the transition points fx0; x1; x2g between intervals, the properties of both

adjacent intervals apply. If ye = 0 or xe = x¡, Part 1 applies with x1 = x¡. If

xe = x+, Part 1 applies with x2 = x+.

Proof: Lemma 1 shows that e's problem yields bunching on [x1; x2], proving Part

1. Since xe 2 [x1; x2], the pro¯le fU(x); Y (x)gx solves CRM2 on [xe; x+] and CRM1 on

[x¡; xe]. Integrating (9), one ¯nds

»(x) =
Z x

x¡

´(x; z)
uc(c¤(U(z); y(z)=z); 1 ¡ y(z)=z)dF (z) + »(x¡)

= ¡
Z x+

x

´(x; z)
uc(c¤(U(z); y(z)=z); 1 ¡ y(z)=z)dF (z) + »(x+), (13)
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with ´(x; z) ´ expf
R z
x !U (U(~z); y(~z); ~z)d~zg > 0. In CRM2, the transversality condition

»(x+) = 0 implies »(x) < 0 for all x < x+. In CRM1, note that (1) is satis¯ed for

all x if and only if U(x¡) ¸ umin. This constraint implies the transversality conditions

(U(x¡) ¡ umin)¢ »(x¡) = 0 and »(x¡) · 0. If (1) does not bind, »(x¡) = 0 implies

»(x) > 0 for all x > x¡. In (8), ¹x(x) = 0 holds whereever Y is strictly increasing, hence

¿ (x) = 1 ¡ ul
ucx

= ¡!Y (U; y; x)=f(x) ¢ »(x). Since !Y > 0 and f > 0, ¿ and » have

opposite signs. Part 2 therefore follows from »(x) < 0 on x 2 [x2; x+) (with shapes of

T and T ¤ following trivially from the sign of ¿ ), and Part 3a follows from »(x) > 0 on

x 2 (x¡; x1) with (1) non-binding. If (1) binds and »(x¡) < 0, (13) implies that »(x) is

continuous and strictly increasing. Hence, one of two cases must apply: either »(x1) · 0,

which implies »(x) < 0 and ¿(x) > 0 for all x 2 [x¡; x1); or »(x1) > 0, in which case

»(x¿ ) = 0 at some x¿ 2 (x¡; x1) and »(x) > 0 and ¿ (x) < 0 for all x > x¿ . The former

establishes Part 3b, and the latter establishes Part 3c. Parts 4 and 5 are obvious special

cases, stated for completeness. ¥
Proposition 2 shows that the tax functions always slope upward above e's

income. Below e's income, the tax function has negative sloped unless the minimum-

utility constraint (1) binds. This re°ects the elected agent's desire to extract revenues

from the poor. We interpret Part 3a as a counterfactual indication that if taxes

are determined by self-interested politicians, the minimum utility constraint (1) will

likely bind under plausible conditions. (That is, unless x¡ is so high that even the

lowest productivity individual has the ability to pay substantial taxes.17) If (1) binds,

proposition 2 is still consistent with negative marginal tax rates at incomes near

ye, but strictly positive marginal tax rates at incomes near Y (x¡). This o®ers a

rationalization for tax-transfer systems with a poverty trap. In Mirrlees-type welfare

analyses, in contrast, poverty traps are di±cult to rationalize because the well-being
17A solution with non-binding (1) is obtained, for example, if one assumes [x¡; x+] = [0:7; 1:3]

instead of [0:2; 1:8] in example 1 (case of G = 0, xe = 1).
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of the poor tends to receive substantial weight. The intuition here is that burdensome

taxes on the poor reduce tax-avoidance opportunities at higher incomes. A sel¯sh

elected agent e will assign very low incomes and utilities to the poor, perforce without

regard for their well-being, if that helps to extract more taxes from individuals with

productivity above x¡ (but below xe).

The example in Section II suggests that with a binding minimum-utility con-

straint (1), the question of a monotonely increasing versus inverted-U shaped taxes

depends on the level of required revenue G, as shown in ¯gure 5. Generally, one might

conjecture that Te is negative if G is near zero (as taxes on others ¯nance transfers

to e), while T (x¡) is near zero (near T0). Then the tax function must include a

negatively sloped segment, that is, it must have an inverted-U shape (as illustrated

in Figure 5 for G = 0 and for G = 0:03). As G approaches Ĝ, however, Te rises while

T (x¡) is essentially ¯xed, suggesting a uniformly positive slope for high G-value (as

illustrated in Figure 5 for G = 0:06 and above). General results about the role of G

and umin are derived in Section V.

One robust, universal property of marginal tax rates is ¿(x1) < ¿(x2), because

¿ (x) increases on [x1; x2]. Hence, all tax functions T ¤ display a downward kink at

the e's income level, that is, a distinct non-linearity bene¯tting the "middle classes."

(again see ¯gure 5 for illustration). We interpret this as theoretical support for

Directors law, the notion that government favors the middle class.

IV. THE VOTING PROBLEM

The previous section derived the utility each voter would receive from an arbi-

trary elected agent. In this section, we characterize the voting outcomes in elections

between a pair of candidates (eL; eH) with xeL < xeH . The main steps are to establish

that candidates' most{favored-income choices (ye) are monotone in productivity and

to show that as ye varies, resulting shifts in utility pro¯les satisfy a \single-crossing"

23



property. Speci¯cally, we show that as xe rises, agents vary ye such that utilities of

individuals with x > xe rise and utilities of individuals with x < xe fall.

Our ¯rst result is:

Lemma 2 Candidates eL and eH with xeL < xeH choose income yeL < yeH , except

that yeL = yeH = 0 is possible.

Proof: The lemma follows from Agent Monotonicity and the common budget set

Ce = f(ce; ye)jce = ye ¡ T ¤e (ye; G)g: For any incomes y1 < y2 with associated feasible

consumption levels ce(y1) and ce(y2), if agent eL prefers (y2; ce(y2)) over (y1; ce(y1)), then

by Agent Monotonicity any agent eH with xeH > xeL must prefer (y2; ce(y2)), too, which

establishes weak monotonicity in the sense that yeL · yeH . By Agent Monotonicity, the

¯rst-order condition in proposition 2 (Part 3) cannot be satis¯ed at the same ye > 0 for

di®erent xe. Hence yeL = yeHcannot hold except for the corner case yeL = yeH = 0; where

the ¯rst-order condition does not apply.¥
The intuition in terms of income-consumption choices is illustrated in ¯gure 7,

again using values from example 1 for concreteness. Indi®erence curves for candidates

with di®erent productivities \rotate clockwise" as productivity increases. Since all

elected agents face the same set of feasible income-consumption choices Ce,18 candi-

dates' income choices are monotone in productivity. The exception yeL = yeH = 0

occurs if both xe-values are so low that the indi®erence curves at ye = 0 are steeper

than the boundary of Ce. Note that lemma 3 applies for all (yeL; yeH ) pairs, that is,

it applies even if there are multiple optimal ye-values for given xe.

Voters are assumed to understand the mapping from the candidates' produc-

tivity xe to their income choices ye (lemma 2), and to the resulting utility pro¯les

(proposition 1 and lemma 1). Individual x therefore prefers candidate eL, or eH , or is
18To be exact, consumption choices are also subject to the additional constraint y · xe that varies

with xe, but it is never binding and therefore irrelevant.
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indi®erent if and only if the utility pro¯le at point x implemented by eL, U (x; yeL), is

strictly above, strictly below, or equal to the utility value U(x; yeH ) implemented by

eH . Because utility pro¯les are solutions to problems CRM1 and CRM2, the compar-

isons can be interpreted as parametric variations of CRM1 and CRM2 with respect

to ye. The challenge in proving median voter results is to show that as ye rises from

yeL to yeH , the utility pro¯le on [x¡; xeL] shifts down while utility pro¯le on [xeH ; x+]

shifts up, with a single crossing between U(x; yeL) and U (x; yeH ) on (xeL ; xeH ). We

call this the Single Crossing Property of utility pro¯les.

The intuition for the Single Crossing Property is simple and illustrated in

¯gure 8. As proved in proposition 2, the tax function implemented by a given elected

agent has a downward \dip" or \corner" at (ye; Te), and as proved in lemma 2, the

\dip" shifts to the right as xe increases. Recall ¯gure1 for illustration. A dip in the

tax function implies that the set C(ye) = f(y; c) ¸ 0jc = y ¡ T ¤(y)g of income and

consumption pairs available to individuals for a given tax function shows an upward-

pointing corner at (ye; ye¡Te). Figure 8 shows C(ye)-sets for the ye-values chosen by

the median productivity agent (xeH = 1) the 40th-percentile agent (xeH = 0:84) in

example 1. As ye increases from yeLto yeH , the relevant \corner" points (ye; ye ¡ Te)
in ¯gure 8 move to the right along the boundary of the agents' feasible set Ce. The

boundary of C(ye) shifts \outward" for high-income individuals (those with y > yeH),

\inward" for low-income individuals (those with y < yeL), and has a single crossing in

between. By Agent Monotonicity, voters with productivity above/below xeL and/or

xeH have °atter/steeper indi®erence curves than eL and/or eH and are therefore

better/worse o®.19

Our next proposition shows that the intuition illustrated in ¯gure 8 is general,

except that we need one additional regularity condition and we must address some

special cases where some voters are indi®erent. As regularity condition, to do para-

19Note that C(yeL) and C(yeH ) are close together at low y-values but don't touch.
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metric variations on problems CRM1 and CRM2, we must assume that incomes are

not \bunched" at values other than y = ye and y = 0. Otherwise, the potential for

discontinuities in the control Ã (in graphical terms: arbitrary kinks in the C(ye) sets)

would make the analysis intractable. Formally, we de¯ne:

ASSUMPTION (NB): For all xe 2 [x¡; x+], the solutions to CRM1 and

CRM2 conditional on (xe; ye(xe); T ¤e (ye(xe); G)) satisfy ¹(x) = 0 for all x 2 (x0; x1)

and x 2 (x2; x+), that is, they do not display bunching at income levels other than

y = ye or y = 0.

We allow bunching at zero income even though it causes complications. Namely,

if a positive measure of voters has zero income and is assigned utility U(x; ye) = umin

by both candidates, these individuals are indi®erent in their voting decisions. Since

utility pro¯les are strictly increasing for Y > 0, an indi®erence issue arises only at the

bottom end of the productivity distribution, and it arises if and only if the solutions

to CRM1 for xeL and for xeH display both bunching at zero income and a binding

minimum utility constraint (as we will show). There are two natural assumptions

that might be made about how voters with U(x; yeH ) = U (x; yeL) = umin vote. One

is that such individuals vote lexicographically for eL; who is closer than eH to the

indi®erent individuals' own productivity and income. This assumption may be taken

as representing the idea that voter indi®erence is broken by \ideological" closeness.

A motivation is that, in an extended model with randomness in future productivity,

a voter who is indi®erent based on today's productivity may be more likely prefer eL

than eH in the future and hence may vote for eL today. The second assumption is that

indi®erent individuals abstain.20 Formally, we let Xmin(ye) = fx : U (x; ye) = uming
denote the set of voters obtaining umin under the utility pro¯le associated with e

choosing ye, and we examine both assumptions about their behavior.
20Indi®erent voters might also be assumed to randomize. This is formally similar to abstention

under simple assumptions about how randomization occurs.
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Our main result is then:

Proposition 3 (Single-Crossing Property ) Consider an election between candi-

dates (eL; eH) with xeL < xeH and assume CON, NB, and yeH 6= 0. Then the induced

utility pro¯les fU(x; yeH )gx and fU (x; yeL)gx cross at a unique point x 2 (xeL; xeH ),

and:

1. all agents with productivity x 2 [xeH ; x+] strictly prefer eH over eL: U (x; yeH ) >

U(x; yeL);

2. all agents with productivity x 2 (x¡; xeL ]nXmin(yeL) strictly prefer eL over eH :

U(x; yeH ) < U (x; yeL);

3. all agents with productivity x 2 Xmin(yeL) are indi®erent: U(x; yeH ) = U (x; yeL) =

umin:

Overview of proof: The proof is lengthy, straightforward, and in the appendix.

The main steps are: (a) We show that any marginal increase in ye induces a variation

in Ue(x) = u(ye ¡ T ¤e (ye)); 1 ¡ ye=x) on [x1; x2] that raises U(x; ye) on (xe; x2] and

lowers U (x; ye) on [x1; xe), using proposition 1, Part 3 to locate xe on [x1; x2]. (b) We

show that the di®erential equations characterizing fU(x)gx on [x¡; x1] and on [x2; x+]

have the property that a shift of the boundary points U (x1; ye) and U(x2; ye) up or down

triggers a "shift" of the entire pro¯le fU(x)gx in the same direction. On [x2; x+], this

exploits the transversality condition »(x+) = 0 of (CRM2). On [x¡; x1], this requires

multiple case distinctions to cover all possibilities of U(x) ¸ umin and Y (x) ¸ 0 being

binding or non-binding (four major cases plus several non-generic ones). (c) On [x2; x+]

unconditionally, and on [x¡; x1] for all cases that satisfy either Y (x) > 0 for x > x¡

(allowing Y (x¡) = 0) or U(x¡) > umin, we show that the variations in fU(x)gx are

non-zero. (d) On [x¡; x1], in the case that Y (x) = 0 and U(x) = umin on an interval

[x¡; x0], x¡ < x0 < x1, we show that the variations in fU(x)gx are non-zero on (x0; x1],
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identically zero on Xmin(yeL) = [x¡; x0], and that the cuto® point x0 is non-decreasing in

ye. (e) For any pair (eL; eH) with xeL < xeH and any intermediate point xm 2 (xeL ; xeH ),

lemma 2 implies yeL < ye(xm) < yeH , and steps (a)-(d) prove the strict inequalities in

Parts 1-2, and the uniqueness of a crossing point on (xeL ; xeH ). (f) Indi®erence applies

on Xmin(yeL), because x0 is non-decreasing in ye, hence Xmin(yeL) ½ Xmin(yeH ), and

individuals in Xmin(yeH )nXmin(yeL) strictly prefer eL. ¥
The assumption yeH 6= 0 rules out the trivial case of yeL = yeH = 0 when

all voters are indi®erent (recall lemma 2). The issues of bunching and concavity (as-

sumptions like NB and CON) have been discussed extensively in the welfare literature

following Mirrlees (1971). Here, concavity is needed because, as usual in comparative

statics, one must assume that the relevant ¯rst-order conditions uniquely characterize

the problem and that the second-order conditions hold strictly.21 Bunching at y = ye

is characteristic of the model and it is technically tractable{namely by spliting CRM

into CRM1 and CRM2. Bunching at y = 0, although it makes the analysis more

cumbersome, raises a substantively interesting voting issue (Part 3, indi®erence) that

should not be assumed away. By assuming CON and NB, we implicitly restrict our

analysis to \well behaved" problems. For less well behaved problems, the results

may hold{the assumptions are su±cient and not necessary{but there are no general

results.

To verify concavity in examples, it is useful to note that if NB holds, CON

is equivalent to the following condition: Let y(U; !; x) be de¯ned by the identity

! = !(U; y(U; !; x); x) (which is well de¯ned because !Y < 0) and consider

T ¤¤(U; !; x) = y(U;!; x) ¡ c¤(U; y(U; !; x)=x)
21Mirrlees (1986, p.1235) discusses a concavity condition similar to (CON) arising in his welfare

problem and notes that conditions like CON is somewhat \obscure" (the second derivatives of !

depend on various mixed third partial derivatives of u) but unavoidable in variational problems of

this type.
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as function of (U; !). Then T ¤¤ being strictly concave in (U; !) is equivalent to CON,

and it easier to verify because it involves neither » nor f . Separately, if u is separable

in consumption and leisure, H being strictly concave in Y and weakly concave in

(U; Y ) is su±cient for propositions1-3; and if NB holds in addition, T ¤¤ being strictly

concave in ! and weakly concave in (U; !) is su±cient. It is straightforward to verify

that our examples in Section II satisfy the latter condition..

Our voting results follow directly from proposition 3. Since individuals' pref-

erences over candidates are single-peaked, median voter arguments become appli-

cable despite the in¯nite-dimensional policy space. Proposition 3 shows that the

one-dimensional nature of candidates' heterogeneity over productivities su±ces to

eliminate \cycling" over policy choices. We provide several statements to allow for

di®erent voting mechanisms and to be careful about technical complications.

Corollary 1 (Election Outcomes) In any election between arbitrary candidates

(eL; eH) with xeL < xeH that satis¯es the Single-Crossing Property:

1. If Xmin(yeL) has measure zero, the candidate who's policy is preferred by median-

productivity individuals wins.

2. If Xmin(yeL) has positive measure and indi®erent individuals vote based on close-

ness in productivity, the candidate who's policy is preferred by median-productivity

individuals wins.

3. If Xmin(yeL) has positive measure and indi®erent agents abstain, the candidate

who's policy is preferred by the median of (x0(yeL); x+] wins.

Proof: Follows directly from Proposition 3. ¥
If there are more than two potential candidates, candidate selection becomes

an issue. It is beyond the scope of this paper to examine explicit voting mecha-

nisms. Hence we limit our discussion to the question under what conditions there
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is a Condorcet winner, that is, a candidate who would win against any opponent.

Winning means obtaining strictly more votes in favor than against not counting ab-

stentions. Let emed be a candidate with median productivity xmed, where F (xmed) =

0:5. Also, let e¤ be an agent with productivity xe¤ = inffxe ¸ xmed jF (xe) =

(F (x0(ye(xe))) + 1)=2g, that is, the lowest xe-value that is the median productiv-

ity on the set [x0(ye(xe)); x+], and let e0 be the highest productivity candidate with

Xmin(ye0) having measure zero. If Xmin(yemed) has measure zero, xe¤ = xmed; if

Xmin(yemed) has positive measure, xe¤ exists and lies above xmed but below the median

of [x0(ye(x+); x+].

Then we have:

Corollary 2 (Median Voter Theorem) If the Single-Crossing Property is satis-

¯ed:

1. If Xmin(yemed) has measure zero, emed is the Condorcet winner.

2. If Xmin(yemed) has positive measure and indi®erent individuals vote based on

closeness in productivity, emed is the Condorcet winner.

3. If Xmin(yemed) has positive measure and indi®erent agents abstain, a Condorcet

winner may not exist. However:

(a) Agents with productivity x < xmed lose against emed and agents with pro-

ductivity x > xe¤ lose against e¤.

(b) Agent e¤ is the Condorcet winner, if and only if e¤ wins against all can-

didates eL with xeL 2 [xe0; xe¤). Otherwise there is no Condorcet winner.

Proof: Parts 1 and 2 follow directly from the previous corollary. In Part 3, voting

cycles cannot be ruled out because the set of voters depends on the candidate pair. Part

3a follows from the de¯nition of emed and e¤. In Part 3b, a loss would mean that e¤
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is not a Condorcet winner. Winning against e0 implies that e¤ wins against all lower

productivity candidates, too. Given Part 3a, winning against candidates in [xe0 ; xe¤) is

therefore su±cient for e¤ to be the Condorcet winner. Candidates other than e¤ cannot

be Condorcet winners, because higher productivity candidates lose against e¤ and lower

productivity candidates are below-median on [x0(ye(xe)); x+] and lose against the median

candidate on this set. ¥
Under the conditions of Parts 1 and 2 of the corollary, the median-productivity

agent is elected in any voting mechanism that selects a Condorcet winner. Under

the conditions of Part 3, the elected agent e¤ may be close to the median in many

empirically plausible cases. Because Xmin(e¤) is the set of non-workers under e¤'s

tax policy, a measure of this set might be roughly the unemployment rate. Given an

observed unemployment rate of, say, six percent, the only potential Condorcet winner

is the agent e¤ with productivity equal to the 53rd percentile of the productivity

distribution.

Note that yemed > 0 is necessary to apply the Single Crossing Property in

corollary 2. Otherwise, if yemed = 0, then ye = yemed = 0 would hold for all votes

on emed against agents e with below-median productivity by lemma 3, violating the

assumption yeH 6= 0. The voting outcomes for yemed = 0 are obvious, however: Voters

in [x¡; xmed] prefer the utility pro¯le associated with ye = 0 over any other. Any

agent eH setting yeH > 0 would therefore lose against any agent{it does not matter

which one{who sets ye = 0.

More broadly, one may ask how and why our model avoids voting cycles de-

spite the multi-dimensional policy setting. Two features of our model are crucial for

obtaining median voter results. First, we need one-dimensional heterogeneity in the

set of candidates. Otherwise, voting over candidates would tend to produce voting

cycles, as usual in multi-dimensional voting situations. Second, we must allow the

elected agent's ability to impose a fairly general tax function. Additional \ad hoc"
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constraints that may appear to simplify the problem can easily destroy the median-

voter result. For example, if the elected agent were required to impose a quadratic or

a piecewise linear function (distinct tax brackets), one would generally lose the single-

crossing property and obtain voting cycles{unless of course the problem is drastically

simpli¯ed to become one-dimensional, as in Meltzer-Richard.

The intuition is that the single-crossing property relies on incentive constraints

that tie together the utility levels of \neighboring" (on the x axis) individuals. These

constraints ensure that candidates treat individuals with productivity close to their

own better than individuals further away on the productivity distribution. Additional

constraints that might break the monotone link between utility and distance are likely

to destroy the median voter results. (An example is discrete tax brackets that would

force e to give entire sets of agents the same marginal rate of substitution.) We

conjecture, however, that median voter theorems similar to ours could be obtained in

other multi-dimensional voting situations where suitable \local" incentive constraints

apply (e.g., in voting over public services). Our analysis suggests that one should

not necessarily interpret voting cycles as a indication of excessive complexity of a

model and that reducing the voting choice to a single issue is not the only remedy.

Instead, voting cycles may indicate that a model imposes inappropriate constraints,

a problem that might be avoided by allowing more general solutions, such as general

non-linear taxes rather than a ¯nite number of tax brackets. Though the general

setup is technically more demanding, our analysis of labor income taxes suggests that

the general approach can yield economically insightful results.

The notion that median-voter results rely on the elected agent's ability to

exploit individual-speci¯c incentive constraints also provides an intuitive explanation

of why the no-bunching assumption (NB) is required in proposition 3. Bunching forces

elected agents to o®er the same "package" of income& taxes to a set of heterogenous

individuals. Though we have not been able to generate examples of voting cycles, we
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conjecture that if di®erent elected agents are placing entire sets of voters into di®erent

intervals with common, bunched income, voting cycles are possible. Individuals would

have an incentive to vote for candidates that place them into a \favorable" interval

(as in the case of tax brackets), and the choice of intervals may not be monotone in

the productivity of the elected agent. Thus, the median voter result is not a universal

property of the non-linear tax problem, but one that holds under reasonable regularity

conditions.

V. TAX FUNCTIONS, REVENUE NEEDS, AND A FORM OF

ALTRUISM

We now reinterpret minimum utility values umin > u(0; 1) as re°ecting a form

of altruism, and we examine how altruism alters the tax function of the elected agent.

For this reinterpretation, we treat umin as a parameter that may di®er from u(0; 1)

and use the relationship umin = u(TR; 1) to de¯ne the minimum transfer TR ¸ 0 due

to a non-worker.22

One main result is that the di®erential equations characterizing solutions to

CRM1 permit four di®erent boundary con¯gurations at x¡, and that three of the

four imply a zero measure for the set Xmin(ye) of voters that are assigned utility umin.

The other main result is that negative marginal rates necessarily occur with zero

government spending and sel¯sh agents, but the tax function is monotonely increas-

ing if non-redistributional spending G is su±ciently high or if agents are su±ciently

altruistic.

The utility pro¯le and the shape of the tax function below the elected agent's

income ye are determined by the Euler equations characterizing problem CRM1 and
22In principle, we could consider cases with taxes T0 = ¡TR > 0, e.g., with the interpretation the

government can seize some of the non-market income ² from non-workers. We ignore this possibility

and assume TR ¸ 0 to avoid more case distinctions in the analysis below.
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by the boundary conditions U(x¡) ¸ umin and Y (x¡) ¸ 0. The boundary condi-

tions may each bind or not bind, resulting in four basic boundary con¯gurations.

Whenever U(x¡) = umin and/or Y (x¡) = 0 hold as equality, the associated costate

variables are generally strictly negative (»(x¡) < 0 and/or ¹(x¡) < 0), but the

non-generic special cases of »(x¡) = 0 and/or ¹(x¡) = 0 must also be considered.

(The latter will be included in the appropriate generic cases.) Our next proposi-

tion shows that the boundary con¯gurations depend importantly on the relationship

between the lowest productivity (x¡) and the marginal rate of substitution of non-

workers, ul(¡T0; 1)=uc(¡T0; 1), and on the government's revenue needs. The intuition

is that if x¡ > ul(¡T0; 1)=uc(¡T0; 1), all individuals are willing to work (meaning,

at a wage equal to their marginal product). Then cases with Y (x¡) = 0 will oc-

cur only if work incentives are severely distorted, which could occur because of high

revenue needs; and Y (x¡) > 0 is su±cient for Xmin(ye) to have measure zero. If

x¡ · ul(¡T0; 1)=uc(¡T0; 1), however, low-productivity individuals would have to be

subsidized to work, and bunching at Y = 0 is generic. Speci¯cally, we have:

Proposition 4 (Boundary Conditions ) In problem CRM1:

1. For given (xe; ye; Te), the following four boundary con¯gurations for (U; »; Y; ¹)

at x¡ and at x0 = inffx : Y (x) > 0g are possible:

(a) x0 = x¡ and »(x¡) = 0. Then U (x¡) ¸ umin, U (x) > umin for all x > x¡,

Y (x¡) ¸ 0, Y (x) > 0 for all x > x¡, ¹(x¡) = 0, and Xmin(ye) has measure

zero.

(b) x0 = x¡ and »(x¡) < 0. Then U(x¡) = umin, U(x) > umin for all x > x¡,

Y (x¡) ¸ 0, Y (x) > 0 for all x > x¡, ¹(x¡) = 0, and Xmin(ye) = fx¡g has

measure zero.

(c) x0 > x¡ and U(x¡) > umin. Then U(x¡) = U(x) > umin and Y (x) = 0 for

all x · x0, »(x¡) = 0, ¹(x¡) < 0, and Xmin(ye) = ; has measure zero.
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(d) x0 > x¡ and U(x¡) = umin. Then U(x¡) = U(x) = umin and Y (x) = 0 for

all x · x0, »(x¡) · 0, ¹(x¡) · 0, and Xmin(ye) = fx 2 [x¡; x0]g is a set

with positive measure F (x0) > 0

2. (a) f x¡ > ul(¡T0; 1)=uc(¡T0; 1), then there is an interval of Te-values where

boundary con¯guration (a) applies and an interval of higher Te-values

where boundary con¯guration (b) applies. Con¯gurations (c) and (d) may

or may not occur. With increasing Te, the boundary con¯gurations apply

(if they occur) in the sequence (c), then (a), then (b), then (d).

3. (a) If x¡ < ul(¡T0; 1)=uc(¡T0; 1), then there is an interval of Te-values where

boundary con¯guration (c) applies and an interval of higher Te-values where

boundary con¯guration (d) applies. Con¯guration (b) cannot arise, and (a)

can only occur if consumption is an inferior good. With increasing Te, the

boundary con¯gurations apply (if they occur) in the sequence (a), then (c),

then (d).

Proof: The list of possibilities in Part 1 follows from the transversality conditions

(U(x¡)¡umin) ¢»(x¡) = 0 with »(x¡) · 0 and U (x¡)¡umin ¸ 0 and Y (x¡) ¢¹(x¡) = 0

with ¹(x¡) · 0 and Y (x¡) ¸ 0. The other claims follow from parametric variations on

CRM1 and from a detailed analysis of all possible boundary con¯gurations, which is lengthy

and therefore deferred to the appendix. ¥
Though the proof is lengthy due to the numerous case distinctions, proposition

4 merely combines and veri¯es a few simple arguments. Part 1 shows that the case

of Xmin(ye) having positive measure{the one creating indi®erence issue in proposi-

tion 3 and its corollaries{is one of four possible cases. Since U is strictly monotone

whenever Y > 0 (see lemma 1), it requires bunching at Y = 0. Parts 2-3 combine

four observations: First, as Te varies, the entire tax pro¯le shifts in the same general
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direction, and the utility pro¯le shifts in the opposite direction. Hence, the con¯gura-

tions (a) and (c) with non-binding minimum-utility constraint tends to apply for low

(or negative) Te-values whereas con¯gurations (b) and (d) apply for higher Te-values.

Second, if everyone is willing to work (Part 2), con¯gurations without bunching at

Y = 0{(a) and (b){must occur for some range of Te-values, whereas (c) and (d)

at apply only at extreme values, if at all. Conversely, if low-productivity workers

would have to "bribed" to work (Part 3), con¯gurations with bunching at Y = 0{(c)

and (d){must occur for some range of Te-values, and the non-bunching con¯gura-

tions are special cases. Third, the intuition about (a) versus (c) involves the income

e®ect of transfers: Under the conditions of Part 2, con¯guration (a) applies rather

than (c), unless a positive income e®ect from high transfers ¡T (x¡) >> ¡T0 ¸ 0

induces low-income individuals to stop working; and under the conditions of Part

3, con¯guration (c) applies rather than (a), unless consumption is inferior and high

transfers ¡T (x¡) >> ¡T0 ¸ 0 reduce ul(¡T (x¡); 1)=uc(¡T (x¡); 1) to a value at

or below x¡. Fourth, the intuition for con¯guration (d) in Part 2 is that pushing

low-productivity individuals out of the workforce may enable the elected agent to

extract more revenues from higher productivity agents. Algebraically, this is optimal

whenever j»(x¡)j, the shadow value of revenue from reducing x¡'s utility, exceeds

»0 ´ [x¡ ¡ ul(¡T0; 1)=uc(¡T0; 1)] ¢ f (x¡)=x¡=!Y (umin; 0; x¡), a critical value that de-

pends on x¡'s motivation to work (the gap of x¡ and ul=uc) and on the curvature of

the utility function (in°uencing ul=uc and !Y ).

In example 1, only con¯gurations (a) and (b) occur. This is because ul(¡T0; 1) =
0 rules out Part 3 and because »0 is high enough to preclude j»(x¡)j ¸ »0, i.e., there is
never a problem with indi®erent voters. To exhibit cases (c) and (d), one could con-

sider slightly modi¯ed preferences of the form u(c; l) = c+v0f1¡(1+v2¡l)1+v1g=(1+
v1) with additional parameter v2 ¸ 0. Then ul(¡T0; 1) = v0 ¢ v2 exceeds x¡ whenever

v2 > v0=x¡, making Part 3 of proposition 4 applicable.
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Next, we consider conditions under which the tax function is monotonely in-

creasing or has a negatively sloped segment. For this analysis, we also consider a

simple form of altruism in which umin is interpreted as a preference parameter of the

elected agent such that the elected agent wants to give each voter utility no lower

than umin. This minimum utility may be su±ciently great that the elected agent must

give positive transfers to non-working agents to bring them to umin.23 That is, we

allow umin = u(TR; 1) to apply for some TR > 0, re°ecting altruism, or for TR = 0,

which captures the sel¯sh case. If TR > 0 and therefore umin > u(0; 1), umin is ¯nite

even if u(0; 1) = ¡1, so that restrictions on u(0; 1) (or auxiliary assumptions about

home production, etc.) are unnecessary. Formally, the impact of variations in TR

and in G on the shape of the tax function can be examined like variations in ye in

the voting analysis. One complication is that since ye(xe) may have discontinuities,

the continuity of ye(xe;G; TR) as function of (G; TR) cannot be taken for granted.

Hence, we simply provide some limit results that hold if the relevant limits exist; they

should be su±ciently intuitive that we present them as remarks without proof.

Remark 1: For any TR ¸ 0, if G is su±ciently high, T ¤ tends to monotonely

increasing, i.e. has no negatively sloped segment. The argument is that asG converges

to Ĝ from below, e's problem becomes dominated by the need to collect revenues

and approaches problem URM, which features a monotonely increasing tax function.

Formally, if ye(xe;G) ! Ŷ (xe) > Ŷ (x¡) as G ! Ĝ (where the existence of the

limit must be assumed), then Te(ye(xe;G); G) ! T̂ (xe) > T̂ (x¡) = T0 is necessarily

increasing one average. Moreover, one can show that »̂(x) < 0 hold for all x < x+ in

problem URM. Thus, if all limits exist, »(x) < 0 applies for all x < x+ in problems

CRM1 and CRM2 conditional on (ye,Te) in a neighborhood of (Ŷ (xe); T̂ (xe)). This

implies monotone tax function because »(x) < 0 implies ¿(x) > 0 whenever Y is
23There are other ways one might model altruism, but this formulation ¯ts easily into the model

and su±ces to show that altruism can make marginal rates everywhere positive.
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strictly increasing.

Remark 2: For any G ¸ 0, if TR is su±ciently high, T ¤ tends to mono-

tonely increasing, too. To make this argument rigorous, one would have make

umin = u(TR; 1) a function of TR and condition on TR in all propositions above.

Intuitively, the argument is analogous to the argument about high G: As transfers

increase, e's problem becomes dominated by the need to ¯nance transfers and, in the

limit, approaches problem URM conditional on u(TR; 1). Then monotonicity of T ¤

follows from »̂(x) < 0 for x < x+ as above.

Remark 3: If G = TR = 0, the tax function T ¤ necessarily has a negatively

sloped segment below ye. This is because the elected agent can generate strictly

positive revenues from others and a®ord to pay himself a transfers, setting Te < 0 =

T0. If U(x¡) = umin, T (x¡) ¸ T0 > Te = T (x1) implies a negatively sloped segment

on [x¡; x1]; and if U(x¡) > umin, Prop.2 implies that T is negatively sloped on all of

[x¡; x1].

Remarks 1-2 explain how our model can be consistent with the monotone or

largely monotone tax functions that we observe empirically. This deserves emphasis

because the most simple special case, G = TR = 0, which has been the focus of the

income tax literature, necessarily has a negatively sloped segment in the tax function.

Our example in section II follows this tradition and assumed G = TR = 0.

Figure 9 shows two simple modi¯cations of the example that yield strictly monotone

tax functions. Line (1) shows the tax function implemented by the median voter

when G = 0:06 instead of G = 0 (maintaining umin = u(0; 1)). Line (2) shows the

tax function when TR = 0:06, umin = u(0; 1) + 0:06, which implies T0 = ¡0:06

(maintaining G = 0). These G and T0 are high enough in magnitude that both tax

functions are upward sloping throughout. With a±ne utility (no income e®ects), the

tax function with T0 = ¡0:06 has the same shape as the tax function with G = 0:06

but is shifted down by G = ¡T0.
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More broadly, proposition 5 and the examples suggest that the slope of the

tax function in our voting model depends signi¯cantly on government outlays for

non-redistributional spending G and for altruistic transfers TR. While the model

necessarily implies a negatively sloped segment for G = TR = 0, the natural base case

of pure and sel¯sh redistribution, the model is consistent with consistently positively-

sloped tax functions for positive values of G and/or TR.

Careful readers may note linkages between proposition 2, proposition 4, and

the cases in Remarks 1-3. If G and/or TR are high, the minimum utility constraint

(1) tends to bind, i.e., yield con¯gurations (b) or (d) of proposition 4. proposition 2

shows that binding (1) is necessary for a monotonely increasing tax function, but not

su±cient. If G and TR are varied for given ye, one can indeed show that for the lowest

G and TR values, the tax function has negative slope on [x¡; xe] and con¯gurations

(a) or (c) apply, that for higher G and TR values, the tax function has an inverted-U

slope on [x¡; xe] and con¯gurations (b) or (d) apply, and for even higher G and TR

values, the tax function has a positive slope on [x¡; xe] and still con¯gurations (b) or

(d) apply. There is no tight link between monotonicity versus inverted-U shape and

con¯guration (b) versus (d), however; and ye will vary as G and TR change, and this

may break the tendency of the various cases in propositions 2 and 4 to be associated

with higher/lower values of G and TR.

VI. CONCLUSIONS

Meltzer and Richard (1981) model voting on one-dimensional tax policy un-

der direct democracy. Allowing multi-dimensional policy in their model results in

cycling. We model voting on multidimensional policy by assuming that voters are

heterogenous along a single dimension, and by replacing the assumption of direct

democracy with an assumption of representative democracy in which the candidate

who is elected implements his/her most preferred policy. This characterization of rep-
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resentative democracy eliminates the cycling that would occur if multi-dimensional

tax policy were chosen in direct democracy. The solution to the model is consistent

with substantial tax breaks for the middle class (Director's law).
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