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Abstract

Statisticians have proposed formal techniques for evaluation of treat-
ments, often in the context of models that do not explicitly specify how
treatments are generated. Under such procedures they run the risk of at-
tributing causation in settings where the implementation neutrality con-
dition required for causal interpretation of parameter estimates is not
satisfied. When treatment assignments are explicitly modeled, as econo-
mists recommend, these issues can be formally analyzed, and the existence
(or lack thereof) of implementation neutrality, and therefore quantifiable
causation, can be determined. Examples are given.
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Implementation Neutrality and Treatment Evaluation

Statisticians associated with a number of fields– medicine, for example–
have produced a literature considering how to handle counterfactuals in eval-
uating the effectiveness of treatments. When randomization of treatments is
available, as it usually is in the medical context, the existence of counterfactuals
poses no special problems. In some medical and almost all economic contexts,
however, one cannot realistically view the assignment of subjects to treatment
or lack of treatment as random: the people who are treated differ from those
who are not, and ignoring such selection problems may lead to biased estimators
of causal effects. Economists recommend handling this problem by including in
their models an explicit specification of the assignment mechanism. Only by so
doing is it possible to determine whether a bias exists, and if so how to correct
for it.
As many have noted, noneconomists resist this approach. They instead pro-

pose mechanical algorithms that purportedly make possible diagnosis of causal
relations, in particular of treatment evaluation, without committing to any par-
ticular representation of the assignment mechanism (Pearl [2001], Spirtes, Gly-
mour and Schienes [1993]). Economists– notably Heckman ([2001] and elsewhere)–
have expressed doubts that there is any hope of determining unbiased estimators
of causal parameters without committing to an explicit model that includes a
characterization of treatment assignment.
Heckman’s concerns are well taken. We show this in the context of two

examples. The first example is set out using econometricians’analytical frame-
work. It is demonstrated (Section 1) that some causal statements suggested by
this model are unjustified except in special cases in which conditions for imple-
mentation neutrality (defined below) are satisfied.1 For other causal statements,
however, the conditions for implementation neutrality are satisfied in the model
as specified, so there is no problem with causal interpretations. Distinguishing
between these two cases enables the analyst to determine which causal state-
ments are valid in a given model and which are not.
The analysis is then recast in the framework used in the treatment evaluation

literature (Section 2). We show that this alternative representation implicitly
assumes satisfaction of an implementation neutrality property the conditions
for which are not explicitly modeled, resulting in the apparent validity of causal
statements that may be unjustified.
A second example, discussed in Section 3, involves an evaluation of instru-

mental variables estimators in settings where the assumptions underlying ordi-
nary least squares estimators are violated.

1The basic ideas involving implementation neutrality were presented elsewhere (LeRoy
[2016]).
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1 The Econometric Approach

An econometric model intended to generate causal statements requires explicit
specification of variables and a labeling of each variable as external or internal,
so as to make clear which variables the model is intended to explain. When
there exists a unique equilibrium the model implies the existence of a vector
function mapping external variables to equilibrium values of internal variables.
Causal orderings can be determined by analyzing this function.
In our first example the external variables consist of three random variables:

R, u and v. Throughout this paper variables denoted by a capital letter are
assumed to be observable, and those denoted by a lower-case letter are unob-
servable. R is a binary random variable that is interpreted as an agent’s race.
R is assumed to take on values 0 or 1 with given probabilities. The errors u and
v are unobservable real-valued random variables with given distributions. The
external variables are independently distributed, consistently with the assump-
tion that they are not linked by equations of the model (otherwise they would
not be external). The internal variables consist of the binary-valued treatment
variable T , which takes on value 1 if the agent is treated and 0 if not, and the
real-valued outcome variable Y .
The model consists of the following equations:

Y = αY TT + βY RR+ u (1)

T =

{
1 if βTRR+ v ≥ 0
0 if βTRR+ v < 0.

(2)

Throughout the paper coeffi cients of internal variables are indicated by α, while
coeffi cients of external variables are indicated by β. Here βTR > 0 implies that
type-1 agents are likelier to get treatment than type-0 agents, and this plus
αY T > 0 and βY R > 0 imply that type-1 agents are are likely to have better
outcomes than type-0 agents.
We now ask in what sense, if any, is it possible to evaluate quantitatively the

effect of treatment on outcomes in this model. It is not possible to do so. A hypo-
thetical alteration of the treatment variable– replacing T = 0 with T = 1– can
result from an intervention on either R or v, and the effect of the intervention
on Y depends on which is the case, even though ∆T = 1 in both cases.
The simplest way to see this is to consider an agent with R = 0 and −βTR <

v < 0. From eq. (2) this agent would not be treated. Now consider an interven-
tion that results in an agent with the same u being treated. This could occur
either because v is increased to a level greater than 0, or because R is changed
to 1. The effect on Y is αY T in the first case, or αY T + βY R in the second.
Clearly, characterizing an intervention as a change of T from 0 to 1 is not suffi -
cient to determine the consequence for Y : specifying ∆T = 1 does not provide
enough information about the intervention to determine ∆Y. In particular, we
cannot characterize αY T , or any other parameter, as parametrizing the effect
of T on Y.
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In this situation causation is not implementation neutral: different interven-
tions that implement the same ∆T may lead to different values of ∆Y, so that
the effect of T on Y is not well defined. Causation is implementation neutral
when all interventions that implement a given ∆T have the same effect on ∆Y.

As a semantic point one could make a case for restricting the use of state-
ments like “the causal effect of ∆T on ∆Y is ...”to settings where the conditions
for implementation neutrality are satisfied, since the magnitude of causal effects
can be associated with a parameter of the model (or variable in the case of non-
affi ne models) only in that case. Doing so, however, would constitute a radical
departure from existing usage, under which the relation between two variables is
causal if all external variables that affect the cause variable also induce a change
in the effect variable, a weaker condition. To ensure a clear distinction between
the two concepts we will use the term “causation”with its usual meaning, and
will reserve the term “IN-causation” for the case in which causation is imple-
mentation neutral. When the relation is IN-causal and the model is affi ne there
exists a parameter that measures the strength of causation. When the relation
is causal but not IN-causal no parameter measuring the strength of causation
is defined.

2 The Treatment Evaluation Approach

Under the treatment evaluation analytical framework the practice is directly to
specify two outcomes Y (1) and Y (0), representing the outcomes for a particular
agent if the treatment is or is not applied. Much is made of the obvious fact
that either Y (1) or Y (0) for an individual agent is necessarily a counterfactual,
and therefore cannot be directly observed (Rubin [1974], [1978]). If, in a model
that specifies T to be internal, T IN-causes Y there is no problem with defining
Y (1) and Y (0) in this way, since in that case Y (T ) is unambiguously defined for
both values of T . In the contrary case, however, the values Y (1) and Y (0) are
not uniquely characterized by the hypothesized intervention on T , implying that
the effect of T on Y cannot be identified with Y (1)− Y (0), as would otherwise
be possible (in affi ne models). In our example Y (1) and Y (0) depend on R
and v, but under the treatment evaluation approach these latter variables do
not appear. Accordingly, the validity of the analysis is restricted to the case in
which causation is implementation neutral despite the fact that nothing in the
model implies that this condition is satisfied.

3 Implementation Neutrality and Instrumental
Variables

Many evaluations of treatment effects have to consider the possibility of cor-
relation between the treatment variable and an unobserved error. Existence
of this correlation creates a presumption that ordinary least squares estimates
of treatment effectiveness are inconsistent. The standard procedure is to use
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an instrumental variables estimator rather than ordinary least squares. If the
instrument is correlated with the treatment variable but not with the error the
problem of inconsistency is eliminated. In this section we specialize the dis-
cussion to consider the role of instrumental variables estimators in empirical
estimation of causal parameters in the presence of correlation among explana-
tory variables.
In general the parameters associated with IN-causation are not identified

without an assumption that unobservable external variables are uncorrelated
with each other and with observed external variables. The questions are whether
IN-causality is preserved under instrumental variables estimation and whether
the identification problem persists. Resolving these questions involves incorpo-
rating the instrument in the model in such a way that all variables character-
ized as external are uncorrelated. Then one ascertains the causal ordering in
the modified model, the questions being whether causation is implementation-
neutral and, if so, whether the associated parameter is identified.
Reformulating models so as to resolve the correlations that complicate em-

pirical estimation of causal parameters requires that the model-builder take a
stand on why the variables are correlated: if in the model (1) described above
T and u are correlated the model-builder must introduce a constant λ and a
new variable z and write T = λz + u (this, of course, involves respecifying u).
He must then specify which two of T, z and u are external, and therefore may
be taken to be uncorrelated. If z and u are defined to be external, T becomes
an internal variable, while if z and T are specified to be external, then u is
internal. So reformulated the model inherits the properties of models with un-
correlated external variables. In general the IN-causal ordering depends on how
correlations among external variables are resolved.
Angrist’s [1990] paper evaluating the effects of military service on lifetime

earnings provides a setting in which these diffi culties can be explored. One can
estimate the effect of military service on the lifetime earnings Y of veterans and
non-veterans by running the regression

Y = βY V V + u, (3)

where V is a dummy for military service. If V is external there is no problem
with asserting that V IN-causes Y, with βY V measuring the magnitude of the
effect. The problem is that an ordinary least squares estimate of βY V is biased
to the extent that veteran status is correlated with such unobserved variables
as ability to earn a high income in civilian employment, which in turn is an
explanatory variable for lifetime earnings. Thus V and u are correlated, so the
population parameter βY V is not identified.
Angrist’s solution was to use a measure E of eligibility for conscription as

an instrument in estimating βY V . E was specified to consist of the number as-
sociated with each agent under the draft lottery in the Viet Nam war. Whether
or not an agent is likely to be drafted based on his lottery number is correlated
with whether or not he served in the military– the treatment– but, arguably,
not with other determinants of lifetime earnings. This, it is suggested, estab-
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lishes the suitability of E as an instrument.
This justification for draft eligibility as an instrument in estimating the pa-

rameter Angrist associated with the effect of veteran status on earnings seems
persuasive, but the informal treatment of the correlation between V and u is
problematic. Investigating this diffi culty involves dispensing with the purely
verbal treatment of draft eligibility and earnings ability in favor of working
with a model that incorporates these variables explicitly.
Let (unobservable) a represent an agent’s ability to earn a high income in

civilian employment. The new variables E and a are not part of the original
formal model, consisting of eq. (3). We now expand that model to incorporate
them, and use the expanded model to deconstruct the correlation between V
and u. The problem is to specify which variables are external in the expanded
model. For the purpose of the present discussion there are two possibilities.
First, consider what Angrist characterized as the simplest specification for why
military service affects lifetime earnings: agents in military service accumulate
human capital at a different rate from those in civilian employment, resulting
in different future incomes when they compete in civilian job markets against
nonveterans. Under this interpretation the augmented model can be written

Y = αY V V + αY aa+ u (4)

a = αaV V + w (5)

V =

{
1 if βV EE + z ≥ 0
0 if βV EE + z < 0 .

(6)

The external variables here are E, u, w and z. These are assumed to be dis-
tributed independently. Eq. (5) expresses the dependence of earnings ability
on veteran status, while eq. (6) specifies that veteran status depends on eligi-
bility for the draft. The model can be parametrized so that the implied joint
distribution of Y and V is the same as in the original model (3).
Here, as in the original regression (3), αY V cannot be estimated consistently

by an ordinary least squares regression of Y on V because V is correlated with
a, which is a component of the error. Instrumental variables also produces an
inconsistent estimate of αY V because E is correlated with a, using eqs. (5)
and (6). Finally, we have that V does not IN-cause Y, implying that αY V does
not represent an IN-causal influence. The appeal to instrumental variables to
produce a consistent estimator of an IN-causal parameter fails.
Instead of having veteran status IN-causally prior to earnings ability, we

could reverse the causation and specify that earnings ability IN-causes veteran
status, so that agents are more or less likely to join the armed forces according
to their earnings ability in civilian employment. A model that reflects this
respecification is the following:

Y = αY V V + αY aa+ u (7)
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V =

{
1 if βV EE + βV aa+ z ≥ 0
0 if βV EE + βV aa+ z < 0,

(8)

where a, E, u and z are external, and assumed uncorrelated. In this setting an
ordinary least squares regression of Y on V yields an inconsistent estimate of
αY V for the same reason as above. However, using E as an instrument in an
instrumental variables estimate yields a consistent estimator of αY V : E, being
external, is uncorrelated with the error, but is correlated with V . Thus E is a
valid instrument for αY V , contrary to the earlier case. However, it remains true
that V does not IN-cause Y, again due to the presence of a, an element of the
external set for V, as a separate explanatory variable for Y in eq. (7). Thus αY V ,
although now consistently estimated, does not represent the IN-causal effect of
V on Y. Again the instrumental variables estimator, although consistent, does
not yield an estimator of IN-causation.
We see that recasting the model so as to eliminate uninterpreted correlations

may not preserve IN-causal orderings. If not, causal parameters are not well
defined, so there is nothing to estimate. Either way, it would seem, the potential
role of instrumental variables estimators is unclear.

4 Conclusion

The examples underline the importance of specifying explicitly how treatments
are generated in the data used to appraise treatment effectiveness, rather than
attempting to work directly with uninterpreted correlations. We have seen that
the conditions required for implementation neutrality depend on the causal
statement that is envisioned: some statements of causation are invalidated
due to failure of implementation neutrality, while others carry over. In our ex-
amples we have provided instances of each. Analysts need to distinguish among
alternative possible causal statements and avoid those that are invalid in the
models they specify.2
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