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Abstract

Analysts associated with the Cowles Commission attached great importance
to the distinction between structural and reduced-form models: in their view
structural models, but not reduced-form models, allow the analysis of causal
relations. They did not present clear justification for this view. Here we show
that this insight is correct, and make the demonstration of it precise. Causal
relations are shown to depend on parameter restrictions that are explicit in
the structural form, but not in the reduced form when the coeffi cients are in-
terpreted as unrestricted constants. The requisite parameter restrictions are
those associated with implementation-neutral causation. A graphical proce-
dure is outlined that identifies causal orderings and also the ordering based
on implementation-neutral causation. The same procedure applied to reduced
form models produces the implementation-neutral causal ordering only if the
parameter restrictions are explicitly incorporated in the reduced form. The
analysis is applied in investigating the validity of the causal Markov condition.
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In the early days of macroeconomics much was made of the distinction between
structural and reduced-form models, particularly by economists associated with the
Cowles Commission at the University of Chicago and Yale University. Most simply,
a linear structural model can be written as

Ay = Bx, (1)

where y denotes the internal variables of the model (those determined by the model)
and x denotes its external variables (those taken as given). Both x and y are vectors.
A = {αij} and B = {βik} are matrices of constants.1 A is square and nonsingular, and
is normalized by setting the elements of the main diagonal equal to one. Attention
is restricted to linear models in this paper.2

1 Structural Forms and Reduced Forms

The Cowles economists distinguished the structural form of a model from its solution
form,

y = A−1Bx ≡ Gx, (3)

1Hurwicz [7] was one of the few Cowles economists who proposed a precise definition of “struc-
tural”. Rather than simply characterizing structural models as those in which y is preceded by A,
as here, his discussion brought in the idea of identification.
In Hurwicz’s usage, causal analysis consisted of determining the effects of alterations in structure.

In that analysis the elements of A and B were characterized as constants but treated as external
variables. Here, in contrast, we maintain the status of A and B as matrices of constants.

2Hurwicz [7] wrote the prototype structural model as

Ay = b, (2)

where b is a vector of constants and A is not necessarily square. This formulation allows the
possibility that the model has fewer equations than variables, so that some of the variables are
external. Hurwicz’s notation did not distinguish internal from external variables. Failing to do so
left it unclear which variables the model is intended to explain.
Other Cowles analysts, such as Wold [16], did distinguish between external and internal variables.
In some applications of causation analysis the assumption of linearity is unsuitable. For example,

in analyzing treatment effects the treatment variable, which is binary, is specified to be a function
of real-valued external variables. Such a function is necessarily nonlinear. See LeRoy [9] for analysis
of such models.
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where G = {γik}. Eq. (3) is usually called the reduced form.3 The structural form
was viewed as conveying valuable information not contained in the reduced form.
It is diffi cult to extract from the Cowles economists’ discussions exactly how this
information is connected with causation (it was usually associated with identification),
and why it disappears in going from the structural form to the reduced form (again,
see the discussion in Hurwicz [7], although the argument there is not easy to follow).
In this connection a recurrent theme has been that the structural form coeffi cients can
be used to analyze interventions, and therefore locate causal orderings, whereas the
reduced-form coeffi cients cannot be used in this way (see Section 3). There remains
the question of why this is so.
This paper shows that a version of the Cowles argument is correct. It discusses a

definition of causation that is based on the reduced form, but is most easily imple-
mented using the structural form. We characterize the precise nature of the informa-
tion that is lost in passing from the structural to the reduced form.

2 Equality and Causation

Many contemporary applications of structural models, particularly those directed
toward graphical analysis of causation, use an alternative specification of structural
models, written as

y = Ay +Bx. (4)

Here A has zeros on the main diagonal. In (4) the symbol = denotes causation,
with the right-hand side variables of each equation interpreted as directly causing the
left-hand side variable. Thus = is an assignment operator, as in computer languages.
This definition appears to allow each of two internal variables to cause the other.
Some analysts have accepted this implication (Heckman [5], for example), but others
take the view that simultaneously-determined variables should be distinguished from
causally ordered variables.
There is a problem with interpreting = as an assignment operator in models

incorporating simultaneity. Application of the assignment operator to the right-hand
side of the equation for yi may require yj as an input, and also vice-versa. Therefore
these equations cannot be solved by application of the assignment operator. It follows
that = is interpretable as the assignment operator only in fully recursive models. One
would prefer to have a treatment of models in which there may be recursive blocks,
but equations within such blocks are simultaneous.

3Here x can include both observed and unobserved variables. The coeffi cients with respect to
unobserved external variables are well defined only subject to an arbitrary scaling of the latter. The
scaling usually adopted is to set either αij or γij , depending on whether one is working with the
structural form or the reduced form, equal to 1 when xj is unobserved. We follow this convention.
Here it is assumed that all internal variables y are observed.
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Under the alternative interpretation each equation in (4) has a distinct identity:
the variables that are direct causes of yi are all located on the right-hand side of the
i-th equation. In the philosophy literature this property is known as “modularity”.
In the formulation (1), in contrast, the characterization of = as a reflexive, symmetric
and transitive operator implies that it is arbitrary which variable appears on the left-
hand side of an equation. Thus we do not have modularity: the equations are best
thought of as defining a single map from anm-dimensional space of external variables
to an n-dimensional space of internal variables. With = interpreted as a reflexive,
symmetric and transitive operator, there is no direct connection with causation.
The alteration in the meaning of = from its mathematical definition to its in-

terpretation as representing causation has led some writers to express the view that
graphical depictions of causal models, which incorporate the altered meaning of =,
are fundamentally different from their algebraic counterparts (Elwert [2], for exam-
ple). Below we will conclude that, contrary to this, there is no reason to avoid using
= with its usual mathematical meaning in analyzing causation, and this is so in
both equation-system-based and graph-based discussions. This is a major attraction:
economic models are derived from primitives by using mathematical calculations in
which = is interpreted as a reflexive, symmetric and transitive operator, as opposed
to an assignment operator. Proposing to change the interpretation of = upon termi-
nation of such derivations creates more problems than it solves. With = preserving
its mathematical interpretion in the analysis of causation these problems do not arise.
Thus structural models may or may not contain simultaneous blocks, consistent with
their having a well-defined causal structure.

3 Causation Based on “Ceteris Paribus”

Angrist and Pischke [1] is one of the few recent sources in the economics literature
that discusses causation explicitly and clearly (but not, in our view, correctly). Their
account outlines a treatment of causation that is widespread, if not universal, in con-
temporary economics. If yj appears on the right-hand side of the structural equation
determining yi, then yj is defined to cause yi “ceteris paribus”. Here “ceteris paribus”
means that other variables in the equation determining yi, which may include both
internal and external variables, are held constant. The i, j element of A is interpreted
as giving a quantitative measure of the causal dependence of yi on yj, ceteris paribus.
The intervention on yj is not connected with the external variables that, according
to the model, determine yj.
The ceteris paribus definition of causation relies on the problematic characteri-

zation of equality as an asymmetric relation, as discussed in the preceding section.
Interpreting the equality symbol instead as having its usual mathematical meaning,
as recommended here, implies that a definition of causation based on the “ceteris
paribus” condition is inadmissible inasmuch as it treats the left-hand side variable
differently from the right-hand side internal variables.
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Another problem is that analyzing causation using the ceteris paribus condition
amounts to respecifying the model, so that the causal analysis is conducted using
a model different from that actually proposed. An example will make this clear.
Consider the recursive model

y1 = β11x1 + β12x2 (5)

y2 = α21y1 + β23x3 (6)

y3 = α31y1 + α32y2 + β34x4. (7)

On the received account of causation, this model implies that y2 causes y3, with
causal constant α32, ceteris paribus. Here ceteris paribus means that y1 and x4 are
held constant.
The operation of substituting a constant for the internal variable y1 is inconsistent

with the presence of eq. (5) in the model, since that equation states that y1 instead
depends on the external variables x1 and x2. We are led to accommodate the ceteris
paribus condition by deleting eq. (5) from the model. Further, the exercise involves
treating y2 as an external variable, so we also delete from the model eq. (6), which
characterized y2 as an internal variable. We are left with a model consisting of the
single equation

y3 = α32ŷ2 + β34x4, (8)

where ŷ2 denotes the variable y2 now redefined to be an external variable.
In the model (8) there is no doubt that ŷ2 causes y3, and that the constant as-

sociated with this causation is α32, as asserted in the received account of causation.
However, the model from which this conclusion is drawn is completely different from
the original model– eq. (5)-(7): the model as altered has different internal variables,
different external variables and different equations. Rather than determining causa-
tion in the model as originally specified, applying the ceteris paribus condition in this
way amounts to altering the model so as to create a setting in which causation has a
clear meaning and is unambiguously associated with a constant in the model. Doing
so does not constitute an analysis of causation in the original model.
There is another way to make essentially the same point. An intervention on y2

is reducible to an intervention on x1, x2 or x3. By assumption these are external, and
therefore are not linked by functional equations. But holding constant y1 effectively
converts it into an external variable, thereby necessarily inducing a functional relation
between x1 and x2. One of these (it is not clear which) becomes an internal variable.
Again, the conclusion is that holding constant an internal variable constitutes an
alteration of the model, and therefore is inadmissible in defining causal relations.
Properly viewed, the statement that one internal variable causes another “ceteris

paribus”consists of the assertion that external variables that are not determinants
of the cause variable, but not internal variables or external variables that are deter-
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minants of the cause variable, are held constant. In the remainder of this paper the
term “causation” is always taken to mean causation that is ceteris paribus in this
sense, so the “ceteris paribus”proviso can be omitted.

4 Interventions

We discuss our preferred treatment of causation in the remainder of this paper.
In the Cowles usage an intervention consists of a modification of the structural

equations intended to allow the analyst to determine what would happen under a
given hypothetical change in the environment (Haavelmo [3]; see also Heckman and
Pinto [6]). Using a model in this way to analyze causation involves altering the
setting, with the alteration depending on the causal question that is being asked.
This practice was criticized in the preceding section.
The insistence of the Cowles economists on representing interventions as mod-

ifications of structural equations led them away from an alternative much simpler
formalization of interventions using elements of the model that are already available:
external variables. Representing interventions as hypothetical alterations of external
variables means that no change in the model is involved in analyzing interventions.
There is no loss of generality in requiring that interventions be modeled as alter-
ations of external variables since any conceivable intervention can be accommodated
by inclusion of external “shift variables”in the model.
Let us then initially set the external variables to preassigned values. The solution

to the model under these values is termed the baseline. Then generate an intervention
by changing the assumed value of one or more of the external variables and recompute
the solution. One then determines the effect of the intervention by comparing the
values taken on by the internal variables under the intervention with those under the
baseline specification.
By designating a coeffi cient as an external variable rather than a constant the an-

alyst is allowing for interventions on that variable. If the coeffi cients are variables the
model is bilinear, not linear. These specifications are different. Treating constants
as if they were variables, or converting constants to variables, is methodologically
questionable at best: it makes no sense to alter a model in using it to analyze the
effect of an intervention that is inherently ambiguous in the original formulation of
the model. In an equation characterized as linear the coeffi cients are interpreted as
constants. Labeling the coeffi cient a constant implies that interventions on that con-
stant are ruled out: we do not ask mathematicians what would happen if π were equal
to a number other than 3.1416, and economists should not be asking the analogous
question about the constants of their models.4

4Thus analyses of interventions differ from comparative statics or comparative dynamics exercises,
in which changes in constants are acceptable. This is so because the purpose of the latter exercises
is to compare different models, not to determine the effects of changing the value of an external
variable in a given model.
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The requirement that analysts explicitly distinguish constants from external vari-
ables and treat each consistently, even in analyzing interventions, enforces clarity
about which contemplated interventions the analyst views as admissible and which
are excluded from consideration. Here we part company from the Cowles economists
who, as noted, were often unclear about this distinction.5

The same analysis applies to the frequently-encountered practice of analyzing
interventions involving internal variables by relabeling cause variables as external
variables and deleting from the model the equations that determine them (here we
leave aside the fact that the equations to be deleted can be uniquely ascertained only
in fully recursive models). Such a procedure constitutes a substantive modification of
the model even in fully recursive models, as in (5)-(7). The treatment to be specified,
in contrast, will provide a way to analyze causal relations among variables in a model
without at the same time changing the model.
In forecasting exercises the general practice is to specify probability distributions

for external variables and then derive the distributions of internal variables by apply-
ing the reduced-form equations. Analyzing interventions on such models, in contrast,
involves specifying particular realizations of the external variables, as noted above.
Contrary to some discussions, there is no contradiction between assigning probability
distributions to external variables in using a model to generate forecasts and setting
the realizations of these variables to determine effects of interventions. In model-
ing the price of some crop an analyst could specify that the harvest depends on
the weather, and then produce a forecast by assuming a probability distribution for
weather-related external variables. Equally, one could analyze what the crop would
be if the weather were good. The former exercise is a forecast, while the latter consti-
tutes analysis of an intervention. The same model can be used in either application.

5 Causation

Causal relations can be modeled in terms of interventions. One can determine for
each internal variable the set of external variables each of which affects the value of
that internal variable. The elements of these external sets are causes of the internal
variable: if E(yi) is the external set for yi, then xj ∈ E(yi) causes yi, written xj → yi.

5In the Cowles treatment of causation, and also in many recent discussions in the philosophy
literature, analysts insisted that causal interpretation of a model requires a property of invariance.
The meaning of invariance in the context of implementing alterations of a model’s structure was
never made clear despite much discussion. However, with interventions characterized as consisting
of hypothetical changes in the values of external variables rather than as general structural changes,
failure of invariance can only mean that terms specified as constants should instead be modeled
as variables. In well-specified models labeling α as a constant means that α really is constant.
Therefore that variable is not a candidate for intervention, and is not affected by interventions.
Reminding analysts that if their models are misspecified their diagnoses of causation are likely to
be wrong is hardly necessary. We see that invariance disappears as a feature of causal attributions
that requires extended discussion.
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The effect on internal variables of interventions on external variables can be calculated
by applying the reduced form to the difference between the baseline values of external
variables and their values under intervention: γij∆xj.
Causal relations may also be defined in which the cause variable as well as the

effect variable is internal. Then the intervention consists of any of the possible changes
in the values of the variables in the external set of the cause variable that lead to a
given change in the value of the cause variable. If E(yj) is a proper subset of E(yi)
we will say that yj causes yi, written yj → yi (here we follow the lead of Simon in
his classic paper [12]). The condition means that an intervention on any element of
E(yj) induces an alteration in yi, and also that there exists some element of E(yi)
that is not in E(yj), so as to assure the asymmetry of causation. The requirement
of a proper subset rather than a subset allows us to distinguish between variables
that are causally ordered and those that are simultaneously determined (in which
case the variables have the same external sets). The contribution here is to provide
a graphical counterpart to Simon’s analysis and, starting in Section 8, to extend the
analysis to a more restricted characterization of causation.
Note that analyzing causation so defined does not involve alteration of the model.
The proper subset condition implies that no internal variable has an external

set consisting of a singleton. It would be counterintuitive at best to have a scale
multiple of an external variable labeled an internal variable: doing so involves treating
differently two variables that are not substantively different in terms of the structure
of the model. Finally, allowing singleton external sets would seem to imply that
external variables always cause themselves. This specification, besides conflicting
with the definition of an external variable, would be odd at best.
Ruling out singleton external sets is more a notational convention than a substan-

tive restriction; to ensure exclusion of internal variables with singleton external sets
one has only to solve them out of the model by replacing the internal variable with
the external variable and adjusting equation coeffi cients appropriately to allow for
the scale factor.

6 Causal Graphs

As we have seen, causal orderings based on comparisons of external sets are derived by
comparing all the pairs {xj, yi} and {yj, yi}. Pairs {xi, xj} are not connected because,
being external, they are not causally related. If xj ∈ E(yi) we have xj → yi. If E(yj)
is a proper subset of E(yi) we have yj → yi.
Given availability of numerical values for the elements of A and B one determines

the causal ordering by solving for the reduced form, and then determining the ex-
istence or nonexistence of causation between any two variables by checking whether
the external set of one is a proper subset of that of the other. This is directly inferred
from the location of zeros in the reduced form. If one knows the location of zeros
in A and B but does not have numerical values for parameters, as is the case in
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theoretical analysis, this method requires using symbolic matrix inversion software to
determine the location of zeros in the reduced form. This may not always be conve-
nient. An alternative procedure would be to assign arbitrary values to all structural
coeffi cients, and then compute the reduced-form coeffi cients. Barring an unlucky
choice of numerical values, this procedure would produce zeros in the same locations
as the symbolic calculation would. The easiest approach, at least with simple models,
involves working directly with the structural model instead of the reduced form, and
using graphical methods.
The problem consists of deriving from the equations of the model a graph such

that we have xj → yi and yj → yi if and only if there exists a path from xj to yi or
yj to yi involving an ordered n-tuple of internal variables such that each member has
an external set that is strictly greater than that of its predecessor. In this section we
outline the construction of such a graph.
In advocating the use of graphical methods in analyzing causation we follow the

mainstream in causal analysis, notably Pearl [10]. However, our use of graphical
methods differs from that found in the mainstream tradition. In the received analysis
the causal graph is taken directly from the structural model: the variables on the
right-hand side of each equation are identified as direct causes of the left-hand side
variable. We took issue with this specification in Section 2.
A preliminary– and trivial– first step consists of construction of the structural

graph. This consists of a graph in which each variable is connected by an undirected
edge to each other variable that appears in the same structural equation. The use
of undirected edges reflects the interpretation of = as a reflexive, symmetric and
transitive operator, as discussed in Section 2. Each edge can be labeled with the
corresponding coeffi cient in the mathematical form of the model, although these labels
may be omitted depending on the application. Hereafter we will use the structural
graphs of a model in place of its mathematical form, the two being interchangeable.
Doing so facilitates comparison of structural and causal graphs.
A causal graph consists of a graph that connects with arrows variables that are

causally linked, where the causal arrow here has the same meaning as in Section 5
(except that, as noted below, in causal graphs it is convenient to omit causal arrows
when they are implied by the transitivity of causation). This involves connecting pairs
of variables such that the effect variable has an external set that is strictly larger
than that of the cause variable, except when there exists an intermediate variable
that is causally related to both. In the presence of such a variable the two original
variables are directly connected by an arrow only if there also exists an undirected
edge connecting them in the structural graph. Existence of such an edge reflects the
fact that the two variables are causally linked both directly and indirectly. We want
the graph to show both direct and indirect causation when both are present; this
is possible only if we delete all causal arrows that are implied by the transitivity of
causation.
Some models have simultaneous blocks, meaning that nonsingleton sets of internal
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variables have the same external sets. Such variables are not connected by arrows.
Instead, each member of a simultaneous block is connected with an arrow to each
variable outside the block that is connected by a directed edge to any member of the
block. In this case causal arrows may represent the connection between non-adjacent
variables. Example 2 below illustrates this construction.
The procedure just outlined generates a graph in which each internal variable is

connected to its ancestors by paths of incoming arrows and to its descendants by
paths of outgoing arrows. Parents and children are special cases of ancestors and
descendants where the connection is achieved via a single arrow, so that causation is
direct. Causation is indirect when more than one arrow is involved in the path from
cause variable to effect variable.
The causal graph allows an easy representation of the reduced-form coeffi cients.

With each causal path is associated a path coeffi cient consisting of the product of the
edge coeffi cients associated with the arrows that generate the path. Each internal
variable is connected to each of the variables in its external set by one (or more)
causal path(s). If there exists only one path connecting the two variables the reduced-
form coeffi cient of that internal variable with respect to each external variable in its
external set equals the path coeffi cient for that path. If there exist more than one
path connecting the two variables, the reduced-form coeffi cient equals the sum of the
path coeffi cients (see Examples 3 and 4).
Note that this characterization of causal coeffi cients applies without qualification

only when the cause variable is external, as with the reduced form. The corresponding
characterization when the cause variable is internal is found in Sections 8, 9 and 10.

7 Examples

The algorithm presented here is illustrated using examples. In each case the model
is defined using a structural graph. The associated causal graph is presented when
the structural and causal graphs differ. As will be seen, sometimes the two graphs
coincide (with undirected edges replaced by arrows; hereafter this proviso is omitted),
and sometimes not.

7.1 Example 1

The structural graph shown in Figure 1 depicts the simplest model in which the
internal variables are causally ordered. It is discussed in Section 9. The associated
causal graph is identical to the structural graph.

7.2 Example 2
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x1 x2 x3
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    y2

Figure 1

x1 x2 x1 x2

y1 y2 y1 y2

   (a)     (b)
Figure 2

The standard economist’s supply-demand model, in which each of two equations
includes price, quantity and one external variable, is the simplest model that includes
simultaneous determination of a block of internal variables, here consisting of y1 and
y2. The internal variables, price and quantity in the supply-demand example, are not
causally ordered. Its structural graph is shown as Figure 2(a). The causal graph,
shown as Figure 2(b), consists of arrows linking each of the internal variables to each
of the external variables, with the internal variables not causally connected.

7.3 Example 3

In Figure 3 the variables y1 and y2 have external sets neither of which is a subset of
the other, and y3 has an external set that properly contains the external sets of each
of y1 and y2. Therefore the causal form of the model coincides with the structural
form: y1 and y2 are not causally related, but each causes y3. The external variable
x2 affects y3 via two indirect paths, so the reduced-form coeffi cient of y3 with respect
to x2 is α31β12 + α32β22.

7.4 Example 4

The structural model shown in Figure 4 differs from that in Figure 1 due to inclusion
of an edge connecting x2 and y2. Here x2 and y2 are connected both directly and
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x1 x2 x3
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    y2

Figure 4

indirectly. The causal graph in Figure 4 coincides with its structural graph.

7.5 Example 5

Here y2 causes y4 in Figure 5(b) despite the absence of an edge connecting them in
Figure 5(a). This is so because an intervention on y2 is necessarily attributable to an
intervention on x2 or x3, and these cause a change in y4. Note that, from comparison
of Figures 2 and 5, presence of an edge connecting two variables in the structural
graph is neither necessary nor suffi cient for presence of an arrow connecting them in
the causal graph.

8 Implementation-Neutral Causation

For many purposes the notion of causation just outlined is too weak. This is so
because even if yj causes yi different interventions consistent with a given ∆yj can
induce different yi. For example, suppose that we consider an intervention ∆y1 on
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Figure 5

y1 in some model. Any intervention on an internal variable is viewed as generated
by an underlying intervention on the variables in its external set. In the model of
Example 4 the intervention∆y1 could have been caused by an intervention of∆y1/β11
on x1 or ∆y1/β12 on x2 (or, of course, a linear combination of these). There results
∆y2 = α21∆y1 in the first case and (α21 + β22/β12)∆y1 in the second. The question
“What is the effect of y1 on y2?”does not specify which is the case, leading to the
conclusion that the magnitude of the causal effect of y1 on y2 is not well defined.
One could object against this line that in the model of Example 3 ∆y1 results

unambiguously in an effect α31∆y1 on y3 if y2 is held constant. We argued in Section
3 that holding constant an internal variable in this way constitutes an alteration of
the model (by inducing a functional relation between variables specified as external;
in this case x2 and x3). Avoiding altering the model leaves us with the conclusion
that the effect of y1 on y2 in the model of Example 3 as specified is in fact inherently
ambiguous.
In other cases this ambiguity does not occur. If in addition to yj → yi we have

a model in which all the interventions that lead to a given value of ∆yj map onto
the same value of yi, the effect of ∆yj on yi does not depend on how ∆yj is imple-
mented (that is, which element(s) of E(yj) is (are) intervened upon). In that case
causation is implementation neutral. The causal relation between y1 and y2 in Figure
1 is implementation neutral: the effect on y2 of an intervention of ∆y1/β11 on x1
(equal to α21∆y1) is equal to that of an intervention of ∆y1/β12 on x2. We refer to
the causal relation so defined as IN-causation. If yj causes yi and the causation is
implementation neutral we will write yj ⇒ yi. For each internal variable yi, each xj
in E(yi) IN-causes yi; for arbitrary internal variable yj, yj may or may not IN-cause
yi, even if yj → yi, as we have just seen.
If xj or yj IN-causes yi by definition there exists a constant that measures the effect

of xj or yj on yi. This constant is the same for all possible underlying interventions.
That coeffi cient may or may not coincide with the parameter αij in the structural
model (it does so when only one path connects yj and yi, but not otherwise). Note
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that, in the discussion in Section 3 of the ceteris paribus condition, in the recursive
model (5)-(7) y2 does not IN-cause y3: if the intervention inducing ∆y2 is on x3, the
effect on y3 is different from that occurring if the intervention is on x1 or x2. Therefore
the constant α32 cannot be interpreted causally. In contrast, y1 does IN-cause both
y2 and y3, so α21 and α31 can be interpreted causally.
For a related analysis under the rubric of “spurious correlation”see Simon [13].

By “spurious correlation”Simon meant correlation where there is no causation. Here
Simon can be interpreted as anticipating the idea of implementation neutrality, al-
though his analysis differs from that found here.6

The IN-causal ordering consists of all the pairs xj, yi and yj, yi such that xj ⇒ yi
and yj ⇒ yi. IN-causation will be our primary notion of causation: if yj → yi but not
yj ⇒ yi we do not have enough information about the intervention to characterize its
effect on yi quantitatively. IN-causation is discussed more fully in LeRoy [8], and is
applied to treatment evaluation in LeRoy [9].

9 IN-Causation in Reduced-Form Models

We review the criteria for IN-causation in the simplest nontrivial reduced-form model
discussed above in which two internal variables are causally ordered:

y1 = γ11x1 + γ12x2 (9)

y2 = γ21x1 + γ22x2 + γ23x3. (10)

In (9)-(10) the term in the 1,3 position in G is zero, with other terms nonzero.
Hereafter we will refer to equation systems like (9)-(10), where the nonzero values of
G are interpreted as unrestricted constants, as “generic reduced forms”.7 In (9)-(10)

6In Wold [16] (see also Wermuth [15]) it is argued that multiequation models that are fully
recursive inherit many of the properties of single-equation models. The fact that y1, but not y2,
IN-causes y3 in the model (5)-(7) suggests that this result does not carry over directly to causation.

7Here and throughout we take the definition of genericity to exclude special cases (but not to
rule out the presence of zeros in the G matrix, as in (9)-(10)). For the simplest example of what is
ruled out, note that the restriction γ21 = γ22 = α21 = 0 satisfies the condition (11), but we do not
have y1 ⇒ y2. This is so because under the restriction just stated y2 becomes a rescaled version of
the external variable x3, implying that interventions on y1 do not cause changes in y2. The stated
restriction is nongeneric within the space of parameter values satisfying (11), so we ignore such
cases.
In economic models, particularly those modeling agents assumed to have rational expectations,

one finds relations of the form y1 = y2−δy3, where δ is the regression coeffi cient of y2 on y3. Here y1,
the regression residual, and y3, the regression explanatory variable, are uncorrelated by construction.
Such relations violate the genericity requirement since δ is a function of the other parameters in
the model. One way to handle this problem is to relabel δ as an internal variable and include the
function determining its value as an equation in the model. This, however, results in a nonlinear
model.
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we have y1 → y2, but not necessarily y1 ⇒ y2.
As discussed in LeRoy [8], under the parameter restriction

γ21
γ11

=
γ22
γ12

(11)

we can define the constant α21 by

γ21
γ11

=
γ22
γ12
≡ α21 (12)

and write the model in structural form as

y1 = β11x1 + β12x2 (13)

y2 = α21y1 + β23x3. (14)

In (13)-(14) we have y1 ⇒ y2. The same is true in the reduced-form version of the
model, eq. (9)-(10), under the parameter restriction (11), but not otherwise.
Inspection of the generic reduced form allows determination of whether two vari-

ables are causally related, in the sense of → as defined above. This is so because the
generic reduced form contains the information about whether the external set of y1
is a proper subset of that of y2, in which case we have y1 → y2, or not. Whether the
parameter restrictions required for IN-causation, (11) in our example, are satisfied
cannot be determined from the generic reduced form (9)-(10) without restrictions on
the parameters.
If the generic reduced form can be rewritten as

y1 = γ11x1 + γ12x2 (15)

y2 = α21γ11x1 + α21γ12x2 + γ23x3 (16)

for some α21, it satisfies the parameter restrictions (12) by construction, implying that
the derivation of the structural form (13)-(14) is immediate. We will use the term
“restricted reduced form”to refer to the version of the reduced form that incorporates
the reduced-form restrictions implied by some structural model, as in (15)-(16). Thus
structural models, or equivalently restricted reduced forms, contain information about
both causation and IN-causation, as distinguished from unrestricted reduced forms,
which do not contain information about IN-causation.8

8To make the same point in vector-matrix notation, note that the restricted reduced form can
be written as

[
y1
y2

]
=

[
β11 β12 0

α21β11 α21β12 β23

] x1
x2
x3

 . (17)

15



The possibility of encoding structural information in reduced forms has relevance
for the ongoing debate between statisticians, economists and members of other disci-
plines about the meaning of structural equations. Statisticians and econometricians
(see Haavelmo [3], Wermuth [15] and Pearl [11] for discussion) have taken the view
that the coeffi cients of structural models have no clear meaning because they are not
connected to the probability distribution of internal variables. This statement is cor-
rect when the probability distribution of internal variables is viewed as generated by
applying the generic reduced form to the external variables, the probability distribu-
tion of which is assumed. However, it is incorrect as applied to the restricted reduced
form: as the above example shows, structural parameters like α21 in fact appear in
restricted reduced forms, and therefore can be viewed as figuring in the link between
assumed distributions of external variables and the implied distributions of internal
variables.

10 IN-Causation in Structural Models

As observed in Section 8, yj → yi does not imply yj ⇒ yi. In graphical terms this
is so because there may exist paths communicating causation that connect variables
in the external set of yj with yi but do not pass through yj. Existence of such paths
implies that the effect on yi of an intervention resulting in ∆yj differs under different
such interventions. When there are no such paths we have yj ⇒ yi.

9

A path connecting two variables is a directed path when all the arrows along the
path point in the same direction. If that condition fails causation along that path is
blocked, a result that has figured prominently in earlier causation discussions. This
observation is relevant in considering the converse of the proposition stated above
(that if all paths from elements of E(yj) to yi pass through yj then we have yj ⇒ yi).
The converse would be that if yj ⇒ yi then all paths from xk ∈ E(yj) to yi pass
through yj. This, however, is not true. Consistent with yj ⇒ yi we may have paths
connecting elements of E(yj) and yi that are defined in the causal form but are not
defined in the structural form. Also, there may exist paths from xk ∈ E(yj) to yi that
are defined in the structural form but are not directed.
To see that such paths can coexist with IN-causation, consult Figure 6. We have

that y1 ⇒ y3 despite the existence of two paths in the causal graph that connect x2

This can be shown to coincide with the structural form (13)-(14), written in vector-matrix form as

[
1 0
−α21 1

] [
y1
y2

]
=

[
β11 β12 0
0 0 β23

] x1
x2
x3

 , (18)

by inverting the matrix and multiplying.
9As noted in LeRoy [8], the above representation of IN-causation in terms of graphs in which

all paths from the external set of the cause variable to the effect variable pass through the cause
variable is described in Woodward [17].
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Figure 6

to y3 but do not pass through y1: {x2, y2, x3, y3} and {x2, y2, y3}. However, the first
of these is not a directed path and the second is not the counterpart of a path in the
structural graph, since there is no edge connecting y2 and y3.

11 The Causal Markov Condition

Up to now the analysis has been theoretical: we have separated the task of defin-
ing causation from that of testing causal models and estimating causal coeffi cients.
Focusing on the former, as we have done, meant that there was no need to discuss
probability distributions, observability of variables by the analyst or identification.
Ultimately we do want to test causal models. An important tool that has been ap-
plied to this end is the causal Markov condition which, it is asserted, makes possible
empirical testing of causal orderings and empirical estimation of causal parameters.
The causal Markov condition, as formulated by Spirtes, Glymour and Scheines

[14], for example, states that every variable of a model is probabilistically indepen-
dent of all variables other than its descendants and parents, given its parents. The
proposition that lack of correlation implies causation thus reverses the usual state-
ment.
The status of the causal Markov condition is ambiguous. In places it is treated

as an axiom separate from other assumptions specifying the structure of the model.
In other places it is regarded as part of the definition of Bayesian networks, which
usually involves sidestepping the question of whether a causal graph is a Bayesian
network. Finally, it is sometimes treated as a substantive proposition that can be
evaluated on philosophical grounds (see Hausman and Woodward [4] for extended
discussion).
The most obvious problem here is that, from elementary probability theory, two

random variables are always independent conditional on one of them. It follows
that we can certainly delete “and parents”from the definition of the causal Markov
condition (this point was noted by Hausman and Woodward). A slightly less obvious
point is that, because any variable can be written as a deterministic function of
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its parents (shocks, being random variables, are included in the set of parents of
the variables they cause), any variable is independent of all variables, including its
descendants, conditional on its parents. It follows that the causal Markov condition
as just stated is valid, but trivially so.
These points, of course, depend on the definition adopted in this paper of parents

as the set of all variables that directly cause the variable in question. In treatments
of causation one often sees discussions that presume that error terms are not causal
parents. However, no guidance is given as to the basis for distinguishing variables
that are causal parents from those that cause a variable but are not counted among
its parents. Variables characterized as errors are, of course, unobserved, but there is
no apparent justification for denying their status as causal parents for this reason:
the definition of causal orderings does not depend on which variables are observable.
Hausman and Woodward explicitly posit existence of causal variables that are not
included in the model under consideration and therefore do not qualify as parents.
Presumably these appear as variables in some unspecified meta-model. It is not
explained what purpose it serves to make this distinction, at least without connecting
the discussion to the topic of model misspecification.
Despite the arguments just made, there are several propositions similar to the

causal Markov condition that are correct and nontrivial, and are easily derived in
the framework set out here. These derivations all depend on the assumption that
the external variables are probabilistically independent. If that condition fails the
interpretation is that some correlations between the variables of a model are generated
by the model’s causal structure, while others are buried as unmodeled correlations
among external variables. There is no empirical evidence that can determine which
is which. Thus one cannot distinguish empirically between correlations generated as
a consequence of the model’s causal structure and those resulting from correlations
among external variables.
We set forth two such propositions; no doubt there are others. The first propo-

sition is that, assuming that the external variables are independent, if two variables
have a single common ancestor they are correlated unconditionally, but are inde-
pendent conditional on that ancestor. The reason is that when external variables
are assumed to be independent the correlation between two internal variables results
from overlap between their external sets. By assumption that overlap consists of a
single external variable (if it were internal its parents would also be ancestors). Con-
ditioning on the common ancestor effectively implies that the external sets of the two
variables are disjoint, and therefore the variables are independent. If there are more
than one common ancestor it is necessary to condition on all of them; conditioning
on fewer is consistent with the two variables being conditionally correlated, as is easy
to confirm by example.
In the model shown as Figure 7(a) the variables y1 and y2, having the common

ancestor x3, are correlated. Conditioning on x3 effectively removes that variable from
the model, and therefore removes also the edges connecting it with its children. The
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Figure 7

graph Figure 7(b) results. With the external sets of y1 and y2 now disjoint, those
variables are independent.

The second proposition, unlike the first, involves implementation-neutral causa-
tion. It states that y1 ⇒ y2 implies that y2 is independent of any ancestor of y1
conditional on y1. This conclusion is illustrated in Figure 1. Conditional on y1, y2 de-
pends only on x3. But the definition of IN-causation implies that x3 is not an element
of the external set of any ancestor of y1. Therefore any variables that are ancestors of
y1, in this case x1 and x2, are independent of x3, and therefore also of y2 conditional
on y1. Note that this result, like that of the preceding paragraph, depends critically
on the assumption that the external variables are independently distributed. Here if
x3 is correlated with x1 or x2 the proposition under discussion fails.
The proposition just stated has a partial converse: if yk → yj → yi and yk is

independent of yi conditional on yj, then we have yj ⇒ yi. The fact that we have
yk → yj → yi implies that there exist paths connecting yk and yi. The fact that yk
and yi are independent conditional on yj means that all directed paths connecting yk
and yi pass through yj. This is the definition of IN-causation.
Existence of this theoretical result implies that, subject to maintained assump-

tions, IN-causation is testable. The availability of a partial converse suggests that in
some settings the test may have high power.

12 Conclusion

In the introduction it was noted that the Cowles economists did not provide a clear
statement of why structural models are better suited for causal analysis than reduced
forms. We now have such a statement: generic reduced-form models incorporate
information about the subset relations implying the causal ordering we have denoted
by→, but not about the parameter restrictions necessary for implementation neutral
causation, denoted by ⇒ . Structural models and restricted reduced-form models
contain both sources of information. Comparing results for structural and generic
reduced-form models, we see that solving for the generic reduced form and using it to
diagnose causation without incorporating the parameter restrictions involves a loss
of information, just as the Cowles economists asserted.
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It is worth noting that our justification for the Cowles analysis involves only
causation. In contrast, most discussions connect the Cowles analysis primarily with
identification. While there is no question of the importance of parameter restrictions
for identification in structural models, here we have not introduced a distinction
between observed and unobserved variables. This omission reflects the fact that
causal orderings do not depend on which variables are observed. Questions relating
to identification and estimation of causal parameters do require specification of which
variables are observed, of course.
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