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Abstract

In continuous-time stochastic calculus a limit in probability is used to ex-

tend the definition of the stochastic integral to the case where the integrand is

not square-integrable at the endpoint of the time interval under consideration.

When the extension is applied to portfolio strategies, absence of arbitrage in

finite portfolio strategies is consistent with existence of arbitrage in infinite

portfolio strategies. The doubling strategy is the most common example. We

argue that this extension may or may not make economic sense, depending on

whether or not one thinks that valuation should be continuous. We propose

an alternative extension of the definition of the stochastic integral under which

valuation is continuous and absence of arbitrage is preserved. The extension in-

volves appending a date and state called∞ to the payoff index set and altering

the definition of convergence under which gains on infinite portfolio strategies

are defined as limits of gains on finite portfolio strategies.

In continuous-time finance theory, portfolio gains (prices with past dividends

added in) are defined using the Ito definition of the stochastic integral. Security

gains  are modeled as a martingale–most simply, as a Brownian motion–and a

portfolio strategy is represented by a predictable stochastic process  When the in-

tegrator is a Brownian motion the definition of the stochastic integral implies that

the gain  at time  of the portfolio strategy, given by

 =

Z
=0

 (1)

∗I am indebted to participants at seminars at the University of California, Santa Barbara (sta-

tistics department), University of Vienna, Emory University, University of Miami, University of

Melbourne, University of Adelaide and University of California, Davis for comments. I have had

many conversations about this material with Mark Fisher.
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is a random variable with finite mean and variance.

Existence of this integral requires that  satisfy

Z
=0

(2 ) ∞ (2)

In many expositions it is pointed out that the definition of the Ito stochastic integral,

and with it the characterization of gains at  of portfolio strategies, can be extended

to cases in which the condition (2) is not satisfied for  =  , but is satisfied for all

   In that case the integral (1) can be characterized as a random variable for

each    In interesting cases these random variables converge in probability as 

approaches  , implying that the portfolio gain at  can be defined as the indicated

limit. We will call this limit the usual definition of the gain at  when (2) is not

satisfied for  =  .

The problem with the usual definition of the stochastic integral as applied to port-

folio payoffs is that even though the expected value of the gain at    necessarily

equals the initial cost of the portfolio strategy, the expected value of the gain at  as

just defined does not necessarily equal the initial cost of the portfolio strategy. In this

case arbitrage occurs. Neither the mathematics-oriented sources for this extension

(for example, Chung and Williams [3]) nor the finance-oriented sources (for example,

Duffie [5], Appendix D) provide much in the way of motivation for identifying the ex-

tension with a limit in probability. The reader is left uncertain whether the extended

definition of the integral involves economic assumptions beyond those involved in the

standard case. Can the valuation discontinuity that occurs when condition (2) on 

is not satisfied for  =∞ be avoided if the payoffs of infinite portfolio strategies are

defined differently?

Discussion of this issue is simplified if we switch to a discrete-time setting with 

an integer and  equal to ∞ The portfolio strategy identified with  terminated at

  ∞ is a finite portfolio strategy, the definition of which is unambiguous, so the

question is how to take the limit when  approaches∞We will discuss this question

in the context of the doubling strategy, which fits the setup just described.

1 The Doubling Strategy

The doubling strategy is usually cast as a gambling strategy in which a gambler

bets on the outcome of the toss of a fair coin, doubling the size of the bet until

he wins. It can equally well be treated as a portfolio problem in which an investor

invests repeatedly in a zero-price security that yields ±1 with equal probability. The
investor doubles the investment at each date until he wins, after which he bets zero.

In the truncated version of the doubling strategy the investor terminates the portfolio

strategy at date  whether or not he has won.
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The state  is defined as the first date at which the outcome +1 occurs. At date
 the observable events consist of the state  if  ≤  and the event    otherwise.

This assumption defines a filtration on  × The doubling strategy is defined by

 () =

⎧⎨⎩ 0  ≤  and  ≤   or   

2    and  ≤  .

(3)

Its gain is

 () =

⎧⎨⎩ 1  ≤ min( )

−2min() + 1   min( )
(4)

These stochastic processes are measurable with respect to the filtration just defined.

The fact that  occurs with probability 2− implies that the distribution of  ,
the random variable with realization  () in state  is

 =

⎧⎨⎩ 1 with probability 1− 2−min(,)

−2min(,) + 1 with probability 2−min()
(5)

It follows that ( ) = 0 Further, we have 

 = (+1| ), implying that  is a

martingale.

Under the doubling strategy condition (2) on the portfolio weights, with the inte-

gral replaced by a summation, is violated for  =  =∞. Therefore the Ito integral is
not defined. However, the gain  converges in probability to 1 as  =  rises, which

therefore is the gain on the infinitely repeated doubling strategy under the usual

definition. Thus despite the fact that truncated versions of the doubling strategy

are increasingly risky, and therefore are increasingly unattractive to any agent who

is strictly risk averse, under the usual treatment the infinite version of the doubling

strategy is an arbitrage.

It appears natural to take the state  as the date at which the agent first wins

( = 1 2 ), since then the state probabilities are 12 14  which sum to 1. Do-

ing so in conjunction with identifying the set of states with  however, is seen to

have the unfortunate consequence that by definition the event that the agent never

wins cannot occur. In other words, the event that gives the doubling strategy its

interest–unlimited possible losses–is defined out of existence in the formal treat-

ment. Obviously the specification that agents literally cannot lose under the doubling

strategy plays a central role in generating the conclusion that the doubling strategy

is an arbitrage.

It is likely that analysts find it acceptable to rule out the event that the agent

never wins because this event occurs with probability zero, and zero-probability events

are routinely ignored in all applications of probability. Neglecting zero-probability

events is acceptable when, as is usual, the payoff that occurs with zero probability is

finite. However, it is not so obvious that infinite (or, as under the doubling strategy,
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negative infinite) payoffs that occur with zero probability can be ignored without

consequence.1

Some analysts, to their credit, appear to be uneasy about labeling the infinitely-

repeated doubling strategy an arbitrage, particularly in the absence of any char-

acterization of investors’ preferences. For example, Delbaen and Schachermayer [4]

concluded from the fact that potential losses are unbounded under the doubling strat-

egy that “[e]verybody, especially a casino boss, knows that [the doubling strategy]

is a very risky way of winning 1. This type of strategy has to be ruled out: there
should be a lower bound on the player’s loss” ([4] p. 130). This passage is interesting

on several levels. Most obviously, under the received treatment the doubling strategy,

as an arbitrage, in fact has no risk–there exists no state in which the agent can lose.

In labeling the doubling strategy as risky, Delbaen and Schachermayer make clear,

apparently without realizing it, that they have doubts about the implication of the

usual definition of the gain on infinite portfolio strategies that the infinitely-repeated

doubling strategy is a riskless arbitrage.

In any case, as a general matter there is no need to rule out very risky portfolio

strategies. Assuming that agents are risk averse, they will not adopt very risky port-

folio strategies even if such strategies are available unless they are well compensated

in terms of expected return. Just the opposite: the (apparent) necessity for ruling

out the doubling strategy arises precisely from the representation of the doubling

strategy as not being risky.

Despite Delbaen and Schachermayer’s ambivalence, a case can be made that the

treatment of the doubling strategy is correct, at least as applied to some situations.

Under the doubling strategy, after all, there is no finite date at which the investor

must realize his loss. Therefore it can be argued that there is in fact no possibility of

loss since he can always continue playing. The situation is similar to a Ponzi scheme,

in which an investor borrows money and then rolls over the indebtedness forever.

Because there is no date at which the borrower must repay the loan, it is effectively

never repaid.

However, there is another way to look at the matter. Infinite portfolio strategies

1The assumption that justifies the usual treatment corresponds in mathematical terms to the

presumption that 0×∞ can be taken to be equal to 0. Mathematicians have not adopted a uniform
treatment of this question. Wolfram MathWorld and Wikipedia, “Extended Real Number Line”

state that 0 ×∞ is usually left undefined, like 00. Royden [11] listed the assumption 0 ×∞ =
0 separately from the others, identifying it as an “arbitrary convention” (emphasis in original),

suggesting that he was not entirely comfortable with the assumption.

In probability and measure theory, in contrast, 0 ×∞ is sometimes defined as equaling 0. For

example, let () equal 1 on [0 1] and 0 on (1∞) Then if  denotes Lebesgue measure, the Lebesgue

integral

∞Z
0

() equals ([0 1])×1+((1∞))×0 Since ((1∞)) =∞ this leads to the standard

result of 1 only if 0×∞ is defined to equal 0.

Thanks to Hrishikesh Singhania for conversations on this material.
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are often rationalized as approximations to finite portfolio strategies. For example,

the Black-Scholes model of option pricing requires that agents who wish to hedge

the risk of holding an option will trade at each of an uncountably infinite number of

dates. Actually conducting such a set of trades, of course, is impossible. The model

is appropriately viewed as an approximation to a model in which transactions costs

are low, but not zero, so that agents can conduct a large finite number of trades,

but not an infinite number. Often, as with the Black-Scholes model, it is easier to

model settings where agents can trade an infinite number of times than where they

can trade a large finite number of times. Now, if infinite portfolio strategies are to be

viewed as approximations of finite portfolio strategies, it is important that there be

no discontinuities in going from the finite to the infinite case. Under the conventional

representation of the doubling strategy, as we have seen, the gain is increasingly

unattractive in the finite case, but is an arbitrage in the infinite case if convergence

is defined as convergence in probability. This is clearly a discontinuity.

This raises the question whether there are alternatives to convergence in prob-

ability in characterizing the payoffs of infinite portfolio strategies as limits of finite

portfolio strategies. The desired alternative would have the property that utility and

value can be defined to be continuous in   so that there are no jumps in utility

and value going from finite  to∞ We will propose such an alternative definition of

convergence below. Because valuation is continuous under that definition, absence of

arbitrage on finite portfolio strategies implies absence of arbitrage on infinite portfolio

strategies. Thus admitting infinite portfolio strategies does not necessitate imposing

trading restrictions to exclude the doubling strategy or, for that matter, other arbi-

trages such as Ponzi schemes. Thus if gains of infinite portfolio strategies are defined

so that they are approximations to gains of finite portfolio strategies, considerable

simplification in the analysis become available.

The point is that it is inappropriate to impose a dictum either that the infinitely

repeated doubling strategy is necessarily an arbitrage, or that it cannot be properly

viewed as an arbitrage. Instead, whether or not such portfolio strategies are arbitrages

should be seen as an implication of a modeling decision that is at the discretion of the

analyst. The appropriate choice depends on the context and the desired interpretation

of the model. Thus the analyst who wishes to treat portfolio strategies like the

doubling strategy as exemplifying continuous valuation can achieve this by adopting

our modified definition of the portfolio gain in place of the usual definition; the analyst

who prefers to view the infinitely repeated doubling strategy as an arbitrage and is

willing to impose trading restrictions to rule such trading strategies out, of course, is

welcome to do so.

2 Gains at Infinity as Weak Limits

The alternative definition of the gain on an infinite portfolio strategy as the limit of

the gains on finite portfolio strategies obviously requires that the sequence of gains
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on truncated versions of the infinite portfolio strategy converge. Under most of the

familiar characterizations of convergence, such as convergence under a sup norm or a

mean-square norm, gains on such portfolio strategies as the finitely repeated doubling

strategy do not converge. The way around this is to define payoffs at∞ and adopt a

convergence definition such that gains on finite portfolio strategies for which condition

(2) fails at∞ converge to a payoff that includes a nonzero component at∞. Suppose,
then, that we add ∞ to the set of dates.2 Further, in defining the set of states we

add to the natural numbers (which represent the event of winning at the finite dates)

the state  = ∞ representing the event of never winning. Thus the state space is

now ∞ ≡  ∪ {∞} and sample paths are defined on ∞ × ∞ . We can extend

the definition of the filtration to ∞×∞ by assuming that at date∞ agents know

the state for all states, including ∞ It is assumed that the gain at the state ∞ of

any finite portfolio strategy is 0.

Portfolio gains as defined above are random variables on ∞ Let  be the gain
on a portfolio strategy that is not a finite portfolio strategy (because it cannot be

generated by a finite number of trades of the primitive securities). The infinitely-

repeated doubling strategy is the obvious example. Consider the portfolio strategy

that coincides with  up to date   but at  the agent terminates the strategy by

closing out all positions. For any finite  this a finite portfolio strategy, so its gain is

as defined above. We will define the gain on the infinite portfolio strategy  as the

weak limit as  goes to ∞ of the gains on the  so defined.

To do this we convert the mathematical representation of portfolio gains from

functions to measures. Fix a finite portfolio strategy with gain  The fact that  has

value 0 at∞ implies that for any  there exists a measure , continuous with respect

to probability (because ∞ = 0 and ∞ = 0), such that  is the Radon-Nikodym
derivative of  with respect to  :

 =



 (6)

Thus we can characterize the gain  at  on any finite portfolio strategy either as

a function  on ∞ or as a measure  on the partition of ∞ at  implied by the

information filtration described above.

Next we characterize the continuous functionals on ∞ since these are the test
functions required for weak convergence. Define a metric on ∞ ×∞ by

2Adding∞ to the sets of states and dates means that we cannot view our analysis of the doubling

strategy as embedded within a sequential equilibrium (that is, an equilibrium in which agents have

a separate budget constraint at each event, with that constraint involving only consumption and

security transactions at that event), since payoffs at ∞ would not enter such constraints. Rather,

we are assuming an Arrow-Debreu equilibrium concept, where each agent trades subject to a single

budget constraint that is integrated over time. In that case the relevant stochastic processes can

involve components at the date and state ∞

The distinction between sequential and Arrow-Debreu equilibrium is discussed further below.
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( 0) = |2− − 2−0|  0 ∈ ∞ (7)

which corresponds to Euclidean distance when 1 2 3  ∞ are identified with

12, 34 78  1 − 2−  1 In the topology induced by this metric, ∞ is a limit

point of ∞, and it is the only limit point, so we have that adding∞ to  to obtain

∞ constitutes the Alexandroff one-point compactification of . Under the definition
of convergence implied by the metric (7) the continuous functions  on ∞ are those
for which lim→∞ () = (∞)3 The purpose of this specification is to implement
the idea that the high elements of  are increasingly close to ∞. This assumption
will make possible the result that gains at  converge to gains at ∞.
A sequence of truncated portfolio strategies {} weakly converges to ∞ ifP

  converges to
P

 ∞ for every continuous function We will define ∞ as
the gain on the assumed infinite portfolio strategy. We will assume that the utility

of the limiting gain is the limit of the gains of the associated truncated portfolio

strategies, and similarly for valuation. Thus utility and valuation are continuous.

These definitions are readily applied to the doubling strategy. Interpreted as a

measure, the gain at  of the doubling strategy truncated at  is

 =
X

=1

2− +
∞X

=+1

(2−(+1) − 1) (8)

where  is any subset of N∞ and  is the point mass associated with :

() =

⎧⎨⎩ 1 if  ∈ 

0 if  ∈ 

(9)

for  ⊂ ∞ The sequence of measures {} weakly converges to ∞ defined by

∞ =
∞X
=1

2− − ∞ (10)

which is therefore the gain on the infinitely repeated doubling strategy. This occurs

because, under the metric (7), the point-masses  are very close to ∞ for high values
of 

The assumption that valuation is continuous is seen to imply that the value of

the infinitely-repeated doubling strategy equals the values of the finitely-repeated

portfolio strategy, which are zero. The utility of the consumption streams generated

by infinite portfolio strategies can be defined similarly as the limits of the utilities

generated by the corresponding truncated portfolio strategies. The utility of a con-

sumption stream consisting of the infinitely-repeated doubling strategy is zero for a

3A basis for the topology that has these continuous functions is the singleton sets of  together

with the unions of ∞ and the tails of ∞ Note that in this topology the singleton set ∞ is not

open.
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risk-neutral agent, so that the agent is indifferent as to whether to initiate either

the finite or the infinite version of the doubling strategy. An agent with quadratic

utility would assign negative infinite utility to the infinitely repeated doubling strat-

egy. Thus in contrast to the usual treatment, which holds that the infinitely repeated

doubling strategy is an extremely good outcome, under the revised treatment it is

seen to be an extremely bad outcome.

Note that gains that have a nonzero component at ∞ cannot be converted from

measures to functions on ∞. This is so because such gains are represented by mea-
sures that are discontinuous with respect to probability, implying that their Radon-

Nikodym derivatives with respect to probability are not defined. Observe that here

there is no violation of the condition that zero probability events do not determine

values. The probability of the state ∞ is 0, but this means only that the gains on

infinite portfolio strategies, as measures, may not be continuous with respect to the

probability measure. This is the case with the infinitely-repeated doubling strategy.

Using weak convergence is seen to enlarge the set of well-defined infinite portfolio

strategies to include portfolio strategies for which the condition

Z
=0

(2 )  ∞ is

not satisfied, as with the doubling strategy. The values of gains on truncated infinite

portfolio strategies, including the doubling strategy, is the same as the initial costs

of the infinitely repeated doubling strategy, so there is no arbitrage in passing from

the truncated to the infinite doubling strategy. 4

3 Bubbles

The fundamental value of the payoff of a portfolio strategy is the summed value of

its finite-date dividends. The bubble is the component of the gain that occurs at

∞ and the bubble value is the value of this term, equal to the difference between

the initial cost of the portfolio strategy and the fundamental value. This definition

indicates that portfolio strategies that have bubbles are exactly those with gains that

are nonzero at∞ It is seen that this paper is about how to model bubbles, although

we have not used that term up to now. Of course, if one is willing to rule out bubbles

4Of course, even with the revised definition of the gain on infinite portfolio strategies, there still

exist candidate portfolio strategies for which the gain is undefined.

The Alaoglu theorem guarantees existence of a limit point for any net of portfolio strategies that

is bounded. Unbounded portfolio strategies may not have limit points, implying that the gains on

the infinite versions of such strategies may be undefined. In this case we must reject the association

of  with an infinite portfolio strategy.

As the doubling strategy indicates, there are many portfolio processes  that are associated with

bona fide portfolio strategies under the definition involving weak limits even though they are not so

associated under the usual extension.
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at the outset, as is frequently done in financial analysis, then the issues discussed in

this paper do not arise.

The analysis of bubbles goes in different directions depending on whether one is

assuming Arrow-Debreu markets, as here, or sequential markets. What we are calling

the Arrow-Debreu specification is basically an extension of the original static general

equilibrium models of Arrow and Debreu to settings in which there are an infinite

number of states, dates, and in which agents can conduct an infinite number of trades.

Under the Arrow-Debreu specification, as in the classic finite general equilibrium

model, it is assumed that each agent has a single budget constraint that applies to

transactions at all states and dates. One can assume that all trading occurs before

time begins; as in the finite case this treatment involves no loss of generality because

trades are state- and date-contingent. Bewley [2], Gilles [6], Gilles and LeRoy [7], [8]

and others have conducted analyses of bubbles in Arrow-Debreu settings. Santos and

Woodford [12] and especially Huang and Werner [9] have shown that the analysis of

bubbles in sequential markets has little in common with the Arrow-Debreu case.

Bubbles in Arrow-Debreu settings can be analyzed directly using general equilib-

rium methods. This is done in the papers just cited. This involves directly defining

utility functions on infinitely nonzero payoff streams. Here, in contrast, we have

instead assumed that utility was defined initially on payoffs of finitely nonzero port-

folios, following which utility and value were extended to the limit points that rep-

resent payoffs of infinite portfolios. The relation between these two methods is far

from clear. It can be verified that they are consistent in the simplest examples, but

no results of a general nature are available. This is a worthwhile subject for future

research.

4 Conclusion

The simplest–and least controversial–contribution of this paper is to raise questions

about the easy characterization of the infinitely repeated doubling strategy as an

arbitrage that has to be ruled out by imposing trading restrictions. On the contrary,

that characterization emerges as a consequence of modeling decisions that are at

the discretion of the analyst. We demonstrated this by presenting an alternative

modeling procedure under which the infinitely repeated doubling strategy is not an

arbitrage. At least for some purposes the alternative procedure is attractive, inasmuch

as it avoids a discontinuity at infinity that does not have any obvious counterpart in

actual human behavior.

From an analytical point of view this conclusion is good news. Under our treat-

ment, if agents are strictly risk averse (and have continuous preferences) our analysis

implies that they will avoid the doubling strategy even if it is available (and priced

fairly). Whether or not agents are risk averse, there is no need to impose portfolio re-

strictions to exclude portfolio strategies like the doubling strategy. Analytically this

conclusion is convenient: without trading restrictions choice sets are linear spaces
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and valuation is linear; with trading restrictions matters are more complicated, even

in settings that would otherwise be easy to analyze (see, for example, LeRoy and

Werner [10] for analysis of asset pricing in the presence of trading restrictions; see

Huang andWerner [9] for conditions under which trading restrictions rule out bubbles

in sequential equilibrium).

There exists some empirical evidence–relying on data prior to the recent financial

crisis, to be sure–to the effect that bubbles do not occur in real-world financial

markets (Abel et al., [1]). As usual, this evidence is not conclusive, and in any case

it only tests for the existence of the simplest sort of bubbles. We take the view that

any strong conclusion on questions involving bubbles is premature. Many phenomena

occur in financial markets that are difficult to reconcile with the simplest rational-

agent model: one thinks of asset price volatility, the equity premium puzzle, and the

periodic occurrence of liquidity crises. These phenomena do not appear to produce

obvious profit opportunities that agents are irrationally ignoring. Accordingly, it

should be possible to analyze them using the orthodox methods of financial economics.

If some or all of these phenomena turn out to be connected to bubbles, the analytical

techniques developed here may be useful.
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