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Abstract. The manager of a firm that is selling an illiquid asset has
discretion as to the sale price: if he chooses a high (low) selling price,
early sale is unlikely (likely). If the manager has the option to default
on the debt that is collateralized by the illiquid asset, the optimal
selling price depends on whether the manager acts in the interests
of owners or creditors. We model the former case. In equilibrium the
owner will always offer the illiquid asset for sale at a strictly higher
price than he paid, and will default if he fails to sell. As a result,
upon successful sales the illiquid asset changes hands at successively
higher prices.

We also consider a generalization of the model which permits sell-
ers to finance sales using either debt or preferred stock, or both. This
allows derivation of an optimal capital structure.
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1. Introduction

When do firms use debt primarily rather than equity to finance their
assets? The answer often given is that they do so when the assets
collateralizing the debt are liquid, so that they have approximately
the same value in other uses as in their current use. Debt is efficient
because in the case of default the debtor can transfer the collateral
to the creditor, who can convert it to cash with little loss of value.
Airlines are the clearest case: Northwest Airlines can readily issue
debt secured by aircraft because these aircraft are worth as much to
American Airlines as to Northwest. (This proposition must be qual-
ified because of the possibility of an industry-wide downturn, which
has obvious implications for liquidity; these are analyzed by Shleifer
and Vishny [9].) When, on the other hand, the assets are specific
to their current use the creditor can liquidate them only subject to
a major loss of value. In that case, it is argued, equity finance will
be preferred to debt finance (Williamson [12]). Firms that produce
computer software are an example.
The conclusion of this argument is correct, but the reasoning is at

best incomplete. The Miller-Modigliani proposition about the equiva-
lence of debt and equity finance remains valid even if the bondholders
take a loss in the event of default. The yield on the debt can easily
be set at the time of issue to reflect the possibility of this loss but, as
the Miller-Modigliani reasoning makes clear, a higher yield on debt is
not by itself a reason to avoid its use. In the standard exposition of
capital structure theory it is not the existence of default that invali-
dates the Miller-Modigliani propositions, but the existence of costly
bankruptcy.
The reason illiquid assets are financed by equity is that use of

(defaultable) debt involves an agency problem. This agency problem
in the present setting is what makes default costly. Analyzing this
agency problem requires a fully explicit model of illiquidity. Such a
model was supplied by Krainer and LeRoy [4]. Illiquidity there was
identified with costly search and matching. Illiquidity in that analysis
corresponds to asset specificity in Williamson and Shleifer-Vishny’s
discussions.
The agency problem arises when the firm’s managers, unable to

operate assets profitably, try to liquidate them. The fact that the
assets are illiquid means that the managers have discretion over the
liquidation strategy: they can set a low price and expect to find a
buyer relatively quickly, or the opposite. Assuming that the man-
agers work on behalf of the equity holders, and (unrealistically) that
the relation between equity holders and managers is free of principal-
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agent problems, the managers will choose a liquidation strategy that
works to the benefit of the equity holders and to the detriment of the
bondholders. With a liquid asset, in contrast, there is less discretion
over pricing. In the limiting case of perfect liquidity, which is equiva-
lent to perfect competition, the seller is a price taker. The managers
have no discretion about price, and thus there is no agency problem.
The liquidation strategy that is optimal for the equity holders de-

pends on the size of the debt. For any level of debt, the equity holders
will try to sell the illiquid asset for a price that exceeds that level.
If they succeed in doing so they can pay off the debt and pocket
the difference, while if they fail to sell they will default. There is
no point in trying to sell the asset for less than the amount of the
debt, since doing so is dominated by immediate default. The result-
ing high prices increase the probability of default, implying losses to
bondholders, but by assumption the manager ignores these losses.
The problem just outlined is formally similar to the well-known

distortion of investment incentives that is usually used to illustrate
agency problems involving equity and defaultable debt. When default
is likely, managers know that if a large investment project succeeds
the gains will accrue to the equity holders, whereas if it fails the
costs are borne by the debt holders. Managers working for the equity
holders may implement such projects even when they have negative
net present values. The Savings and Loan crisis of the 1980s is the
standard example: savings banks, most of which were under water
due to interest rate changes, undertook very risky investment projects
using insured deposits.
It is likely that the context of asset liquidation, examined here, is

empirically a more important example of the agency problem involv-
ing owners and creditors than investment. This is so because firms
undertaking large investment projects are typically (although not al-
ways, as the Savings and Loan example indicates) successful. For such
firms default is a remote possibility, implying that the agency prob-
lem just outlined does not result in a major distortion. In contrast,
default is not a remote possibility for firms liquidating assets: they
often liquidate assets precisely in order to forestall bankruptcy. To
the extent that default is imminent, the agency problem is likely to
be important quantitatively.
The model is described informally in Section 2. Sections 3 and

4 derive an equilibrium when the pricing strategy is chosen to be
optimal from the point of view of equity. To do so we assume initially
that the sale is financed using an annuity alone, so that the only
equity the buyer has is that resulting from the surplus represented
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by the excess of his valuation of the firm’s assets over the reservation
valuation implied by the same price. Ex ante the agency problem
induced by debt finance reduces the value of the firm by an amount
equal to the capitalized value of the agency costs. In Section 5 we
devise a different financial instrument, one which has some similarities
to preferred stock, and show that this instrument is not subject to
the agency problem.
The final exercise in the paper applies these ideas to construct

a model of optimal capital structure. Debt finance is subject to the
agency problem just outlined, but is tax advantaged relative to equity.
We modify the model by allowing the seller of an illiquid asset to
offer a package incorporating both debt and equity. Depending on
the amount of preexisting debt and parameter values, the seller may
use either all debt, all equity, or a combination of the two.

2. The Model: Informal Description1

There exists a single indivisible productive asset which we call a
factory. There is an infinite number of potential owner-managers of
this factory. These agents have common endowment of a background
good, common discount factor and are risk neutral. One of these
owner-managers has the factory as part of his endowment. For sim-
plicity, we will assume that the initial owner-manager also plays the
role of the bank, which finances subsequent purchases. The other
agents will buy the factory from the bank, each in turn having the op-
portunity to become the current owner-manager. The current owner-
manager of the factory has a match, with fit ε, if he is able to operate
the factory with operating profit of ε per period. The fit continues
period after period, implying constant profit of ε per period, until the
match is broken, an event that occurs with probability that is con-
stant and is independent over time. When the match is broken the
owner-manager receives profit equal to zero per period thereafter, and
will sell it.
The bank initially does not have a match. Therefore the bank

immediately offers the factory for sale. The other potential owner-
managers can operate the factory with varying degrees of profitability.
Determining profitability involves costly search. In order to model
this process expeditiously, we assume that each period one and only

1 The model described below is similar in essential respects to that of Krainer
and LeRoy [4], to which readers should refer for general discussion. See also
Krainer [3].
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one potential owner-manager has the opportunity to determine cost-
lessly the profit potential of the factory under his management.2 The
seller must sell to this agent immediately or forego forever the oppor-
tunity to sell to him.
Potential buyers know their fit at the time they decide whether

or not to buy the factory, but the seller does not know the fit and
cannot compel or induce the buyer to reveal it to him. The seller
does know that the fit ε is distributed uniformly on [0, 1]. The seller
posts a take-it-or-leave-it price; this price is chosen to balance high
revenue if the factory is sold against a high probability of selling the
factory.3

The endowments of potential owner-managers are not sufficient
to allow them to pay the purchase price of the factory in cash (here
we depart from Krainer and LeRoy [4]). The buyer finances 100%
of the purchase price using an annuity that is issued in favor of the
bank, which is risk-neutral (and should be thought of as a stand-
in for a competitive banking system rather than as a monopolistic
bank). The issuer has the option to default on the annuity, in which
case the factory is turned over to the bank. In the event of default
there is no recourse for the bank beyond taking over the factory. We
introduce the more realistic combination of debt and equity finance in
Section 5. Since the results in Section 4 are qualitatively unchanged
by including equity finance, we exclude it here for simplicity.
The bank offers the factory for sale until, sooner or later, one of

the potential owner-managers determines that he has a fit that is
high enough to justify buying the factory, which he therefore does.
The new owner-manager operates the factory for as long as his match
persists, paying the bank a fixed payment each period. Eventually the
new owner-manager loses his match and offers the factory for sale.
Unless he defaults, the current seller must continue to make payments
on the annuity until the factory is sold. If the current seller sells the
factory for a higher price than he paid, then pays off his loan and
2 An alternative specification would be to allow n potential buyers at each date.
Then, for example, the factory might be assumed to be sold via a sealed-bid
auction, with the highest bidder receiving the factory at the price bid by the
second-highest bidder. The seller’s role would be to set a reservation price. In
this setting the optimal reservation price is approximately independent of the
number of bidders, therefore equaling the sale price derived below in the case of
n = 1. This invariance of the reservation price to the number of bidders is standard
in the auctions literature (Riley and Samuelson [6]). With the reservation price
independent of n, it is evident that taking n > 1 would not materially alter the
analysis.
3 Riley and Zeckhauser [7] showed that a single take-it-or-leave it offer is superior
to other strategies under general conditions.
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keeps the difference. If at any time the seller determines that the
payments on the debt are higher than is justified by the expected
proceeds of eventual sale, he exercises his option to default on the
debt. In that case the factory reverts to the bank, and the process
repeats.
The conventions on timing–in particular, when the payment on

the debt is made–are important in understanding the equilibrium.
Figure 1 is a flow chart depicting the sequence of events from the
viewpoint of the bank and the subsequent owner-managers of the
factory. As noted, the owner-manager with a match receives profits
each period at the same rate, ε, as he received at each of the dates
since he bought the factory. He learns each period whether the match
continues for another period. If it does, he makes an annuity pay-
ment, receives his profit and does nothing else until the next date,
at which time the cycle is repeated. If the match does not continue,
the owner-manager immediately puts the factory up for sale; doing so
dominates defaulting immediately because the convention on timing
is such that he can make one attempt to sell the factory before the
next annuity payment is due. If the first prospective buyer purchases
the factory, then the current owner-manager goes into the next period
without the factory. If the first prospective buyer does not purchase
the factory, the current owner-manager must decide whether to de-
fault without making the annuity payment or to make the annuity
payment and attempt again to sell the factory in the next period.

3. A Nash Equilibrium with Increasing Prices4

In this section we derive a Nash equilibrium that, although not sub-
game perfect, has the same equilibrium path as a subgame perfect
equilibrium that is described in the following section. The equilib-
rium to be derived involves each owner-manager of the factory who
has lost his match offering it for sale at a price strictly higher than
that which he paid. The analytical procedure for solving the model
involves (1) conjecturing the decision rule for default, (2) computing
buy and sell rules that are best responses to each other and to the
assumed default rule, and (3) verifying that the assumed default rule
is optimal.

4 There also exists a continuum of Nash equilibria with constant price. These
are indexed by p, 0 < p < 1. Sellers set annuity payment p, buyers buy if p =
p and ε > p, and not otherwise, and sellers default upon failing to sell the factory
at the first attempt. These equilibria are not subgame perfect, and are therefore
implausible. See the March 11, 2003 version of this paper for fuller discussion.
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The conjectured default rule is that any owner-manager other than
the bank (which has no debt) will take advantage of his one free
opportunity to try to sell the factory. Upon failing to do so, he
defaults.

3.1. Equilibrium Selling Rule of Non-Initial Owner-Managers

We begin by determining the behavior of the owner-managers other
than the bank. The behavior of the bank is considered in the following
subsection.
All potential owner-managers are risk neutral and have discount

rate β. Let v(ε, p) be the net value to its owner-manager of a factory
with fit ε and annuity payment of p per period. Risk neutrality
implies that v(ε, p) is given by

v(ε, p) = β(ε− p) + βπv(ε, p) + β(1− π)z(p), (1)

where π is the probability that the match will continue into the next
period, assumed given and constant, and z(p) is the value of a factory
with annuity payment p for which the owner-manager does not have a
match. Here z(p) is based on the prospective sale price of the factory.
As the notation indicates, equation (1) reflects the assumption that
the factory can be sold only after the match has been lost.5

Assume without loss of generality that the seller quotes the price
of the factory in terms of the implied annuity payment y. Then the
expected profit on the sale of the factory is the capitalized value of
y − p, or

µ(y)λ(y)(y − p), (2)

where µ(y) is the probability that the factory will be sold to the
first prospective buyer, to be determined. The coefficient λ(y) is
the value per unit of an annuity secured by the factory, also to be
determined. The unit value λ(y) of the annuity depends on y because
y affects the probability of a subsequent default. With probability
1−µ(y) the owner-manager will fail to sell the factory, in which case
by assumption he will default, which has zero value.

5 The analogous specification in the labor search literature is that a worker can
search for a new job only after he has been laid off. Assuming that the owner of
the factory cannot offer it for sale while operating it profitably can be defended
only as an unrealistic simplification. In [2] we analyze a more realistic, but also
more complex, model in which profitability follows a random walk, and in which
the owner of the factory can offer it for sale at all levels of profitability.
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The seller will set y to maximize (2), and z(p) equals the resulting
maximum:

z(p) = max
y
[µ(y)λ(y)(y − p)]. (3)

Define p0 = φ(p) as the maximizing value of y:

p0 = argmax
y
[µ(y)λ(y)(y − p)] ≡ φ(p). (4)

From the definition of p0, z(p) is given by

z(p) = µ(p0)λ(p0)(p0 − p). (5)

Finally, we need to evaluate λ(p0), the unit value of the annuity
payment. The current owner-manager (with annuity payment p) sells
the factory in exchange for the capitalized value of p0 = φ(p) per
period. The new owner-manager will eventually lose his match and
try to sell the factory for p00, where p00 = φ(p0). If he succeeds, which
occurs with probability µ(p00), the annuity will have value λ(p00) per
unit of payment. If he fails he will default, in which case the annuities
terminate and the factory is returned to the bank. It follows that
λ(p0) is given by

λ(p0) = β + βπλ(p0) + β(1− π)µ(p00)λ(p00). (6)

3.2. Equilibrium Selling Rule of Bank

The bank has no annuity payment, so p does not enter the bank’s
decision problem. Also, because the bank will continue trying to sell
the factory until it succeeds in doing so (rather than default, as the
non-initial owner-managers do), its problem is

max
y
[µ(y)(yλ(y) + c(y)) + β(1− µ(y))m]. (7)

The term c(y) is given by

c(y) = m
∞X
n=1

βn+1


Pn

j=1

µ
n− 1
j − 1

¶
πn−j(1− π)j

×
³Qn−1

k=1 µ(φ
k(y))

´
(1− µ(φj(y)))

 . (8)

Here φk(y) ≡ φ(φ(...φ(y))), and m, the maximized value of (7), is the
value of the factory to the bank prior to sale.
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The term c(y) is the component of the current value of the factory
accounted for by the defaults of subsequent owners. It represents
mβn+1, the discounted value of the factory conditional on the first de-
fault occurring at date n+1, multiplied by the relevant probability–
the term in braces–summed over n. Here j indexes the number of
successful sales that occur before the first default. The term c(y) is
a determinant of the optimal initial sale price because different sale
prices affect the probability distribution of subsequent defaults: the
higher the initial sale price the sooner default will occur, and there-
fore the greater the present value of the discounted collateral. At the
optimum this effect just offsets at the margin the effect of a higher
sale price on (1) the size of the annuity payment, (2) the value of the
annuity, and (3) the probability of sale.
Note that the bank takes as given the functions φ(y) and µ(y)

describing the behavior of the non-initial owner-managers derived in
the preceding section.

3.3. Equilibrium Buying Rule

We next express the probability of sale µ(p) in terms of z(p). From
(1) the value of the factory for which the owner-manager has a match
with fit ε is

v(ε, p) =
β(ε− p) + β(1− π)z(p)

1− βπ
. (9)

Now define ε∗(p) as the reservation fit as a function of the annuity
payment, so that a prospective buyer acquires the factory in exchange
for an annuity with payment p if ε > ε∗(p), and not otherwise. If we
set the buyer’s outside option equal to zero, then:

v(ε∗(p), p) =
β(ε∗(p)− p) + β(1− π)z(p)

1− βπ
= 0, (10)

implying

ε∗(p) = p− (1− π)z(p). (11)

This equation, incidentally, implies that an agent may buy the factory
even if ε < p, since he will have an asset worth z(p) > 0 when he
loses the match. If ε∗(p) < ε < p, the prospect of eventually losing
the match and selling the factory outweighs the loss incurred while
the match continues, so the prospective buyer will buy the factory.6

6 An owner-manager with fit ε∗(p) < ε < p prefers to offer the factory for
sale immediately rather than wait until the match is lost. In the interest of
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As noted above, the fit ε is assumed to be distributed uniformly
on the unit interval. From equation (11), the probability of sale is
therefore given by

µ(p) = prob(ε ≥ ε∗(p)) = 1− ε∗(p) = 1− p+ (1− π)z(p). (12)

3.4. Solving the Model

The behavior of the non-initial owners is characterized by the follow-
ing equilibrium decision rules:

— Buy rule: the buyer facing a price that corresponds to annuity
payment p buys if ε ≥ ε∗(p), and not otherwise.

— Sell rule: the seller with annuity payment p offers the factory for
sale at a price that corresponds to the annuity payment φ(p).

— Default rule: upon failing to sell the factory at the first try, the
seller defaults for all p > 0.

The bank sets the initial sale price at the value of y that maximizes
(7), and continues trying to sell the factory until it succeeds.
The equilibrium behavior of the non-initial owner-managers does

not depend on that of the bank. Therefore we can characterize the
behavior of non-initial owner-managers without reference to that of
the bank. The equations of equilibrium take the form of recursive
functional equations for the functions z, λ, and φ:

z = Ψz(z, λ, φ) (13)

λ = Ψλ(z, λ, φ) (14)

φ = Ψφ(z, λ, φ). (15)

Computing these equations involves first assigning parameter val-
ues (we chose β = 0.8 and π = 0.9 for illustration) and guessing
the functions z0, λ0, and φ0. Then we computed functions λi =
Ψλ(zi−1, λi−1, φi−1), zi = Ψz(zi−1, λi−1, φi−1) and φi = Ψφ(zi−1, λi−1, φi−1)
for i = 1, 2, . . . until the convergence criterion was met. The conver-
gence criterion was

°°φi(p)− φi−1(p)
°° < .0001, kλi(p)− λi−1(p)k <

.0001, and kzi(p)− zi−1(p)k < .0001, assuming the supremum norm

simplification, we rule out the possibility of offering the factory for sale until the
match is broken.
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throughout. In the experiments described below we found that there
was no difficulty obtaining convergence.7

Given the functions φ and µ computed from the behavior of non-
initial owner-managers, we then solved the decision problem of the
bank. This consists of maximizing (7) and setting p1 according to:

p1 = argmax
y
{µ(y)(yλ(y) + c(y)) + β(1− µ(y))m} . (16)

3.5. Equilibrium

The equilibrium path of the economy in the computed example is
easily characterized using the equilibrium policy function. The bank,
not having a match, immediately offers the factory for sale at a price
that implies an annuity payment of p1, continuing to offer it at this
price until it is sold. When the second owner loses his match he
offers the factory for sale at a price that implies an annuity payment
of p2 = φ(p1). We have that φ(p) > p, and also that φ(p) is increasing
(see the appendix for a proof of the latter result).
If the first prospective buyer decides to buy the factory, the second

owner will pay off his annuity, and will also receive a payment equal
to the capitalized value of p2 − p1. The third owner will operate
the factory, paying p2 each period, until he loses his match, at which
time he offers it for sale at price implying an annuity payment of
p3 = φ(p2), and so on. If, upon losing his match, the second owner
fails to sell the factory to the first prospective buyer, he will default
on the annuity. This implies returning the factory to the bank, which
will offer the factory for sale, again at price p1. Thereafter the cycle
will repeat.
It remains to verify that, under the equilibrium values of functions

φ(p) and ε∗(p), each non-initial owner-manager does in fact optimally
choose to default upon failing to sell the factory on the first try, as
assumed in deriving the equilibrium. It is optimal for non-initial
owner-managers to default if z(p) < p, in which case the value of
the factory is less than one annuity payment. Figure 2 plots z(p)
and p under the assumed parameter values. It shows that the critical
value of p above which default occurs is 0.34. Since p1 = 0.69 and

7 We do not have a proof that Ψz, Ψλ and Ψφ define a contraction. The problem is
that z(p) enters multiplicatively in these functions, resulting in nonmonotonicity.
However, we can prove existence of equilibrium and the value functions via the
Schauder fixed point theorem. The theorem also gives a computational check for
uniqueness which is satisfied in the examples below.
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pj+1 > pj for all j, we see that all non-initial owner-managers will in
fact behave as conjectured.
Since sale on the first try is increasingly improbable for the second,

third or fourth owners, it is highly unlikely that any given chain will
involve more than three or four owners before collapsing (Table 1
shows the transition probabilities and the distribution of the length
of a chain for the parameter values specified above). Of course, since
time is infinite a chain of any given length will occur infinitely often
with probability 1.

3.6. Interpreting the Seller’s Optimal Policy Function

The policy function φ(p) is easily interpreted. As Figure 3 indicates,
φ(p) is very close to (p + 1)/2. To see why, observe that, from a
Taylor expansion of (12) around p0 = 1, we have

µ(p0) ∼= 1− p0, (17)

since z(1) ∼= 0 and, since µ(1) ∼= 0, also

λ(p) ∼= β

1− βπ
, (18)

from (6). From (3) the seller’s problem is therefore approximately
that of choosing y to maximize

(1− y)β(y − p)

1− βπ
, (19)

the first-order condition for which is

y =
p+ 1

2
. (20)

This approximation is based on the presumption that non-initial
owner-managers of the factory will fail to sell on the first try, and will
therefore default. The approximation is more accurate the higher
the value of p, since µ(p) is close to zero when p is near 1 but, as
Figure 3 indicates, the approximation is fairly accurate for all values
of p.
The bank chooses a selling price of 0.69. This figure is substan-

tially higher than the limiting value of φ(p) as p approaches zero,
which is 0.47. The reason is that the non-initial owner-managers
choose low sales prices to induce subsequent owner-managers to do
the same, the idea being to reduce the probability of default and
consequent termination of the annuity. The bank has less incentive
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to reduce the probability of default because it is aware that it will
recover the factory in the event of the default of a subsequent owner-
manager.
For any p the optimal sale price (20), set to optimize the interests

of the current owner-manager, exceeds the sale price that would be
preferred by the bank. At the extremely high prices that occur after
several successful sales, even buyers with fairly–but not extremely–
high values of ε will decide against buying the factory. The bank
would prefer that default be avoided by selling to such buyers, but
by assumption it cannot influence the seller’s pricing decision.
The possibility of default plays a central role in generating the

successively higher selling prices that occur in equilibrium. To see
this, we show that if default were not possible the annuity payment
would be a sunk cost, implying that all sellers would face a problem
identical to that of the bank. Because any sale results in a perpetuity
if subsequent owners do not default, (3) is replaced by

z(p) = µ(p0)
β

1− β
(p0 − p) + (1− µ(p0))β(z(p)− p), (21)

Here z(p) separates into the difference between two terms: a term z
reflecting the unencumbered value of the factory and a term βp/(1−
β) reflecting the value of the perpetuity. To verify this, substitute
z − βp/(1 − β) for z(p) in (21). The terms in p drop out and (21)
reduces to

z = µ(p0)
βp0

1− β
+ (1− µ(p0))βz, (22)

so the value of the factory to the owner who has lost his match is
a weighted average of its discounted value if sold and its discounted
value if not sold, with the relevant probabilities as weights, irrespec-
tive of the preexisting annuity payments.
If debt were non-defaultable, the bank would sell the factory for a

price implying an annuity payment p1 that equals the value of p0 that
maximizes (22). The optimized value p1 is 0.59. This results in a
sale package with value equal to p1β/(1− β) = 2.36. This compares
to p1 = 0.69, which has value equal to 0.69(λ(0.69)) = 2.08 when
debt is defaultable. Correspondingly, the value m of the factory to
the bank is 1.59 when debt is defaultable, and 1.71 when it is not
defaultable. The difference between these two figures reflects the
expected discounted present value of the distortion caused by the
default option on the debt.
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4. Subgame Perfect Equilibrium

The equilibrium described in the preceding section is not subgame
perfect. It was derived under the assumption that owner-managers
with annuity p will default upon failing to sell the factory at the first
try, for all p > 0. For sufficiently low p this behavior is suboptimal.
As noted above, the optimal default rule is to default if the value
of the factory based on the prospect of its future sale, z(p), is less
than the annuity payment p, and not otherwise. Since z(p) is strictly
decreasing in p, z(1) = 0, and z(0) > 0, it follows that there exists a
critical value of p, which we call p∗, defined by

z(p∗) = p∗, (23)

such that the utility-maximizing default rule is

— Default if z(p) < p∗, and not otherwise. In the example, z(p) = p
for p = 0.34, so the optimal default rule is

— Default whenever p > 0.34, and not otherwise.

We need to show that the optimal decision rules for buying and
selling in the Nash equilibrium of Section 3, in which agents default
for all p > 0, continue to be optimal under the modified default rule.
Since in the example p1 = 0.69 > p∗ = 0.34 and pj+1 > pj for all j,
we see that all non-initial owners are in the default region under both
default rules. Therefore their optimal buying and selling behavior is
unaffected by the change in the default rule.
To verify subgame perfection, is necessary to show that the alter-

ation of the assumed default rule of non-initial owners will not induce
the bank to alter its sale price. It is immediate that there cannot ex-
ist an equilibrium in which the bank sells at a price in the no-default
region. This is so because if the second owner never defaults on the
annuity, it is in fact a perpetuity, therefore a sunk cost. That be-
ing the case, existence of the perpetuity cannot affect the sale price
chosen by the second owner. It follows that he will choose the same
price as the bank, p1. Offering the factory at p1 has a return of zero
since the second owner receives an annuity with zero net payments if
the factory is sold and defaults if the factory is not sold. But then an
offer of p1 cannot be optimal, since the second owner can raise the
offer price and get a positive return if the factory is sold and default
if the factory is not sold (contradicting the joint hypothesis that the
second owner offers p1 and that p1 is in the no-default region).
It remains to show that the original equilibrium remains an equi-

librium under the modified default rule. This requires showing that
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the optimized value of the factory bm if sold in the no-default region
is less than m, its value if sold for p1, so that the hypothesized equi-
librium selling rule on the part of the bank is in fact optimal. In the
example this turns out to be trivial: bm is clearly less than the value
of the factory based on the assumption the bank can sell it for price
p∗ with probability 1. But that value is less than m:

bm <
β

1− β
p∗ = 1.35 < 1.59 = m. (24)

It follows that the bank will not alter its selling rule under the
modified default rule. Accordingly, the equilibrium price sequence
(p1, p2, ...) calculated in Section 3 is a subgame perfect equilibrium
price sequence under the buy and sell rules

— Buy rule: the buyer facing price p buys if ε ≥ ε∗(p), and not
otherwise.

— Sell rule: the seller with annuity p offers the factory for sale at
price φ(p).

— Default rule: upon failing to sell the factory at the first try, the
seller defaults for all p > p∗, and does not default otherwise.

5. Optimal Capital Structure

We have seen that when purchase of an illiquid capital asset is fi-
nanced using defaultable debt, the purchaser has an incentive to set
a high price when the time comes to sell. Because of this distortion,
the value of the asset prior to sale is lower than it would otherwise
be. The current seller would like to recapture the lost value by induc-
ing the buyer to sell for a lower price than he or she would choose if
unconstrained when he or she loses his or her match. Up to now we
have assumed, implausibly, that there is no way for the seller to do
so. In this section we add a new financial instrument that we will call
preferred stock.8 The seller now is assumed to offer the factory in
exchange for a payment package consisting of nonnegative amounts
of new defaultable debt and preferred stock, where the proportions
of each are chosen by the seller.
What we call preferred stock is a financial asset that, like debt,

pays a fixed per-period sum to the bank for as long as the buyer’s

8 There exists a variety of financial assets that could be substituted for preferred
stock without qualitatively affecting the equilibrium. Choice among these is a
matter of personal preference. Similarly, the asset we refer to as preferred stock
may alternatively be characterized as a lease.
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match continues. Upon failure of the match, however, the issuer of the
preferred stock is permitted to terminate payments without surren-
dering control of the factory, in contrast to the case with debt. This
specification is a stylized counterpart of the real-world provision of
preferred stock that its issuer can suspend preferred dividends in-
definitely without declaring bankruptcy (although in the real world
no payments of common dividends are permitted until the preferred
stockholders have been brought current). Thus preferred stock is ju-
nior to debt. In the model we assume that when the match ends
the payments on the preferred stock are suspended permanently, im-
plying that the preferred stock becomes worthless.9 Therefore its
existence prior to loss of the match has no effect on the financing
package that the seller offers to prospective buyers, again in contrast
to the case with debt.
The advantage of financing with preferred stock is that its use

induces the current buyer to set a low sale price when he loses his
match, which increases the value of the package to the current seller.
It is easy to see that in the absence of other changes in the model,
financing packages will consist of 100% preferred stock. With no
debt to be serviced following failure of the match, all sellers face the
same decision problem. Therefore they will choose the same selling
price, implying that the asset price inflation that takes place when
transactions are financed using defaultable debt no longer occurs.
The preferred stock payment d optimally asked by the bank is

0.83. It is easy to check that the value of the factory to the bank,
equal to βd/(1− βπ), equals the value calculated above, p1β/(1− β)
when debt is not defaultable. This is as expected because both non-
defaultable debt and preferred stock avoid the distortion implied by
defaultable debt.
We do not see many firms with capital structures consisting of

100% equity, and the reason is well known: corporate profits taxes.
Because bond interest is a cost–in contrast to dividends, which are a
distribution of earnings–it is paid out of pretax earnings. This differ-
ence in the tax treatment of bonds and stock leads firm managers to
prefer debt financing, other things equal. Thus if the setting just de-
scribed is modified by including taxation of corporate earnings, firms
will trade off the tax advantage of debt against its disadvantage in
distorting subsequent pricing decisions. The maintained assumption
9 This is unrealistic, as it is unlikely that failure of a match as incorporated in
the present model corresponds to any contractible event in the real world. For our
purpose this is not a serious problem, since the role of preferred stock is simply
to illustrate one of many possible financing arrangements that are free of agency
problems.
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here is that all securities that are tax advantaged distort the resale
decision, so that corporations have no way to avoid the trade-offmod-
eled below. The fact that real-world corporations place heavy reliance
on defaultable debt suggests that this specification is realistic.
For some parameter values one would expect to derive an interior

maximum, determining a capital structure that maximizes z(p). In
the remainder of this section we will sketch this derivation. We will
see that including preferred stock modifies the model of Section 4
only in detail; rather than repeating the derivation we will therefore
specify only the new material.
Upon loss of his match, the seller proposes a package consisting

of a per-period debt payment of y as before, but also a dividend on
preferred stock of d per period. The probability of sale now depends
on both y and d, so it is denoted µ(y, d). The value of the newly
issued component of the annuity is λ(y)(y−p) as before, whereas the
value of the preferred stock equals βd/(1− βπ). Therefore we have

z(p) = max
y≥p,d≥0

½
µ(y, d)

·
βd

1− βπ
+ λ(y)(y − p)

¸¾
. (25)

Here p equals the per-period annuity paid to preceding owners as
before; preferred stock payments to preceding owners do not figure in
the calculation because these payments cease as soon as the current
owner loses his match.
Define φ(p) and ψ(p) as the values of y and d, respectively, that

maximize z(p):

φ(p) ≡ argmax
y

½
µ(y, ψ(p))

·
βψ(p)

1− βπ
+ λ(y)(y − p)

¸¾
(26)

ψ(p) ≡ argmax
d

½
µ(φ(p), d)

·
βd

1− βπ
+ λ(φ(p))(φ(p)− p)

¸¾
, (27)

so that z(p) is given by

z(p) = µ(φ(p), ψ(p))

·
βψ(p)

1− βπ
+ λ(φ(p))(φ(p)− p)

¸
. (28)

The problem of the bank is computed in a similar fashion.
To derive an expression for µ(y, d), we modify the derivation of

µ(y) above. The value v(ε, y, d) to a buyer with fit ε of a factory
with debt payment y and preferred stock payment p satisfies

v(ε, y, d) = β(ε− y)(1− t)− βd+ βπv(ε, y, d) + β(1− π)z(y), (29)
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where t is the tax rate on corporate earnings. If ε∗(y, d) is defined
as the reservation fit, we can derive

ε∗(y, d) = y +
d

1− t
− 1− π

1− t
z(y) (30)

by setting v(ε∗(y, d), y, d) equal to zero and solving for ε∗(y, d). There-
fore we have

µ(y, d) = prob(ε ≥ ε∗(y, d)) = 1−ε∗(y, d) = 1−y− d

1− t
+
1− π

1− t
z(y).

(31)
The right-hand side of (31) is the analogue of (12) above.
Introducing preferred stock does not materially complicate solving

the model. Note that, from (25) and (31), the maximand is quadratic
in d, implying that for given p, d can be easily determined analyti-
cally. Figures 4 and 5 show the value of the factory and the optimal
decisions and equilibrium path for different levels of p when β = 0.7,
π = 0.3 and t = 0.05.
Figure 6 displays computed optimal capital structures. The lower

line of the diagram displays the market value of debt (not the per-
period payments as in Figure 5) as a function of preexisting annuity
per-period payments p, while the upper line displays the value of
debt plus preferred stock. As the diagram indicates, for low levels of
p the optimal financing package consists almost entirely of preferred
stock, while for higher levels of p there is less use of preferred stock
and more use of debt. For values of p greater than 0.72 no preferred
stock is issued. This pattern makes sense: for high values of p the
distortion incurred by debt financing has negligible present value since
the seller is almost sure to default upon losing his match regardless
of the current financing package. Therefore the tax advantage of
debt while the match lasts renders it more attractive. In contrast,
for low levels of p the prospective value of the factory upon resale
accounts for a higher fraction of its current value, implying that the
price distortion is more important quantitatively.
Note the discontinuity in the optimal capital structure as p ap-

proaches zero: the bank chooses a financing package with more debt
than non-initial owners with low values of p. This difference reflects
the fact that the bank loses his annuity but also recovers the factory
upon default of subsequent owners, whereas non-initial owners lose
their annuities without any offset. Because of this difference, the
present value of the distortion implied by debt finance is lower for
the bank than for non-initial owners. Accordingly, the bank makes
more use of debt.
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It is useful to compare the determinants of optimal capital struc-
ture as represented in this section with the received theory from the
corporate finance literature (as in, for example, Ross, Westerfield and
Jaffe [8]).
In the corporate finance literature firms trade off the tax advan-

tage of debt against the expected present value of bankruptcy costs,
which increases with the level of debt, in choosing an optimal capital
structure.10 A difficulty with this line is that the effect of a debt
increase on the present value of the tax shield appears to be much
larger than its effect on the present value of bankruptcy costs, at
least for capital structures in line with those typically observed. The
model of this section suggests part of the explanation: in the received
literature bankruptcy costs are too narrowly construed. In the model
of this paper bankruptcy costs as usually interpreted are zero: in the
event of default the factory is assumed to revert to the bank without
any diminution of value. The role of bankruptcy costs is played by
mispricing of the factory, which results in a value loss whether or not
there is a default.
The suggestion is that if the costs of debt finance were broadened

to include the pricing distortion that debt finance induces, as well as
the parallel distortion of investment, it might be easier to rational-
ize existing levels of debt and equity as optimal capital structures.
Of course, it would be very difficult to determine the quantitative
importance of the distortions analyzed theoretically here.

6. Conclusion

We have presented a model in which a corporation’s management
liquidates assets in the fashion that is optimal for the owners, despite
the losses that this liquidation strategy imposes on creditors. Here we
consider the incentives the various players have to adopt alternative
possible liquidation strategies.
Ex ante it is the owners of fixed resources that have an incentive to

adopt a different regime of corporate control. The owners of valuable
fixed resources consist of, first, the agent who has the factory as part
of his initial endowment and, second, the agents who will have an
early opportunity to buy the factory (we are assuming here that the
agents are numbered as to the order in which they will arrive, and

10 There is a loose end here: bankruptcy costs can be avoided if the creditors
replace debt with equity prior to bankruptcy. Therefore the costs of such financing
changes place an upper bound on bankruptcy costs (see Haugen and Senbet [1]
and Wang, Young and Zhou [11] for related discussion).
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that this numbering is public knowledge). These agents each own
an asset the value of which depends on the control regime. In any
regime the value of this asset is well determined, and it fluctuates
over time as the random components of the model are realized.
Because equity values depend on the control regime, the agents–

especially the bank–have an interest in adopting indentures that
constrain the prices at which they and subsequent owners sell the
factory. Of course, each agent, being in a different position from
the others, would prefer a different indenture (for example, the n-th
potential buyer would prefer an indenture that requires the bank and
the first n − 1 owners to give away the factory), so it is far from
obvious what indenture provisions, if any, would be adopted. As a
problem in cooperative game theory, study of this question is not a
proper part of the present paper.
We have interpreted the model presented above as illustrating the

conflict of interest between owners and creditors. Other applications
of the model are possible: the model provides a possible explanation
of credit chains. As another example, corporate takeovers require that
the buyer perform “due diligence”: a detailed examination of the cor-
poration being acquired. The expenses involved in due diligence,
being considerable, imply that only one or a very small number of
purchasing groups will be involved in the takeover of a large firm.
Corporate finance models rarely take explicit account of these ex-
penses, despite the fact that in the absence of such expenses the
takeover market could reasonably be assumed to be competitive for
all but the largest takeovers. The model presented in this paper can
be interpreted as providing a setting in which the expenses of due
diligence are represented by assuming that only one buyer can per-
form due diligence per period, implying an explanation of why the
takeover market is not competitive.
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7. Appendix: Proof that φ is increasing

Theorem 1: The value and policy functions z, λ, and φ satisfy:

1. z, λ, φ ≥ 0 for all p, and z(1) = 0.
2. −z0, −λ0, φ0 ≥ 0 for all p.
Proof: We use a proof by induction. Recall:zi(p)λi(p)
φi(p)

 = Ψ(zi−1, λi−1, φi−1) (32)

=

maxy[µi−1(y)λi−1(y)(y − p)]
β

1−βπ
¡
1 + (1− π)µi−1(φi−1(p))λi−1(φi−1(p))

¢
argmaxy∈[0,1]

£
µi−1(y)λi−1(y)(y − p)

¤
 .(33)

1. Let zi−1, λi−1, φi−1 ≥ 0 for all p. Then
µi−1(p) = 1− p+ (1− π)zi−1(p) ≥ 0.

Hence λi ≥ 0 for all p. Further, the principle of optimality implies:
zi(p) ≥ µi−1(p)λi−1(p)(p− p) = 0. (34)

Hence zi ≥ 0 for all p and zi(1) = 0. Finally, φi(p) ≥ 0 since
φi(p) = y ∈ [0, 1].

2. Let −z0i−1, −λ0i−1, φ0i−1 ≥ 0 for all p and assume zi−1, λi−1, φi−1
are continuously differentiable. Then:

µ0i−1(p) = −1 + (1− π)z0i−1(p) < 0 (35)

Hence:

λ0i(p) =
β(1− π)

1− βπ
φ0i−1(p)

µ
µi−1(φi−1(p))λ

0
i−1(φi−1(p))+

µ0i−1(φi−1(p))λi−1(φi−1(p))

¶
≤ 0
(36)

Next, the solution y∗ is on the interior of [0, 1] for p 6= 1 since the
corner solutions are inferior to at least one point on the interior.
Hence we can apply the envelope theorem to get:

z0i(p) = −µi−1(φi(p))λi−1(φi(p)) ≤ 0. (37)

For p = 1, we have µi−1(1) = 0 and hence z0i(1) = 0, which is
non-negative.
Finally, Milgrom and Shannon [5] give conditions for monotone
comparative statics using the ‘supermodularity’ results of Topkis
[10]. They show that if only one decision variable y exists and is
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a function of one parameter p, then y is non-decreasing in p if and
only an increase in p increases the marginal value of y (known as
‘increasing differences’). Here:

∂zi(p; y)

∂y∂p
= −µ0i−1(y)λi−1(y)− µi−1(y)λ

0
i−1(y) ≥ 0.

Hence φ0i(p) ≥ 0. Hence we have shown that if Properties (1)
and (2) hold for zi−1, λi−1, φi−1, then they hold as well for zi,
λi, and φi. We have shown via the Schauder fixed point theorem
(proof available on request) that Ψ has at least one fixed point [z,
λ, φ]. Further, the fixed point can be obtained by iterating on
Ψ starting from the lower bound of −z0 = −λ0 = φ0 = 0, which
are non-decreasing, non-negative functions. Thus since the space
of functions which satisfies Properties (1) and (2) is a complete
space, Properties (1) and (2) hold for [z, λ, φ].

8. Appendix: Figures and Tables

State: Transition Probabilities: state
owner original buyer 1 buyer2 buyer3 prob.
original 0.687 0.313 0 0 0.196
buyer 1 0.084 0.9 0.016 0 0.683
buyer 2 0.092 0 0.9 0.008 0.111
buyer 3 0.096 0 0 0.9 0.010

Table 1. State transition matrix and probability distribution.
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