13. (5 points) A firm has production function

$$
F\left(x_{1}, x_{2}\right)=x_{1}^{1 / 2} x_{2}^{1 / 2}
$$

(a) Write a general expression for the marginal product of factor 1 as a function of $x_{1}$ and $x_{2} \quad \frac{1}{2} x_{1}^{-1 / 2} x_{2}^{1 / 2}$
(b) If this firm is currently using the factor combination $x_{1}=1$ and $x_{2}=4$, calculate the marginal product of factor 1 ? $\mathrm{MP}=1$
14. (10 points) Flo Grow's production function is

$$
F\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2} .
$$

(c) If the price of factor 1 is 10 and the price of factor 2 is 25 , what is the total cost to Flo of producing 20 units of output?
(d) If the price of factor 1 is 10 and the price of factor 2 is 25 , what is the total cost to Flo of producing $y$ units of output? 10y
(e) If the price of factor 1 is $w_{1}$ and the price of factor 2 is $w_{2}$, what is the total cost to Flo of producing $y$ units of output? $\operatorname{Min}\left\{w_{1}, w_{2} / 2\right\} y$
15. (10 points) Mary Magnolia has opened a flower shop. Her fixed costs are $\$ F$, where $F$ is the number of square feet of floor space in her shop. Her variable costs are $\$ y^{2} / F$ where $y$ is the number of bouquets that she sells per month. If she has 400 square feet,
a) write down her marginal cost as a function of $y \$ y / 200$
b) write down her average total cost as a function of $y$.

$$
\underline{400}+\underline{y}
$$

$$
y \quad 400
$$

c) At what level of $y$ is her average total cost minimized? $\quad y=400$
d) How much is her average total cost when it is minimized? 2
16. (15 points) A firm produces bird houses with the production function

$$
f\left(x_{1}, x_{2}\right)=\left(\min \left\{x_{1}, x_{2}\right\}\right)^{1 / 2}
$$

where $x_{1}$ is the amount of wood used and $x_{2}$ is the amount of labor.
a) In the graph below, draw a production isoquant representing input combinations that will produce 3 birdhouses. Draw another production isoquant representing input combinations that will produce 5 birdhouses.

Your graph will have two L-shaped isoquants, one with its corner at $(9,9)$ and the other with its corner at $(25,25)$.
b) Does this production function exhibit increasing, decreasing, or constant returns to scale? Decreasing returns to scale. c) At the factor prices $w_{1}=1$ and $w_{2}=2$, what is the cheapest way to produce 5 birdhouses? Use 25 units of wood and 25 units of labor. How much does this cost? $\$ 75$.
d) At the factor prices $w_{1}=1$ and $w_{2}=2$, the cost of producing $y$ birdhouses with this technology is $c(1,1, y)=3 y^{2} / 2$.
e) A general formula for the cost of producing $y$ birdhouses when the factor prices are $w_{1}=1$ and $w_{2}=2$ is $c\left(w_{1}, w_{2}, y\right)=\left(w_{1}+2 w_{2}\right) y^{2} / 2$.

