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EXERCISES

Using the arguments in Example 20.13 and in Exercise 20.”12?, showdtl};n i\:ilsnca(\)r;
repla%e “homogeneous” by “homogeneous of degree one” in the defin,

othetic. ) . et
?)\(I):ilch of the following functions are homothetic? Give a reason for each an

2.4 2
a) e, b) 2logx + 3logy, €) Y% + 3% + 6xy* +9,
d) x*y + xy, &) x2y*/(xy + 1).
Use Theorems 20.9 and 20.10 to check the homotheticity og t2he fiuft;on_s 8m
Exercise 20.17 and to determine whether or not f(x, y) = x* + x°y* +y x — 8y

is homothetic.
20.9.
ite out a complete, careful proof of Theorem : o -
&2: glat fora SIZrictly monotone function u, the two inequalities in condition (12)

can be replaced without loss of generality by equalities.

CHAPTER 21

Concave and
Quasiconcave
Functions

Concave functions play a role in economic theory similar to the role that ho-
mogeneous functions play. Both classes arise naturally in economic models —
homogeneous functions as demand functions, concave functions as expenditure
functions. Profit functions and cost functions are naturally both homogeneous
and concave. Both classes have desirable properties for utility and production
functions. Both classes have straightforward calculus-based characterizations —
homogeneous functions via Euler’s theorem, concave functions via a second
derivative test. Finally, both classes are cardinal and need to be modified for
full use in utility theory.

On the other hand, concavity is a concept that is very different from homogene-
ity. As we will see, there are functions which are homogeneous but not concave
or convex, and there are functions which are concave or convex but not homo-
geneous. In a sense, these two properties are complementary; economists often
prefer to work with production functions that have both properties.

21.1  CONCAVE AND CONVEX FUNCTIONS

Students first meet concave and convex functions in their study of functions of
one variable in Calculus L, as we did in Section 3.2. The definitions of concavity
and convexity are the same for functions of # variables ag they are for functions
of one variable,

Definition A real-valued function f defined on a convex subset U of R" is
concave if for all x, y in U and for all t between 0 and 1,

fax+ 1= 0y) = 1f®) + (1 - (). @

A real-valued function g defined on a convex subset U of R" is convex if for all
X,y in U and for all r between 0 and 1,

8(x + (1= 0y) = 1g(x) + (1 — £)g(y). )]
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Remark Notice that f is concave if and only if — f is convex. To every property of
concave functions, there is a naturally corresponding property of convex functions.

Remark Many introductory calculus texts call convex functions “concave up”
and concave functions “concave down,” as we did in Section 3.2. From now on,
we will stick with the more classical terms: “convex” and “concave.”

Remark Do not confuse the notion of a convex function with that of a convex
set. A set U is a convex set if whenever x and y are points in U, the line segment
joining x to y,

Lxy)={tx+(Q—-ny:0=st=1}

isalso in U. In Figure 21.1, the ball in (a) and the interior of the triangle in (b) are
convex sets, while the annulus (region between two concentric circles) in () and
the star in (d) are not convex sets, as the line segments in these last two shapes
indicate. The definition of a concave or convex function f requires that whenever
f is defined at x and at y, it is defined on the segment £(x, y). Thus convex
and concave functions are required to have convex domains. In this section, all
functions will be defined on convex sets, whether the function is concave, convex,
or neither. This is not the only connections between convex sets and convex and
concave functions. Check that f is concave if and only if {(x,y) : y = f(x)}
is a convex set, and work out the corresponding statement for convex functions.
Almost all functions in economics, especially utility and production functions,
have convex sets as their natural domains

@ (b) (©) (d)
Farts (a) and (b) represent convex sets; (c) and (d) illustrate nonconvex sets.

Students usually develop a geometric intuition for concave and convex func-
tions of one variable in Calculus I. They can recognize a concave function by its
graph because, as Figure 21.2 illustrates, the inequality (1) in the definition of a
concave function has the following geometric interpretation:

A function f of n variables is concave if and only if any secant line connecting
two points on the graph of f lies below the graph. A function is convex if and
only if any secant line connecting two points on its graph lies above its graph.
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The geometric interpretation of the definition of a concave function,

This property is illustrated in Figures 21.3 and 21.4, which present the graphs
of two prototypical convex functions: y = x2 and z = x + a2,

In developing an intuition for concave functions of several variables and in
proving theorems about their properties, it is useful to notice that a function of n
v.ariables defined on a convex set U is concave if and only if its restriction to any
line segment in U is a concave function of one variable. This should be intuitively
clear since the definition (1) of a concave function is a statement about its behavior
on line segments. Because it is such a useful fact, we provide a careful analytical
proof. In the remainder of this section, we will use this result to reduce the proofs
of theorems about concave functions on R to statements about concave functions
of a single variable.

The graph of the convex function y=x2

Figw
21.2

Figure
213
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X2

]

ioure |
s The graph of the convex function z = x} + x2.

214

n
Theorem 21.1 Let f be a function defined on a convex sul'Jsct UofR . Thex_l,
f is concave (convex) if and only if its restriction to every line segment in U is

a concave (convex) function of one variable.

Proof Suppose that the restriction of f to every line segment in U is a ccl)){ncave
function. To prove that f is a concave function on U, let x and y be arbitrary

points in U. Let g(¢) = f(¢x + (1 — t)y). By hypothesis, g is concave. So, for ¢
between 0 and 1,

fax+ (1 —0y) = g() (definition of g)

gt-1+(1—-10-0)
tg(1) + (1 — 1)g(0) (since g is concave) ‘
tf(x) + (1 — O (y) (definition of g)

v

i

Consequently, f is concave. _
Conversely, suppose that f is concave. We want to show that g(t) = f(tx +

(1 — b)y), the restriction of f to the line containing x and y is concave. To do
this, fix 5; and s, and let ¢ be between 0 and 1. Then,

glesy + (1 = 0)s2) = f((ts1 + (1 = Os2)x + (1 — (151 + (1 — )s2))y)
(definition of g)
= f(tlsix + (1 — s1)y) + (1 — )(s2x + (1 — 52)y))

(rearranging)
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=fEx+ 1= s5)y) + (1~ 0f(s2x + (1 - s5)y)
(concavity of f)
=1g(s1) + (1 — H)g(s;) (definition of 8)-

Therefore, g is concave. The proof for convex functions is nearly identical. m

The goal of the remainder of this section is to understand concave and convex
functions more deeply by working toward three concrete goals:

(1) to develop simple calculus-based tests for concavity or convexity,

(2) to discover the desirable properties that concave and convex functions
have; and

(3) to see how concave and convex functions arise in economic models.

In our discussions, we will usually work with concave functions rather than
convex functions, since any statement about one type can easily be translated into
a statement about the other. When we summarize our results in the statements of
theorems, we will state the results for both types of functions.

Calculus Criteria for Concavity

As the discussion thus far illustrates, one can tell whether or not a function on
R" is concave by looking at its graph in R°*!, In fact, 2 more geometric way of
phrasing the definition of concavity is to say: a function of # variables is concave
if and only if the set below its graph in R**! js a convex set, as in Figure 21.2; a
function is convex if and only if the set above its graph in R™*! is a convex set, as
in Figures 21.3 and 21.4. (See Exercise 21.5.)

Of course, it is usually not practical or even possible to draw the graph of a
function to test for concavity. We need a more analytic criterion. Students studying
functions of one variable in Calculus I learn two simple analytic tests for concavity:

(1) A C! function on an interval 7 is concave if and only if its first derivative
f'(x) is a decreasing function of x for x onl.

(2) A C? function [ is concave on an interval J if and only if its second
derivative f"(x)is < O forall x in /.

(See Section 3.2.) As one might guess from Theorem 21.1, the generalizations
of these criteria work in all dimensions. We must first figure out what these
generalizations are.

The natural generalization of the first derivative f'(x) to functions of several
variables is the (Jacobian) matrix of the first order partial derivatives of f:

Df(x)=(;7fl(x) %(x) :Tf"(x)).
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Since this first derivative Df(x) can be thought of as n functions of n variables,
that is, as a function from R® to R", we need to work a little to interpret the
statement “Df(x) is a decreasing function.” The following theorem provides a
closely related first order condition for concavity on R! that has an obvious
generalization to functions of several variables.

Theorem 21.2 Let f be a C! function on an interval I in R. Then, f is
concave on / if and only if

fO)— f@ = fx)y—x) forallyy €L 3
The function f is convex on I if and only if

fO)— f@) = f'x)(y—x) forallx,y €L

Remark First we show that condition (3) means that f' is a decreasing function.
Divide both sides of (3) by (v — x); remember to reverse the inequality when
y — x < 0. The results are

f__.—__(y))] : ;]: x) = fl(x) forally>x€&rl 0]

To see that (4) and (5) imply that f’ is decreasing, suppose z3 < zzinl. Then, .

flz) = L"‘Z—:—? (by (4) with x =z, and y = 2,)

= @15(2—2) (multiplying top and bottom by —1)
1722

= f(z2) (by (5) withx = z; and y = 2,)

Proof of Theorem 21.2.  Suppose that f is a concave functionon L. Letx,y € /
and let t € (0, 1]. Then,

tfy) + A = Dfx)y = fly + (1 — t)x)
or ) — foy < LETHO =) 7 f)

t

_fxty—x) - fx),
- Wy — x) o =

Condition (3) follows by letting £ — 0 in the last expression.
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On the other hand, suppose (3) holds for all x, y in I. Then,
fO) = f((1 =+ 1y) = (1 - Dx + ty)x ~ (1 — 1)x + 1y))
= —tf'(1 — Ox + ty)(y — x).
Similarly,
fO) = (A = 9x +1y) = (1 - f (1 ~ O + y)(y — x).

Mu]tlply the ﬁISt lnequallty th[ough by 1 t and the SeCOIld by t; then dd
( ) > h a

A-0f)+ )< f(A -t +1y). m

The 1‘1atural generalization of condition (3) to functions of several variables is
now straightforward.

:fheorem 21.3 Let f be a C! function on a convex subset U of R. Then f
1s concave on U if and only if for all x, y in U: ,

f) = f(X®) = Df(x)y — x);

that is,

- 10= 2o -+ + Lwou-m). @)

Similarly, f is convex oh U if and only if - =D _
% yinU. y if f(y) — f(x) = Df(x)(y — x) for all

Proof Letx andy be arbitrary points in U. Let
&xy(0) = fley + (1 — t)x)
=fa + 101 = x1) ..o, X + 1y = X))
Then, by the Chain Rule,

CHOED) L+ 1y = 0)n =) ™
and ! = - 9f
8y @ =3 2 W0~ %) = DFX(Y — x).

i=1
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By Theorems 21.1 and 21.2, f is concave if and only if every such g y is concave
if and only if forevery x,y € U,

8xy(1) — 8xy(0) = g1, (A — 0) = g,,(0)
if and only if forevery x, y € U,

fO-f®=Dfx)y—x. =

Corollary21.4 IffisaC ! concave function on a convex set U and if xg € U,
then

Df(x0)(y — xo) =0 implies f(y) = f(xo)- ®

In particular, if Df(Xo)(y — Xp) = 0 for ally € U, then X is a global max of f.

Let’s stop to consider the geometry of this sitg:}tionj Tostl;;sd e(r:;l,t ;&;edl: rlix‘slzttil‘::
ic concept of the gradient vector Xo) in ‘

zgtr;xg;)}l(l;;r). Recallpfrom Section 15.2 that V f(xg) is a vector peqfaerﬁx;:‘ulz
to the level set of f through x. Inequality (8) says th‘at if the vector_ O ) <0 )
y makes an obtuse angle with V f(x,) at X, tha? is, if V f(xog . (ty th:Otan_en;
then f(y) =< f(xp). Alternatively, since 'V.f(xo) is perpendicular n(():ave funcgtion
hyperplane of the level set of f at x, condition (8) says that fo—r aco s above
the set {z : f(z) = f(xo)}, including the level set {z : f(z) ; f(xo) ;mave bove
the hyperplane tangent to the level se‘t of f at x¢. In short, i f“ 1; coe” me;ns o
every level set of f lies above any of its tanant planes, where “abov |
the direction of increasing values of f. See Figure 21.5.

Example 21.1 Let us apply the test of Theorem 21:3 to show fhat flx, x) =
x? + x2 is convex on R®. The function f is convex if and only if

Y17 X
i+ -G+ = 20)(0 T
= 2xyy1 — 247 + 20y, — 2x)
if and only if
Vi+yB A+ ag—2un — 20y =0

if and only if

L —x)+ (- x)? =0,

< R2
which is true for all (x3, x,) and (y4, y2) in R*.
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fixg)
Level set [xIf(x) = f(xy)}

Xp

Tangent line to level set

Relationship between grad S (Xo) and the level set through x, for a concave f-

Theorem 21.3 is a very useful technique for proving properties about concave
and convex functions. However, since it involves checking an inequality for all
X and y in the domain, it is usually not a practical test for checking whether any
given function is concave or convex, For the latter purpose, we will find it more
practical to use the generalization of the second derivative test: f is concave on
an interval / if and only if f"(x) = Oforall x in /. (See Section 3.2.) The natural
generalization of the second derivative S"(x) to functions of several variables is
the Hessian matrix of all the second order partial derivatives of fonRL

f:\‘lxl f:‘qxz M f;lx"
Dy = | o Fom o fo
fxnxl f:\',,x; M ﬂnx"

where we write fux; for 6%f/ dx;0xj and each entry is evaluated at the point x. The
natural generalization of f” (x) = Ois the statement that the Hessian matrix D? f(X)
is negative semidefinite at every x in the domain of f, The following theorem
summarizes the second order test for concave and convex functions on R".

Theorem 21.5 Let f be a C? function on an open convex subset U/ of R,
Then, f is a concave function on U if and only if the Hessian D? f(x) is negative
semidefinite for all x in {/. The function [ is a convex function on U if and only
if D2f(x) is positive semidefinite for all x in U/,

Fig
21,
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Remark Recall from Section 16.2 that a matrix H is positive definite if and only
if vIHv > O for all v # 0 in R"; H is negative definite if and only if vIHv < 0for
all v # 0 in R®. Replacing the strict inequalities above by weak ones yields the
definitions of positive semidefinite and negative semidefinite. Theorem 16.1 from
Chapter 16 provides analytic necessary and sufficient conditions for a matrix to
be definite or semidefinite:

(1) A matrix H is positive definite if and only if its leading principal minors
are all > 0.

(2) A matrix H is negative definite if and only if its n leading principal minors
alternate in sign with the odd order ones being negative and the even order
ones being positive.

(3) Amatrix H is positive semidefinite if and only if its 2" — 1 principal minors
are all = 0.

(4) A matrix H is negative semidefinite if and only if its 2" — 1 principal
minors are alternate in sign so that the odd order ones are = 0 and the
even order ones are = 0.

Proof of Theorem 21.5.  As in the previous proof, let x and y be arbitrary points in
U and let gy y(t) = f(ty + (1 — £)x). Then, f is concave on U if and only if each
8xy(t) is concave, which is equivalent to each g; ,(¢) = 0. Now, by equation (7)
and the Chain Rule,

il

-

8xy(®) Z— (Z g%(x + 1ty — X)) — x,-))
i=1 %%

n on a2
=22 Zx,{?x;‘ O+ oy =)0~ :)0: = %)

n 2
-3 o- j)jxng<x+t(y~x»(yi~x.-)

=@ - % Df(x+1y — %) ¢~ %)
If every D2f(z) is negative semidefinite, then it follows that:

(a) every g7,(t) =0,
(b) every gxy is concave, and
(¢) f itself is concave.

Conversely, suppose that f is concave on U. Let z be an arbitrary point in
U and let v be an arbitrary displacement vector in R". We want to show that
vID2f(z)v < 0. Since U is open, there isazy > Osuchthaty = z + fvisin U.
Since f is concave, g5y is concave and g;/,(0) = 0. By the previous paragraph,
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0=830) = (-2 D). (y - z)
= V)" - D*f(2) - (tv)
=V - D () - v).

Therefore, v7 - p2 .
nv m f@ v =0, and D, (2) is negative semidefinite for all z

Example 21.2 Th i i
is e Hessian of the function Jxy)=xt+x32 4 ¥ =3x8y

Df(x, y) = ( 1262 + 22 4y
4xy zxz + 12y2 ) ‘

F
or (x, y) # (0,0), the two leading principal minors 12x2

132.x2 2 4 . 2
Y© + 24y%, are both positive, so £ is 2 convex functio + 2y® and 24x* +

non all R .
Exaﬂ'lple 21 .3 A Coﬂl"l()llly used Sllllple utlllty o) l)l ()dl.lCtl( m “[] 1ICtion 1
.
1 (‘[’ )) '[.) . Its I{CSSIan 15 i

Dz, y) = (;’ ;),

whose secon inci i
order princi glon-jer principal minor is det D?F(x, ¥) = —1. Since thi

pal minor is negative, D2F is indefinite and F is nojthes cone
convex. € and F is neither concave nor

Example 21.4  Consider the monotonic

previous example by the function 8(2)

transformation of the function F in the
on the positi
positive quadrant R%

= Zl/ 4. G( = 1/4
: X, y) = 1/4
. The Hessian of G is )=y > defined only

~3 -
D*G(x, y) = ( lﬁx Vi Exayma
Ex—3/4y~3/4 —%xl/“y”/‘ :

For x > ()

)y > 0, the first order leadi inci

) ‘ ing princ inor i i

;ezcgnd or(?er leadfng principal minor, x‘%/gy“3; gjlllZHSm'or o e, Thorefors
(% y) is negative definite on R functon op R

and G is a concave function on R

Example 21.5 Now, consider the

Uxy) = x%®. Its Hessian is general Cobb-Douglas function on Ri:

DU(x, y) = ( a@ = Dx®72yb  gpxr-1yp-1
abx~1yb-1 bb - l)xayb—z)x
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whose determinant is
-2 2b-2
det D*U(x, y) = ab(1 — a — bx* 2y?™2,

’ —a—b) > 0;
In order for U to be concave on R% , we need a(a— 1) < 0 and ab(1 aa . )cobb-
hatis,weneed0 <a<1,0<b<l,anda+b= 1.I'n§umrr} Iy, obb-
;)gu:l’as production function on R? is concave if and only if it exhibits con

or decreasing returns to scale.

Remark These four examples illustrate some relationships argoznlg 5th;1 ;/;ng‘\:
classes of functions we have been studying. Examples 213 an ;-, Show that
i be homogeneous or homothetic and not be.concav vex.
: flmCthl;lC;ﬂ along with Exercise 20.13, shows that a function can be conve:
o d ’ot beghomogeneous or homothetic. Examples 21.4 and 21.5 shf)w
fl?;?‘fﬁn?:io: can be both concave (or convex) and homo'ger'neous ((:',1,1:3,(:‘0};3:2:
i examples clearly show that concavity is a cardi s
:lrllllaolrllj(,;tg:leigi;:;f;matiog of a concave function need not be concave.

EXERCISES

ion i nvex.
21.1 Prove that every linear function is honllé)ngenec;zi, c(;(‘),r;c::i,ot;r:: :;)Al s attempt
. i i re ?
ich of the following functions on R" a 0 0 et
e t‘;,: g:rst order test of Theorem 21.3, before settling down with the second orde:

of Theorem 21.5.

- —4y+1;
a) f(x) =3¢ +5x* —lnx; b) f(x,y) = —3x* -bf 2xy yz:C&; . y
o) fry2) =3 +5" ~Inz;  d) flxy2) =AY, abc>0

. P . . ite.
3  Prove that a quadratic form on R" is concave if and only l.f itis {\egatlve :em:ld‘t;:ir;aid
2 P;ove that it is convex if and only if it is positive sen;ldcﬁmlt)e. Wiac?ca
about the more general “quadratic function” j:(’f) = x'Ax + ):) ) cm.wex
21.4 Prove that every homogeneous function on R f1s t:(ljtherl cc')?::;;lzet setow s graph
. i i i ve if and only i
at a function of n variables is conca ! roph
us %:'(K:“t‘his a convex set. By Theorem 21.1, one need only prove this statemen
i '

functions of one variable. el
21.6 Interpret inequalities (4) and (5) geornetnca y. fon s ax+ b witha = 0.
21.7 Suppose that f is concave and that g is the affine function 2
t g o f is concave. ) .
21.8 11)::‘,; ;lrl:i gbeffunctions on R'. What assumptions on f and g guarantee that the
. i i function?
composite f o g is a concave ' -
21.9 For what concave functions f is 1/ ff a c:.c)nve).tsf;r::;;osnl.mmogeneous Give condis
' ns i .
. The product of two homogeneous functio ys he
A0 tionspunder which the product of two concave functions is concave.

includes Theorem 21.6 as a special case.
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21.2 PROPERTIES OF CONCAVE FUNCTIONS

The three properties that make concave functions so valuable in economics are
that their critical points are automatically global maxima, that the weighted sum
of concave functions is a concave function, and that the level sets of a concave
function have just the right shapes for consumption and production theory.

As shown in Chapter 17, in using calculus to find the interior maximum of a
function f, one first finds the critical points of £ by setting its first derivatives equal
to zero and solving the corresponding equations. Then, one uses a second derivative
test to separate the maxima from the minima and saddles, and one evaluates the
function at all the local maxima to decide which of these local maxima is the global
maximum. However, one never needs these extra steps for a concave function. A

critical point of a concave function is automatically a maximum, and in fact a
global maximum,

Theorem 21.6 Let f be a concave (convex) function on an open, convex
subset U of R™, If x, is a critical point of f, that is, Df(x0) = 0,thenx, € U
is a global maximizer (minimizer) of fonU.

Proof To prove that a critical point of a concave function is automatically a
global maximizer, we simply refer to Theorem 21.3 and Corollary 21.4. If fis
concave and Df(xy) = 0, then by inequalities (6) and 8, f(¥) — f(xo) = 0

for all y in U. In other words, for ally € U, ) = f(xp), or Xo is a global
maximizer of f on U, W

In fact, an even stronger result than Theorem 21.6 holds for concave functions.,
In the discussion above the statement of Theorem 21.6, we were speaking only of
interior maxima. But frequently, the global maximum occurs on the boundary on
the convex domain U/. Corollary 21.4 immediately gives the following condition
for a global maximum of a concave function, even if the maximizer is on the

boundary of the domain. We leave its proof as an exercise. Note that this theorem

Theorem 21.7 Let fbeaC! function defined on aconvex subset U of R™, If f
is a concave function and if Xo is apoint in U which satisfies D f(Xo)(y—%Xp) < 0
forally € U, then Xp is global maximizer of fonU.If f is a convex function
and if X is a point in U which satisfies D f (xo)(y —~ Xo) = Oforally € U, then
Xo is a global minimizer of fonU.

Example 216 If fisaC! increasing, concave function of one variable on the
interval [a, b), then fiB)yx - b) = 0foralx la, b]. (Why?) By Theorem
21.7, b is the global maximizer of Sfon{a,b].
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Example 21.7 Consider the concave function U(x, y) = x*/4y'/* on the (convex)
triangle

B={(x’y):x20,y20,x+y52}.

By symmetry, we would expect that (xg, yo) = (1,1) is the maximizer of U on
B. To prove this, use Theorem 21.7. Let (x, y) be an arbitrary point in B. Then,

au au 1 1
Ex—(l’ Dx—-1)+ E(l’ Dy-1)= Z(x - 1)+ Z(y -1)

1
=Z(x+y-—2)
=0

since x + y — 2 =< 0 for (x, y) in the constraint set B. By Theorem 21.7, (1,1) is
the global maximizer of U on B.

The property that critical points of concave functions are global maximizers
is an important one in economic theory. For example, many economic principles,
such as marginal rate of substitution equals the price ratio, or marginal revenue
equals marginal cost are simply the first order necessary conditions of the corre-
sponding maximization problem. Ideally, an economist would like such a rule to
also be a sufficient condition guaranteeing that utility or profit is being maximized
so that it can provide a guideline for economic behavior. This situation does occur
when the objective function is concave. Furthermore, an economist, who wants to
analyze how the maximizer in a parameterized problem depends on the parameters
involved, will usually apply the implicit function theorem to the equations of the
first order necessary conditions for maximization. The only situation in which
it can be guaranteed that the solution to these perturbed equations is indeed a
maximum for all values of the parameters occurs when the objective function is

concave.

Example 21.8 Consider the problem of maximizing profit for a firm whose
production function is y = g(x), where y denotes output and x denotes the input
bundle. If p denotes the price of the output and w; is the cost per unit of input i,
then the firm’s profit function is

I(x) = pg(x) — (w1x1 + ++* + wuxy). 9

As can easily be checked, IT will be a concave function provided that the
production function is a concave function. (Exercise.) In this case, the first

order condition

9

r fori=12...,n (10)
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which says marginal revenue product equals the facto

both necessary and sufficient for an interior profit g
study the effect of changes in w; g oy
apply the comparative statics anl
for all p and w, the solution to
input for all choices of pand w,

price for each input, is
' imizer. If one wants to
;)r pon the optimal input bundle, one would
alysis to syste‘m (10). Since profit is concave
system (10) will automatically be the optimal

A second valuable

fxd‘;i.ition and scalar multiplication by positive numbers
Indicates. Its proof follows directly from the definition

Theorem 21.8

the same convex Isflt)sf«ie’t U ,ojt? ll;?' c;);cave (comvex) funcions, each defined on
] . - Let ay, ..., a; be positi

afi+ - +afiisa concave (convex) f;mct,ion on g e numbers. Then,

- (See Exercise 21.4)

Such a su i i i

cone 2 witl:l;?]t'l:m flj)ccurs in social welfare theory. In an economy with
ility functions u, uy, i i

oo i s+« U TESPECtiVely, one mea, i
h ,sf:rre of any allocation of resources is the sum a1u1y+ R Z“re * tl;le ot

A e an .. - u w

S(,)Cial o f); l’s:tf of p.osmv.e weights. If the u;’s are all concave themco':’res erfi'the
: unction will be concave. In this case, the set of maximizeriogf igg
e

Theorem 21.9 L
. t f be a function defined i
concave, then for every Xxg in U, the set o @ comexsetUinRe.

Co=&EU: f0) = f(x)}

; .
S & convex set. If f is convex, then for €very Xg in U, the set
2

Co =IxEU: f(x) = f(x,)}

is & convex set,
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The set “above” the level curve C is a convex set for a concave utility function.
Proof Letxandy be two points in C; so that f(x) = f(xo) and f@) = f(%o)-
Then,

flex + (1 = 0)y) = tf(®) + (1= DY)
= tf(x0) + (1 — £)f (%)
f(xo).

So, tx + (1 — )y isin C;, and C; is a convex set. W

The property that the set above any level set of a concave anctiolil isa Z::;f:
i i ility and production functions. or ex e,
set is a natural requirement for uti o1 s, For example
i indi the concave utility function U p
consider an indifference curve C of e
i d B have been labeled on curve C. By 1
Figure 21.6. Two bundles A an ‘ ey e ore
ion in Fi hich represents all bundle
.9, the shaded region in Figure 21.6, w :
2:e?t;rrefi to bundle% A and B, is a convex set. In particular, t'h(? sethof co:l;/net);
gombinations of A and B — the bundles that can be formed b); mu;ntll% t ef (f;nlie 'S
i i t joining A to B and there
of bundles A and B — all lie on the line segmen . clie in
ili have the desirable property
d area. Thus, concave utility functions : th
tgtzsesriu::; two bundles A and B of “goods”, a consumer with a l<1:on:;ave lt;txlllgl
i i i f bundles A and B to either A or B.
tion, will always prefer a mixture o ; . "
f:lllgr(r:lentary microeconomics text might phrase this Rroperty as:a confsuﬁler Z:o:nd
prefer a bundle containing a mixture of soda apd chips to a bundle of all so
ips and to a bundle of no soda and all chips. o o
" c‘zllr);ore important advantage of the shape of the mdlfferen.ce C\;\rve u; ii(g)::
it di iminishi inal rate of substitution. As on
21.6 is that it displays a diminishing margina ' v . one move
i indi C increasing consumption of g e,
left to right along the indifference curve : y od one,
is willi i d more units of good one to g
he consumer is willing to give up more an '
:me a(:iditional unit of good two. This property —a central axiom of consumer
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theory — is a property of concave utility functions because each level set forms
the boundary of a convex region.

Concave Functions in Economics

We have just -described three properties of concave functions that make them
especially useful in economic models. In addition, there are some functions which
arise in economic models that are naturally concave. For example, consider the
expenditure function e(p, u), which describes the minimal amount of income
necessary to achieve utility u at the prices p. It can be described analytically as

ep, w) = min{pyx; +... + pox, : u(x) = u},

and will be studied in more detail in Section 22.1.

Theorem 21.10 The expenditure function is concave and homogeneous of
degree one in p.

Proof Let (p, x) and (p/, x') be two price-consumption combinations that minj-

mize expenditure at utility level u. Let P’ =tp+ (1 -0t for any ¢ between 0

and 1; and let x” be the corresponding expenditure minimizing bundle. Then,
e(p’u) =p"-x" =tp-x" + a-op-x" (11)

But x” is not necessarily the cheapest way to achieve utility u at prices p or p’.
Therefore,

P x"=e(pu) and p'-x"= e(p’, u) (12)
Combining (11) and (12) yields the concavity of e(p, u) in p:
e(p, u) = te(p, u) + (1 — r)e(p’, u).

To see that e(tp, u) = te(p, u), notice that from the above definition of the
expenditure function, the x which minimizes P - X subject to u(x) = u will also
minimize ¢p - x with the same constraint. m

In fact, all that the above proof requires is that we were minimizing a linear
objective function on a constraint set and that the function under consideration is
just the minimum value. A number of other economic functions arise this way. For
example, the cost function c(w, y) corresponding to a given production function

8 can be considered the minimum cost needed to produce output y, when input
prices are given by w:

(W, y) = min{wix; + -+ + w,x, : g(x) = y}.




522  CONCAVE AND QUASICONCAVE FUNCTIONS [21 ]

The same argument as in the proof of Theorem 21.10 shows that e(w, y) is concave
and homogeneous in factor prices w. Finally, consider the optimal profit function
w(p, w) which is the maximum profit that can be achieved when the price of the
output is p and the cost of the inputs is w. Write 7 as

w(p, W) = n;’ix{py -w-x:y=<gXx)} (13)

Then, 7(p, W) is convex and homogeneous of degree one in (p, w). (Exercise.)
These three functions illustrate a general phenomenon about optimizing linear
objective functions, which we state in the following theorem. The proof we leave

as an exercise.

Theorem 21.11 Consider the problem of maximizing the linear objective
function a - x with respect to x on a given constraint set. The value of the
optimal objective function will be a convex and homogeneous of degree one
function of the parameter a. For a minimization problem with a linear objective
function, the optimal value of the objective function will be a concave and
homogeneous of degree one function of a.

Finally, concave utility functions play a major role in expected utility theory
because, as K. Arrow first observed, in such models the level of risk aversion ofa
consumer is measured by the concavity of the consumer’s utility function.

EXERCISES

21.11 Prove that the profit function (9) in Example 21.8 is concave if the production
function y = g(x) is concave.

21.12  Suppose that a one-product monopolist faces an inverse demand functionp = F @
and a cost function g — C(q).
a) Write out the expression for its profit as a function of g.
b) What assumptions on F and C yield a concave profit function?

21.13  Prove Theorem 21.7. Show that it implies Theorem 21.6.

21.14 Write out the proof of Theorem 21.2 for convex functions.

21.15 Prove Theorem 21.8 directly from the definition (1) of a concave function.

21.16 Prove that 7(p, w) in (13) is convex and homogeneous of degree one in (p, W).

21.17 Prove Theorem 21.11.

21.3 QUASICONCAVE AND QUASICONVEX FUNCTIONS

Concave functions pose the same dilemma that homogeneous functions did in
Section 20.2. They have many desirable properties for production and utility
functions. However, as Examples 21.3, 21.4, and 21.5 clearly indicate, concavity
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:; alcariimal prop.erty. It depends on the numbers which the function assigns to
e leve set.s, not just on the shape of the level sets. In other words, a monotonic
transformation of a concave function need not be concave ’
remlzv;e.veé,. conca;flz] functions have one fundamental ordinal property, as Theo
-5 Indicates. Their level sets bound convex is .
sets from below. Th
leads to the highly desirable conditi iminishi of subatitation
. ondition of diminishin i ituti
P A g marginal rate of substitution
N JL}st as we did for homogeneous functions, we give a name to the class of
nctions which have the desired ordinal property that concave functions have

A . -
sor}le\n{hat natu'ral name for a function that is the ordinal version of a concave
function is a quasiconcave function.

De1 IIIItIOII A functlon f deﬁ () \ bSet l) O IQ 1 q asico. \
ned N a convex su
f S quasiconcave lf

C;={xEU:fx)=a}
is a convex set. Similarly, f is quasiconvex if for every real number ¢
C={x€U:f(x)<a}

is a convex set.

" :Ve prt?sent some alternative definitions of quasiconcave and quasiconvex in
e following theorem, whose proof is left as an exercise.

Theorem ?1 12 Let f be a function defined on a convex set Uin R". Then
the following statements are equivalent to each other: ‘ ’

(@) f is a quasiconcave function on U,
(®) Forallx,y € Uandall: € [0, 1],

f&®) = f(y) implies f(ex + (1 - 1)y) = f(y).
(c) Forallx,y € Uandallt € [0, 1],

fex + (1 = 0)y) = min{f(x), f(y)}

|

By TF]COI'CIT‘I 21.9, every concave function is quasiconcave and every convex
funct{on is quasiconvex. Furthermore, any monotonic transformation of a concavi
f.unct'lon isa quasiconcave function. In particular, since every Cobb-Douglas fu :
tion is a monotonic transformation of a Cobb-Douglas function with dgecrea ing
returns to scale, every Cobb-Douglas function of two variables is quasiconcaxslzeng

Theorem 21.13 Eve i
. ry Cobb-Douglas function F = Ax%yb wi
and b all positive is quasiconcave. (59 = Axy7 with 4,0
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Example 21.9 Consider the Leontief or fixed-coefficient production function
Q(x, ¥) = min{ax, by} with a,b > 0. The level sets of Q are drawn in Figure
21.7. Certainly, the region above and to the right of any of this function’s
L-shaped level sets is a convex set. Therefore, Q is quasiconcave.

Figure
21.7 Fixed-coefficient production function.

Example 21.10  Consider the constant elasticity of substitution (CES) production

function

O, y) = (ax] + ayx5)Y",  where 0 <r <1
By Theorem 21.8 and Exercise 21.4, (a1 x] + a,x5) is concave. Since g(z) = 2/
is a monotonic transformation, Q is a monotonic transformation of a concave

function and therefore is quasiconcave.

Example 21.11 Lety = f(x)be any increasing function on R!, as in Figure 21.8.
For any x*, {x : f(x) = f(x™)} is just the interval {x”, ), a convex subset of
R!. So, f is quasiconcave. On the other hand, {x : f(x) = f(x")} is the convex
set (—, x*]. Therefore, an increasing function on R! is both quasiconcave and
quasiconvex. The same argument applies to a decreasing function.

Example 21.12  Any function on R! which rises monotonically until it reaches
a global maximum and then monotonically falls, such as y = —x? or the bell-
shaped probability density function y = ke ™, isa quasiconcave function, as
Figure 21.9 indicates. For any x; as in Figure 21.9, there is a x; such that

f(x1) = f(x2). Then, {x : f(x) = f(x1)} is the convex interval [x;, x2].

Remark Notice that we take a slightly different tack in going from concave
to quasiconcave than we did in going from homogeneous to homothetic. In the
latter case, we simply defined a homothetic function as any function which has
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*
bl < fix) . / X4 2 Fix*)}

An increasi ] y 1
sing function on R! is both quasiconcave and quasiconvex.

S

{x1fx) 2 fixght

These bell-shaped functions are quasiconcave,

the same level sets as a homogeneous function. In the former case, we defined -
a quasiconcave function as any function which has the desired ordi,nal ropert
of concave functions. It is natural to ask if indeed any quasiconcave furll)ct'p §
equivalent to some concave function by a monotonic transformation. K 1;::1 "
a‘nd A Enthove'n considered this question in their path-breaking treatise 'on :W
sxcc.)ncgve functions and provided a concrete example of a quasiconcave func?' n
which is not a monotonic transformation of any concave function. (See the N tos
at the end of this chapter.) o e ot

Calculus Criteria

tWe Trlllow work toward developing calculus criteria for quasiconcavity. Analogous
0 Theorem 21.3 for concave functions, there is a necessary and sufficient first

Figu
21.8

Figure
21.9
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derivative test for quasiconcavity, that provides a useful technique for proving
theorems about quasiconcave functions. Like Theorem 21.3, it is too unwieldy to
use for checking whether or not any specific function is quasiconcave, so we will
develop a simpler second order test in the next section. Since we have first order
conditions for the other special classes of functions, we present this first order

condition for quasiconcave functions.

Theorem 21.14 Suppose that F is a C! function on an open convex subset
U of R™. Then, F is quasiconcave on U if and only if

F(y) = F(x) implies that DF(x)(y — X) = 0; (14)

F is quasiconvex on U if and only if

F(y) = F(x) implies that DF(x)(y — x) = 0.

Proof Suppose that F is quasiconcave on U and that F(y) = F (x) for some
X,y € U. Then, forall ¢ € [0, 1],

F(x + t(y — x)) = F(x).

Since F(x +«y —t x)) — F(x) =0

for all ¢ € (0, 1), we let £ — O to obtain
DF(x)(y —x)= 0.

The proof of the converse follows the same type of argument, but is a bit more
intricate and can be found in the Appendix to this chapter. H

Remark By Theorem 21.9, all concave functions are quasiconcave. This fact can
also be seen by comparing the corresponding first order conditions (6) and (14).
As Examples 21.8 and 21.9 illustrate, not every quasiconcave function is concave.
In fact, quasiconcave functions fail to have two of the three important properties
of concave functions that we highlighted earlier. First of all, a critical point of
a quasiconcave function need not be a maximum, let alone a global maximum.
For example, the function y = x? in R! is quasiconcave by Example 21.8; its
critical point x = 0 is certainly not any kind of a maximum. Secondly, the sum of
quasiconcave functions need not be quasiconcave. For example, fix) = x* and
fo(x) = —x are both monotone functions on R! (and therefore quasiconcave).
However, f3 = x> — x is neither quasiconcave nor quasiconvex. (Check.)
However, a quasiconcave function that is also homogeneous of degree one is

concave, as the following Theorem indicates.
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Iheo' em 2 l' I5 Suppose that} isa leal ‘alued’ POSIU ve tuﬂctlon deﬁned on
a convex cone C n R . I‘ 1 s homogelleous Of deglee one alld quaSlCOrlCaVe
on C’ 1t 18 concave on C .

Ihc pIOOf Of IhCOIem 21. 15 18 StlalgllthI Wa.ld, but a blt long, alld 18 presented

EXERCISES

g ’
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a) ¢, b) Inx, c) X+, d) ¥ —x,

“_ 2 4, .2
e) x* — x2, N A+ 22 8 38 — 522 + 7y, h) sinx.
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ne’s understanding of i i i
rone s unde g of quasiconcave functions and reinforce one’s ability to
;;:(l) Write out the corfesponding theorem for quasiconvex functions.
21.22 Il‘:reove that a quasiconcave function cannot have a strict interior minimum
. t fi, ..., fx be concave functions of one variable. Let g(z) be a monotor;ic trans-

formation. Prove that F = i
function Gy = g(AG) + + o+ + fi(x)) is a quasiconcave

21.4 PSEUDOCONCAVE FUNCTIONS
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in (15). p convex function on U, one simply reverses the first inequality
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As Corollary 21.4 points out, the first order criterion (21.3) for concavity
clearly implies the defining condition (15) for. pseudoconcavity; thus a C! con-
cave function is always pseudoconcave. Furthermore, condition (15) is exactly
the condition one uses to prove that a critical point of a concave function is au-
tomatically a global max. Since we will refer to it in later chapters, we state this

observation as a theorem.

Theorem 21.16 Let U be a convex subset of R®, and let F:U — Rbe a Ct
pseudoconcave function. If x* € U has the propesty DF(x*)(y — x*) = 0 for
all y € U, for example, DF(x") = 0, then x* is a global max of F on U. An
analogous result holds for pseudoconvex functions.

To see how pseudoconcavity relates to quasiconcavity at the other end of the
link, note that the contrapositive of the first order criterion (14) for quasiconcavity,

DF(x)(y — x) <0 implies F(y) < F(x), (16)

is very nearly the definition (15) of a pseudoconcave function; one merely has to
change the < signs in (16) to =< signs to obtain (15). The following theorem makes
precise the close relationship between pseudoconcave and quasiconcave functions.
Its proof is straightforward. However, we delay the proof until the Appendix of
this chapter so as not to break the flow of our presentation at this point. Try to

write out the proof before reading the Appendix.

Theorem 21.17 Let U be a convex subset of R™. Let F:U — Rbe a c?
function. Then,
(a) if F is pseudoconcave on U, F is quasiconcave on U, and

(b) if U is open and if VF(x) # 0 for all x € U, then F is pseudoconcave
on U if and only if F is quasiconcave on U.

The primary reason for introducing pseudoconcave functions is the fact that
there is a straightforward second derivative test for such functions, a test that is also
the most efficient check that a given function is quasiconcave. This second order
condition arises from a constrained maximization approach to pseudoconcave
functions, which is summarized in the following theorem.

Theorem 21.18 Let U be an open convex subset of R®. Let F:U — Rbe a
C! function on U. Then, F is pseudoconcave on U if and only if for each x" in
U, x* itself is the solution to the constrained maximization problem
maximize F(x)
) . . an
subjectto Cy ={y EU:DFX')y —X) = 0}
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' The Prpof of Theorem 21.18 follows immediately from noticing that the defin-

ing condition (15) of pseudoconcavity is equivalent to the maximization stat

of Theorem 21.18. Details are left as an exercise. Fment
(;t{apters 18 and 19 developed first and second order necessary and sufficient

conditions for constrained maximization problems like (17). For any given x* y

Lagrangian function for Problem 17)is . Eiven X the

L(x, A) = F(x) — ADF(x") - (x — x*)

=Fx -} %Fi(x*) (6 — x7).

Since the constraint in (17) is a linear
ce | . one, we do not need ipli
objective function by Theorem 19.12. Since eed o multplier for the

dL - _&F " aF
0O D= )~ 1 ) =0

X = x", A = 1 is a solution of the first order conditi
. ondition for Problem (17). Th
c;)rresppndlng second order sufficient condition that x* must satisfy to be a(l so)lutios
?h e(17) uln;(I)lve.s the gordered Hessian H of F. This matrix H is formed by bordering
usual Hessian D“F i ivati
DEG ot (x) above and to the left by the first order partial derivatives

0 F;l F"l’z e F!

Xn
F! " " e EM
*1 Fx!xl Fxlxz Fxlx,,
! " "
H= sz Fszl F! . F"
2%2 xx, || (18)
F! " " ce "
Xn FX,.X[ Fxnxz I;'x’l_’c’l

To. carry ouF the second order test, one calculates the (n — 1) largest leadi
prm?'zpt'zl minors of H, beginning with the top leftmost 3 X 3 sugmatrix ;Zg
x:t‘::;ultntgh to tllle full (n + 1) >< (n + 1) matrix H, as described in Section 16.3.
o Sm:lles;:s:neastth(enl;acll?nl;a;h;g:ipm}cipal r;ll%n}(:rs of H to alternate in sign with
1 , minor, which is positi i
su;fﬁc'lent cgndition for pseudoconvexity requires th}:l(t)stlltll: el;':th:nco—rr;;pl(;:g?ng
principal minors of H all be negative. In both cases, these sign patterns mgt
hold for all x in the domain of F. The following theorem summarizes thi i fo
pseudoconcavity. st
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Theoreém 21.19 Let F be a C* function on an open convex subset W in R™.
Consider the bordered Hessian H in (18).

(@) If the largest (n — 1) leading principal minors of H alternate in sign,
for all x € W, with the smallest of these — the third order leading
principal mitior — positive, then F is pseudoconcave, and therefore
quasiconcave, on W.

(b) 1f these largest (n — 1) leading principal minors are all negative for all
X € W, then F is pseudoconvex, and therefore quasiconvex, on Ww.

Remark The condition of Theorem 21.19 is a sufficient condition but not a
necessary one. There are a number of necessary conditions in the literature. One
such necessary condition is that we replace all the strong inequalities regarding the
Jeading principal minors of H in Theorem 21.19 by weak inequalities and apply
this test to all of the principal minors of H which include the first row and column
and which are at least 3 X 3 in size, not just the leading principal minors. See the
Notes at the end of this chapter for references.

To better understand Theorem 21.19, we write out its two-dimensional ver-
sion — a version which requires computing the sign of only one determinant, since
the corresponding bordered Hessian is itself 3 X 3. We present a special proof
for this two-dimensional version in the Appendix of this chapter, a proof which
does not use the constrained optimization approach (17) to pseudoconcavity. To
simplify matters, we focus directly on quasiconcave monotone functions.

Theorem 21.20 Let F be a C2 function on a convex set W in R%. Suppose
that F is monotone in that F, > 0 and F,, > 0 on W. If the determinant
0 F, F
F, F, Fy (19)
F, Fi F}
is > 0 for all (x, y) € W, then F is quasiconcave on W. If the determinant (19)
is negative for all (x, y) € W, then F is quasiconvex on w.

Conversely, if F is quasiconcave on W, then the determinant (19)is = 0; if
F is quasiconvex on W, then the determinant (19) is = 0 for all(x, y) EW.

Remark As mentioned in our discussion on bordered matrices in Chapter 16,
some texts “border the Hessian” on the right and below by DF(x) rather than on
the left and above as we did in (18):

" " v " !
F X1X%) Fxlxz Fx,x,, Fx;
" " s " !
F X221 szxz szx,, Fx’
" " e " !
Frm Frexs LESI

FJ’C 1 F;Z T F;" 0
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In. th1.s case, one applies the test of Theorem 21.19 to th
principal minors, which are formed by deleting the first &
thc.e b9rdered Hessian. As in Theorem 21.19, we need the
.prm'mpa'll minor to be positive and all the larger trailing pri
In sign in order to guarantee that F is quasiconcave.

e last (n — 1) trailing
rows and columns from
bottom-right hand 3 X 3
ncipal minors to alternate

Example21.13 Theorem21.13im
x*y* is quasiconcave on R% for
of a concave function. Let’s use
U. The bordered Hessian ( 19) is

plies that t.he Cobb-Douglas function U/(x, y) =
a, b > 0 since it is a monotone transformation
Theorem 21.20 to prove the quasiconcavity of

a(_)l \ axa—lyb bxayb—l
axa 131 ala— Dx*2yb  gpra~iyp-1
bx%y abx®~1yP=1 (b — 1)xayb—2

whose determinant is

(ab + ab* + azb)x3"_2y3” K

which is always positive for x > 0
. , Y >0,a>0,and b > 0
21.20, U is pseudoconcave, and therefore quasiconcave. + By Theorem

EXERCISES

21.2 i
3 We have three practical ways of checking for the quasiconcavity of a given function

W .
v : [}(,::3 s};i\l:' that it has the same level sets as a concave function. We can use the
me E : proof of The(')rem 21.20 in the Appendix to show that its level sets
graphs of convex functions on R"!, We can use the bordered Hessian test

s

of Iheolenl 21. 9. owing functio etermine W]lelllel t
1 For each of the foll i i
ons, d
g 1t is

a) f(x,y) = ye™* on R, 5) FOuy) = ye™* on R%;

) fy) =Qx+3HYonR:  d) f(x,y,2) = (& + 5y* + [2])V2
= (v — +41/3. ,

&) f(x,3) = (y = x4, H f@n = 2 onR?;

8) flxy) eara R%; B f(x,y) =y onR2;

i) keX Ax

»where A is a positive definite matrix and £ is a positive constant

21.24 Prove Theorem 21.18.
21.25 LetL:R™ — R"be alinear function. Let f: R"

; — R. Sh if f i i
s0is fo L and that if f is pseudoconcave, sois fo L. o Al s uasiconcave

y
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21.5 CONCAVE PROGRAMMING

As we have seen throughout this chapter, not only do concave and quasiconcave

functions arise naturally in economics, but such functions also provide much
more structure in the analysis of the optimization problems that lie at the heart of
economic theory. In particular, the first order necessary conditions that characterize
the solution of the general differentiable optimization problem are also sufficient
conditions when the functions involved are concave.

Unconstrained Problems

We begin by repeating the statement of Theorem 21.6 for the unconstrained
concave programming problem. Recall by Theorem 21.16 that Theorem 21.6
holds even if f is pseudoconcave, but not necessarily if f is quasiconcave.

Theorem 21.21 Let U be a convex subset of R". Let f:U — Rbe a c!
concave (convex) function on U. Then, x” is a global max of f on U if and
only if Df(x*)(x — x*) < O for all x € U. In particular, if U is open, or if x*
is an interior point of U, then x* is a global max (min) of f on U if and only if
Df(x*) = 0.

Constrained Problems

For constrained problems, we need some concavity or convexity hypotheses on
the constraint functions too.

Theorem 21.22 Let U be a convex open subset of R™. Let f: U — Rbe a C?
pseudoconcave function on U, for example, f quasiconcave with nonvanishing
gradient. Let gy,..., 8¢ U — R be C1 quasiconvex functions. Consider the

programming problem

maximize f(x) 20)
subjectto XECy,={x€U:g(x)<b, i=1,...,k}k

Suppose that one of the constraint qualifications in Theorem 19.12 holds. Form
the Lagrangian

k
LAy, M) = fX) = D Ai[gi(x) — bi]- (1)
i=1
If there exist x* and A* such that
%(x‘, AN =0, forj=1,...,n (22)

and A'=0, ‘g(x")=b, A (g(x)—b)=0 fori=1..,k (23)

Then, x* is a global max of f on the constraint set Cp.

[21.5] CONCAVE PROGRAMMING 533

Proof Write condition (22) as

k
Df(x") - Z A'Dgi(x™) = 0. 249
i=1

Let x be an arbitrary point in the i
constraint set. For each binding constraint g;
8i(X) = gi(x"). Since g; is quasiconvex, ¢ &

Dgi(x")(x — x*) < 0, 25)
by Theorem 21.14. Since A} = 0 for the nonbinding constraints g; by (23),
A Dgi(x")(x — x") < ¢,
for all i and all x € Cy. By (29),

Df(x")x ~x") =0, (26)

for all x € Cy. Since f is pseudoconcave, impli
, (26) implies t f(x*
therefore, that x* is a global max of f on C:. )l piies that £ =:£c) and,

Remark

(1) Wereally only needed the binding inequali i

‘ lit i

in the proof of Theosen 51 a0 8 Inequality constraints to be quasiconvex
) ’L‘he I'I’IOSt na}ural constraint qualifications for problem (20) are either that

the g; s*are linear or that the g,’s are convex functions with 8i(z") < b; for
o some z° € U and all i. See Theorem 19.12 ' l

As in the statement of Theorem 21.7 , i

.7, the sufficient conditi
global max of Problem (20) can be weakened to condiion (22) for a

DL(x*, A" )(x ~x*) <0 forallx € Cp. 7

Asthe following theorem indicates,
value function for problem
problems.

bc?th the set of maximizers and the maximal
(2Q) have nice properties in concave programming

Theorem 21.23 Let f, 81, - -, 8 be as in the hypothesis of Theorem 21.22.

(a) foé acrvly tf;:::d b l=b(i)1,...,bk) € RK, let Z(b) denote the set of
b are imi i

o, global maximizers of f on Cy,. Then, Z(b) is a con-

(b) For any b € RX, let V(b) denote the maximal value of the objective

function f in problem (20).If £ is concawvi
. . ¢ and the g;’
b V(b) is a concave function of b. > ate comver then
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Proof

(a) Suppose that x' and x* are in Z(b), and let
C=ix!+1-0x*€E £2(x!, x%).

. . 3
Since the g;’s are quasiconvex functions, Cy is a convex set andx° € G,
Since f is quasiconcave,

f() = min{f(x"), f)}:

3 .
Since f(x!) = f(x?) = max {f(x) : x € Cp}, () = f(x?) and X is
in Z(b), also. Therefore, Z(b) is a convex set. .
(b) Let $)= tb! + (1 — £)b?, and let x* € Z(b") for i = 1,2, 3. Then, for
i=1..k
gi(ex! + (1 — 0)x?) =< 1g;(x") + (1 — 1) g;(x*) (convexity of g;)
=tb + (1 —t)b? since (gi(x)=bji=12)

— B3
= b]-,
and so 1x! + (1 — £)x? is in Cyp. Therefore,
V(') = f(x)
= fex! + (1 —6)x?)  (since x> € Z(b%))

= 1f(x') + (1 — O)f(x*) (concavity of f)
= tV(b;) + (1 — )V(b?). B

Saddle Point Approach

In order to compute maxima of a constrained optimization prob!em like (2(;’),
one often considers the corresponding saddle point problem, especially when the
functions involved are concave.

Definition Let U be a convex subset of R". Consider the Lagrangian f:mc:io.n
(21) for the programming problem (20), as a function of x and A. Then, (x*, A*) is
saddle point of L if

L(x, %) = L(x%, A") = L(x", \) (28)

forallA = 0andallx € U. Usually, U = Ror U = R.'i, the positiv? orthant of
R". In the latter case, we say that (x*, A*) is a nonnegative saddle point of L.
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Theorem 21.24 If (x*, \*)is a (nonnegative) saddle point for L in Problem
(20), then x* maximizes f on Cj, (Cp, N R%).

Proof We first show that x* is in Cy,. The right side of (28) implies that

k
D= A)(&x") — b) =0, (29)
i=1

forall A; = 0. For any fixed &, plug A, = Ay +land )y = Al foralli # hinto
(29). Then, (29) becomes 8n(x") — by = 0. Therefore, x* € Cp.

It follows that 3", A}(gi(x*) — b)) = 0. On the other hand, setting each
A = 0in (29) yields 3, A" (gi(x*) — b} = 0, and thus

DA (g(x) = b;) =0 and each A (gi(x") ~ b)) = 0. (30)
If x € Cy, then, since each Al(gi(x) — b) =0,
f@) =)~ > A (ei(x) — by)

=f0) =Y N(sx)=b) by (28)

= f(x*) by(30). m

Notice that there were no concavity hypotheses in the statement of Theorem
21.24. In concave programming, solutions of saddle point problems are more or

less equivalent to solutions of programming problems, as the following theorem,
due to Kuhn and Tucker, points out.

Theorem 21.25 Suppose that U = R® or that U is an open convex subset of
R". Suppose that f is a C! concave function and that gy, ..., g; are C! convex
functions on U. Suppose that x* maximizes f on'the constraint set Cy, as defined
in (20). Suppose further that one of the constraint qualifications in Theorem

19.12 holds. Then, there exists A* = 0 such that (x*, A") is a saddle point of
the Lagrangian (21).

Proof  First, work with the case where U is an open subset of R", for example,
R" itself. By the usual first order condition, there exists A* = 0 such that
A - (gi(x") = b)) = Ofori = 1,...,kand

DuL(x', ") = Df(x*) = 3" A Dgi(x") = 0. (31)
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By Theorem 21.8, the function x + L(x, A*) is a concave function oi X. By
the first derivative criterion for concavity in Theorem 21.3 and by (31), for any

X € Cy,
L(x A" — L(x*, A*) = DyL(x", \*)(x — x*) = 0. (32)
On the other hand, for any A = 0 in R¥,
L, AT) = f(x) = 3N (gix") — b)
= f(x) ’(Since each A/ (gi(x") — by) = 0)
= f(x") - Z Ai (g:i(x") — b))

= L(x", A).

Now, suppose that U = R, so that we are looking for a nonnegative sad((i)le
point. Tl’le function (21) is now the Kuhn-Tucker L'a'granglanb of probl'elrzi (20),
as discussed in Section 18.6. By the first order conditions for a constrained max

at X" in Section 18.6, there is a A* = 0 such that
aL
aL * * * * - *’ A* = O (33)
Ex—i(x,)t)so, x; =0 and x ax,-(x )
Conditions (33) replace the above equation (31). Now,
* * aL * * . E * At x* S 0
DyL(x*, A)(x — x*) = Zc—?x—i(x’/\ W ax,-(x A )x;

for x; = 0, by (33). The rest of the above proof goes through after one replaces
t — Y .
“= 0" at the end of (32) by “< 0.” W

To give some indication of the interest in the saddle point aipr(‘)achlmt}elcoé
i : [ ivi lysis models of a firm’s behavior. In thes
nomics, we return to the activity analy. nt
models, a firm has n production processes; x; = 0 represents the level of acgvuytgi
process i, for i = 1,..., n. For each activity vector x = (xy, . .., x,), f(x) deno t
the firm’s profit when it runs process i at level x; and gj(lyl() denotei t};e a;?,?,l;:e
j i ivity level x. Let b; denote the amount of re
of resource j required at activity el x 0 our
currently available. The firm’s optimization problem is to choose x to maximize

j j = dx=0.
subjectto gi(x) = b; forj = 1,...,k an ‘
f(X)If w:. let U ége the p(;sitive orthant of R", the (Kuhn-Tucker) Lagrangian for

this problem is

k
L(x A) = f(x) + > Ai(b; — g(x). (34
j=1
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By the discussion in Section 19.1, the multiplier A; can be considered as the
shadow price or internal valuation of factor j. Thus, the Lagrangian function
(34) can be considered the combined value of the firm’s output f(x) and the
unused balance of its resources 2. A(b; — g(x)). The existence of a saddle point
(x*, A*) expresses an equilibrium between the value of the output and the value of
these unused resources. It is a basic step in the equilibrium theory for production
economies. It is especially important in studying firms that deal with activities like
investment, fisheries, or timber, in which decisions must be made about whether
to use resources or to let them continue to grow at their natural rate.

EXERCISES

21.26  Use the problem of maximizing Cobb-Douglas utility U(x, y) = xy on the budget
set 2x + 2y < 8 to show that one cannot replace the hypothesis of the concav-
ity of f in Theorem 21.25 by the weaker hypothesis that £ is quasiconcave or
pseudoconcave,

21.27 Suppose that (x, ) — f(x, a) is a concave function of x € R™ and of the parameter
a € R™, and that (, a) — g,(x, a) are convex functions of x € R™ and a & R™
fori=1,... ,k LetC, = {x e R rg(xa) =0, ;= L..., k}. Let Z(a) denote
the set of maximizers of f(ya) on C,; and let V(a) = f(Z(a), a). Show that V isa
concave function of a. .

21.28 Inthe previous exercise, drop the dependence of &i on a and the convexity hypothe-
sis on the g;’s. Suppose only that each a — f(x, a) is a convex function of a. Show
that the maximum value function a+— V(a) is a convex function of a,

21.6 APPENDIX
This section presents proofs that were omitted in the earlier sections.

Proof of the Sufficiency Test of Theorem 21.14

Theorem 21.14 Suppose that F is a C! function on an open convex subset
U of R, If for all X,y €U,

F(y) = F(x) implies that DF Xy -x)=0 (35)

then F is quasiconcave on U,

Proof Choose Xo and x; in U with Xo #* X; and F(x;) = F(xp). Let x, =
Xo + 1(X1 — Xg) parameterize the line from xg to x;. We want to prove that
F(x;) = F(xp) forall : € [0, 1].

To reach a contradiction, suppose that there is at" € (0,1) such that
F(x1) = F(xg) > F (X). LetJ = [1,, t]bea (connected) interval in (0, 1) with
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| = = . We first
t* € J, with F(xo) = F(x,) forall t € J, and F(x,) = F(x,,) = F(xp). We
claim that
DF(x)(xy — %) = 0 forall ¢ €J, (36)
because if t € J, F(x1) = F(xp) = F(x,). By (35),
€0)

DF(x,)(Xp — %) =0 and DF(x;)(x; — x;) = 0.

By definition,
Xo — X = —#(X; —X) and X; — X, = (1 — £)(X1 — Xo).

Plugging these equalities into (37) yields

—tDF(x.)(X; — %) =0 and (1 — )DF(x;)(x; — Xo) = 0.
Since ¢ and 1 — ¢ are positive, DF(x,)(X; — Xg) = 0; this proves claim (36).
On the other hand,

0 < F(x) — F(x¢)

= F(x,) = F(x)

= —xp) forsome t; € (4, ¢") .
DG, =) (by the Mean Value Theorem of Section 30.1

and the Chain Rule)
= (t* - tl)DF(xh)(xl — Xq)s

* - i tradiction to claim (36) implies
since X, — X = (t; — t")(X1 — Xp)- Tlu§ con |
that thelll'e is 1;0 t* with F(x-) < F(xp). Since F(x;)} = F(xo) for all t € [Q, 1},
F is quasiconcave by Theorem 21.12. ®

Proof of Theorem 21.15

Theorem 21.15  Suppose that F is a real-valued, positive function dc?ﬁned on
a convex cone C in R™. If F is homogeneous of degree one and quasiconcave

on C, it is concave on C.

Proof We will show that the subgraph of F, that is, the set below the graph of F
in R“+1,

Gr ={(xy) EC XR:+ :y =F(x)},

is a convex set. (See Exercise 21.5.) We first show that

Gy ={(x,y) € Gr: 0 <y =FX)}
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is a convex set. Let (x, y) and (x', ') be points in Gp,sothat 0 < y < F(x)
and 0 < y’ = F(x/). Since F is homogeneous of degree one, y > 0, and

(xy) € G,

H()-tor=tye

y
xl
Similarly, F ( —,) = 1. Therefore,
y

/
(3’ 1) and (i,, 1) arein Gy,
y y
Let A € [0, 1], and define

Ay

o=_—_"2
Ay + (1= Ay’

Then, 6 is also in [0, 1]. Since F is quasiconcave,

() e-0(3)=»

that is,

(0(§)+(1~o)(§),1) isin G

By the definition of @,

(G)ra-0(5)1) - (25=3)

Once again by the homogeneity of F,
(Ax+ (1=, Ay + (1 - Ay') isin Gf;

that is, A(x, y) + (1 = A)(x', y') is in G, and G} is a convex set.

To see that Gr is convex, let v = {(x,, ¥):0 =1t =1} bealine segment
with its endpoints in Gr. If the endpoints of v lie in G, then 7 lies in Gf
by the argument of the preceding paragraph. If both endpoints of y lie below
y = 0, then so does the segment; in this case, the segment 7 lies below the
graph of F because the graph of the positive function F lies above the {y =0}-
hyperplane. If one endpoint of v lies above {y = 0} and one below, break v into
two segments, one below {y = 0} and one above {y = 0}, and apply the above
arguments to each piece separately. W
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Proof of Theorem 21.17

The

function. Then,

orem 21.17 Let U be a convex subset of R". Let F:U— RbeaC!

(a) if F is pseudoconcave on U, F is quasiconcave on U, and
(b) if U is open and if VF(x) # 0 for all x € U, then F is pseudoconcave
on U if and only if F is quasiconcave on U.

Proof

(a) Suppose that F is pseudoconcave on U. Let yo and y; be two points in
U with F(y;) = F(yo). Lety: = yo + t(y1 — yo) for 0 = t = 1, so that
the line segment is parameterized from yo to y1. Let g(t) = F(y:)-

We claim that F(y,) = F(yo) for all ¢ € [0,1]. This claim holds
automatically if the minimum value of g on [0, 1] occurs at ¢ = 0 or
¢ = 1. We can assume then that the minimum value of g on [0, 1] occurs
at some ¢* in the open interval (0, 1). In this case,

0 = g'(") = DF(yo + t'(y1 — ¥0)) - (1 — Yo)

by the usual first order condition for a minimum and the Chain Rule;
then,

0 = DF(yo + £"(y1 — ¥0)) * (—"(y1 — ¥0))-

Applying the definition (15) of pseudoconcavity with x" =yo+t"(y1—
yo) and y = Yo, we conclude that

F(yo + t*(y1 — Yo)) = F(yo);

this proves the claim at the beginning of this paragraph. By Theo-
rem 21.12, F is quasiconcave on U.

(b) Suppose, now, that F is quasiconcave on U, that U is open, and VF(x)
is never zero for x € U. To prove that F is pseudoconcave, we assume
that DF(x*)(y — x*) < 0, as in the hypothesis of (15), and prove that
F(y) = F(x"). If DF(x*)(y — x*) < 0, then F(y) < F(x*) by (16). We
need only rule out the case

DF(x*)y —x*) =0 and F(y)>F x"). (38)

We will show that, under the hypotheses of this theorem and under
assumption (38), we can perturb y to y’ so that

DFX)(y —x)<0 and F(y)>F(x"); 39
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this contradicts our assumpti i i
ption that F is
nonzero vector —VF(x*). Forall t > 0, Avasiconeave: Let vbe the
DF(x")(y + tv — x*) = DF| (x*)ev +y — x*)
= IDF(x*)(v) + DF(x*)(y - x*)
= —tIVFx")I? +0
<.

Since F is continuous at y,

w
o ¢ can choose nonzero ¢ small enough so

F(y +tv) > F(x") and DFx")y + tv ~ x") <0

thatis, y’ = i i
»¥' = ¥ + v satisfies (39) — a contradiction to the characteriza-

tion (16) of quasiconcavit i icti
y. This contradicti
hold and therefore that F is pseudoconcave. 0ln proves fhat (38) cannor

Proof of Theorem 21.20

We now prove the bordered Hessian test for
for functions of two variables, a s
we will work with C?

. pseudoconcavity and quasiconcavity
s t-pecml case of Theorem 21.19. For simplicity,
oot et ¢ y functions U in the plane which are quasiconcave and
below: 1 I o q n;leans 'tl'.nat }ndlfference curves bound convex sets from
aoon i;, ans t at.utlhty Is strictly increasing as the amount of eith
creases. In fact, we will write this monotonicity assumption as U’ > 0 a:(;-
X

U! > 0. Quasi : . .
y g concavity and ;
Figure 21.10. y and monotonicity imply that the level sets of U are as in

Figure

Indiffe 1
ifference curves of a monotone, quasiconcave utility function. 21.10
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Theorem 21.20 Let U be a C? function on a convex set W in R2. Suppose
that U is monotone in that U’ > 0 and Uy > O on W. If the determinant

0o U U
u, Ul UL |- (40)

! " n
Uy UXY U)’Y

is > 0 on W, then Uis quasiconcave on W. Conversely, if U is quasiconcave
on W, then the determinant (40) is = 0.

Proof Think of each level curve as a graph of a function y = g(x). (We can
do this by the monotonicity assumption Uy’ > 0. See Exercise 21.29.) Since
U is quasiconcave, the set above the graph of g (i.e., above the level set of
U) is a convex set. Therefore, the quasiconcavity of U implies the convexity
of g as a function of one variable (Exercise 21.5), which in turn implies that
g"(x) = 0. Now, by Theorem 15.1, g'(x) is the marginal rate of substitution

—U!(x, g(x))/U;(x, g(x)). Therefore,

0=gy=L (_ U;(x,g(x»)

I

dx \ Uy g)
_ (UL + U@, ~ Uy + Upg'e)Us
S Ghg

_ (UL - (ULPU + 200U .
Wy

using g'(x) = —U}/U,. The numerator in expression (41) is simply the deter-
minant (40).

Conversely, one can folow the above steps in reverse order to conclude that
if the determinant (40) is positive, then g”(x) > 0, g is a convex function, the
set above the graph of g is a convex set, and finally that the set above each level
curve of U is a convex set. So, U is quasiconcave. B

EXERCISES

21.29 Why does the assumption U, /dy > 0 imply that we can work with each level
curve of U(x, y) as a graph of a function y = g(x)?
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NOTES

(@) One of the earliest papers on quasiconcave functions is K. Arrow and A. Enthoven,
“Quasiconcave progtamming,” Econometrica 29 (1961) 779-800. It includes a
concrete example of a quasiconcave function which is not a monotonic transfor-
mation of any concave function.

(b) One of the earliest papers on pseudoconcave functions is O. Mangasarian, “Pseu-
doconvex functions,” Society for Industrial and Applied Mathematics Journal on
Control 3 (1965), 281-290. Mangasarian defined pseudoconcave functions as a
class that retains some of the more interesting properties of quasiconcave functions
and of concave functions.

(c) Papers on the relationship between concave, pseudoconcave and quasiconcave
functions include Arrow and Enthoven, “Quasiconcave programming,” J. Fer-
land, “Mathematical programming problems with quasiconvex objective func-
tions,” Mathematical Programming 3 (1972) 296-301; and J-P. Crouzeix and J.
Ferland, “Criteria for quasiconvexity and pseudoconvexity: relationships and com-
parisons,” Mathematical Programming 23 (1982) 193-205. These papers also give
necessary conditions for a function to be pseudoconcave.




