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Homogeneous Functions
For any α ∈ R, a function f : Rn

++ → R is homogeneous of degree α if f(λx) = λαf(x) for all λ > 0

and x ∈ Rn
++. A function is homogeneous if it is homogeneous of degree α for some α ∈ R.

A function f is linearly homogenous if it is homogeneous of degree 1.

• Along any ray from the origin, a homogeneous function defines a power function. If f is linearly
homogeneous, then the function defined along any ray from the origin is a linear function.

Example: Consider a Cobb-Douglas production, f(x) =
Qn

j=1 x
αj
j , where each αj > 0, and let

β =
Pn

j=1 αj . Then

f(λx) =
nY

j=1

(λxj)
αj = λβ

nY
j=1

(xj)
αj = λβf(x).

So f is homogeneous of degree β.

Example: Consider a CES production function f(x) = (
Pn

i=1 αix
ρ
i )
β
, where β, ρ > 0. Then

f(λx) =

Ã
nX
i=1

αi (λxi)
ρ

!β

= λρβ

Ã
nX
i=1

αix
ρ
i

!β

= λρβf(x).

So f is homogeneous of degree ρβ.

• If f is homogeneous of degree 0, then f(λx) = f(x). Why?

• If f is homogeneous of degree α 6= 0, then f
1

α is homogenenous of degree 1. Why?

• Let f(x) =
³Qn

j=1 x
αj
j

´ 1

β

, where each αj > 0 and β =
Pn

j=1 αj . Then f is linearly homogeneous.
Why?

• f(x) = min {xi : i = 1, ..., n} is linearly homogeneous. Why?

The following theorem relates the value of a homogeneous function to its derivative.

Theorem 1: If f : Rn
++ → R is continuously differentiable and homogeneous of degree α, then

Df(x) · x =
nX
i=1

fi(x)xi = αf(x). (Euler’s theorem)

Proof. If f is homogeneous of degree α, then for any x ∈ Rn
++ and any λ > 0, we have

f(λx) = λαf(x).
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Then holding x fixed and differentiating both sides with repect to λ, we obtain

df(λx)

dλ
= Df(λx) · x =

nX
i=1

fi(λx)xi

=
d (λαf(x))

dλ
= αλα−1f(x)

Letting λ = 1, yields the statement to be proved.

The next theorem relates the homogeneity of a function to the homogeneity of its partial derivatives.

Theorem 2: If f : Rn
++ → R is continuously differentiable and homogeneous of degree α, then

each partial derivative fi is homogeneous of degree α− 1.

Proof. For fixed x ∈ Rn
++ and λ > 0, define each gi, hi : (−xi,∞)→ R by gi(t) = f(λ (x+ eit))

and hi(t) = λαf(x+ eit) Then the homogeneity of f implies

gi(t) = f(λ (x+ tei)) = λαf(x+ tei) = hi(t)

and therefore

g0i(t) = h0i(t) for all t ∈ (−xi,∞)
But

g0i(0) = Df (λx) · λei = λfi(λx)

h0i(0) = λαDf(x) · ei = λαfi(x)

So

fi (λx) = λα−1fi(x).

Example: In the example above, we showed that f(x) =
Qn

i=1 x
αi
i is homogeneous of degree

β =
Pn

i=1 αi. To verify Euler’s theorem, observe that, for each j = 1, ..., n, we have

fj(x) = αjx
αj−1
j

Y
i6=j

xαii =
αj
xj

nY
i=1

xαii = αj
f(x)

xj
.

Therefore,
nX
i=1

fi(x)xi =
nX
i=1

αi
f(x)

xi
xi =

nX
i=1

αif(x) = βf(x).

To verify Theorem 2, observe that each

fi(λx) = αi
f(λx)

λxi
= αi

λβf(x)

λxi
(since f is homogeneous of degree β)

= λβ−1αi
f(x)

xi
= λβ−1fi(x).
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Homothetic Functions
A function is homothetic if it is a monotonic transformation of a linearly homogeneous function.
• If f is a homogeneous function of degree α 6= 0, then f is homothetic. Why?

• Any monotonic transformation of a homothetic function is homothetic. Why?

Example: Let f : Rn
++ → R be the log-linear function defined by f(x) =

Pn
i=1 αi log xi. Then

f is homothetic since exp(f(x)) =
Qn

i=1 x
αi
i is homogenous of degree β ≡

Pn
i=1 αi.

However f is not homogeneous, since for λ < 1 < μ, and e ≡ (1, ..., 1) ∈ Rn, we have

f(λe) =
nX
i=1

αi log λ < 0 <
nX
i=1

αi logμ = f(μe)

Theorem 3: Suppose f : Rn
++ → R is homothetic. Then f(x) = f(z) implies f(λx) = f(λz) for

all λ > 0.

Proof. If f is homothetic, then f = φ ◦ g for some increasing φ : g(Rn
++) → R and some linearly

homogeneous function g : Rn
++ → R. Therefore f(x) = f(z) if and only if g(x) = g(z). So if

f(x) = f(z), then the linear homogeneity of g then implies

g(λx) = λg(x) = λg(z) = g(λz)

and therefore

f(λx) = φ(g(λx)) = φ(g(λz)) = f(λz).

• The level curves curves of a homothetic function are radial translations of each other. Why?

We may use Theorem 2 to show that the gradient of a homothetic function is proportional along

any ray from the orgin.

Theorem 4: Suppose f : Rn
++ → R is homothetic and continuously differentiable. Then for any

x ∈ R++ and λ > 0, there is a k > 0 such that ∇f(x) = k∇f(λx).
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Proof. If f is homothetic, then f = φ ◦ g for some increasing φ : g(Rn
++) → R and some linearly

homogeneous function g : Rn
++ → R. So, using the chain rule, we have for any x ∈ Rn

++ and λ > 0,

Df(x) = φ0(g(x))Dg(x)

and

Df(λx) = φ0(g(λx))Dg(λx).

But if g is homogeneous of degree 1, Theorem 2 implies that each gi is homogeneous of degree 0

so that we have that Dg(λx) = Dg(x). Therefore,

Df(λx) = φ0(g(λx))Dg(λx) = φ0(g(λx))Dg(x) =

µ
φ0(g(λx))

φ0(g(x))

¶
φ0(g(x))Dg(x) =

µ
φ0(g(λx))

φ0(g(z))

¶
Df(x)

Then since ∇f(x) ≡ Df(x)T , letting k = φ0(g(λx))
φ0(g(z)) proves the theorem.

Theorem 4 implies that the slopes of the indifference curves of a homothetic function are parallel

along any ray from the origin.

Corollary 1: Suppose u : Rn
++ → R is a continuously differentiable homothetic utility function.

Then for any x ∈ R2++ and λ > 0, we have MRS12(x) =MRS12(λx).

Proof. If u is homothetic, then Theorem 4 implies that ∇u(λx) = k∇u(x). Therefore,

MRS12(λx) =
u1(λx)

u2(λx)
=

ku1(x)

ku2(x)
=

u1(x)

u2(x)
=MRS12(x).

Concavity and Homogeneity
Recall that for any x ∈ X, P (x) ≡ {z ∈ X : f(z) ≥ f(x)} is called the better set of x. In a previous
handout, we established the following property of quasi-concave functions.

Theorem 04: A function f : X → R is quasi-concave if and only if P (x) is a convex set for each
x ∈ X.

For an increasing function of two variables, Theorem 04 implies that level sets are concave to the

origin. However, it imposes no other additional restrictions on the relation between different level

sets. In contrast, concavity requires that an increasing function f becomes less steep with increases

in x so that the distance between the level sets of fixed increments in the value of f increases with

x. The next proposition, which is proved in the Appendix, provides sufficient conditions for quasi-

concave homogeneous functions to satisfy the additional requirement for concavity.

Theorem 5: (a) Suppose f : Rn
++ → R is quasi-concave and homogeneous of degree α ∈ (0, 1].

Then f is concave.

(b) If f is strictly quasi-concave and homogeneous of degree α ∈ (0, 1), then f is strictly concave.

The following two figures illustrate the theorem. The figure on the left illustrates level curves of

a concave function. Notice that as we increase the vector x along a fixed ray from the origin, the
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change in the value of the function progressively decreases. The level curves on the right cannot

represent a concave function, since as we increase x along a fixed ray from the origin, the change

in the value of the function progressively increases.

Concave Function Not Concave Function

• If f is homogeneous of degree α > 1, then f cannot be a concave function. Why? (Hint:
Consider the function g(μ) = f(μx)).

We may use Theorem 4 to establish the concavity of an important class of CES functions. The

proof will use the following property:

Lemma 1: Suppose 0 < ρ < 1. Then for any x, z ∈ R with x 6= z, we have

λzρ + (1− λ)xρ < (λz + (1− λ)x)ρ .

Proof. Define h : R++ → R by h(t) = tρ. Then, if ρ < 1, we have h00(t) = ρ (ρ− 1) tρ−2 < 0, which
implies that h is strictly concave and therefore for x 6= z, we have

(λz + (1− λ)x)ρ = h(λz + (1− λ)x) > λh(z) + (1− λ)h(x) = λzρ + (1− λ)xρ.

We will also require the following propery, which we established in an earlier handout.

Theorem 05: (a) Any monotonic transformation of a concave function is concave. (b) Any

monotonic transformation of a strictly concave function is strictly quasi-concave.
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Observation 1: Let f(x) = (
P

αix
ρ
i )
β where ρ, β > 0.

(a) If ρ = 1, then f is quasi-concave. If ρ < 1, then f is strictly quasi-concave.

(b) If ρ ≤ 1 and βρ ≤ 1, then f is concave. If ρ < 1 and ρβ < 1, then f is strictly concave.

Proof. (a) Suppose that ρ < 1 and define g : Rn
++ → R by

g(x) ≡
nX
i=1

αix
ρ
i

Then, for any x, z ∈ Rn
++, we have

λg(z) + (1− λ) g(x) = λ
nX
i=1

αiz
ρ
i + (1− λ)

nX
i=1

αix
ρ
i =

nX
i=1

αi (λz
ρ
i + (1− λ)xρi )

<
nX
i=1

αi(λzi + (1− λ)xi)
ρ (from Lemma 1)

= g(λz + (1− λ)x)

which implies that g is strictly concave. But since f is a monotone increasing transformation of g,

it follows from Theorem 05 that f is strictly quasi-concave.

If ρ = 1, the inequalilty above is weak, which implies only that g is concave and therefore only

that f is quasi-concave.

(b) Observe that

f(λx) =

Ã
nX
i=1

αi (λxi)
ρ

!β

= λρβ

Ã
nX
i=1

αix
ρ
i

!β

= λρβf(x).

implies that f is homogeneous of degree ρβ. Therefore, if ρ ≤ 1 and ρβ ≤ 1, it follows Theorem 4

and part (a) that f is concave. If ρ < 1 and ρβ < 1, then Theorem 4 and part (a) implies that f

is strictly concave.

Appendix
Theorem 5: (a) Suppose f : Rn

++ → R is positive, quasi-concave, and homogeneous of degree
α ∈ (0, 1]. Then f is concave. (b) If f is positive, strictly quasi-concave and homogeneous of degree
α ∈ (0, 1), then f is strictly concave.

Proof. (a) Given any x ∈ Rn
++, define hx : R++ → R by hx(t) = f(tx). Then since the homogeneity

of f implies that hx(t) = f(tx) = tαf(x), it follows from the restriction that α ∈ (0, 1] that

h00x(t) = α (α− 1) tα−2f(x) ≤ 0

and therefore that hx is concave. Consequently, for any t > 0 and λ ∈ (0, 1) , we have

λf(tx) + (1− λ) f(x) = λhx(t) + (1− λ)hx(1) ≤ hx(λt+ (1− λ)) = f((λt+ (1− λ))x) (1)
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Now consider any x1, x2 ∈ Rn
++ and choose μ1,μ2 > 0 so that μα1 f(x

1) = f(x2) and μα2f(x
2) =

f(x1). Then

f(x1) = μα2 f(x
2) = μα2μ

α
1 f(x

1) = (μ2μ1)
α f(x)

which, since α 6= 0, implies that μ2μ1 = 1.
Next observe that relation (1) implies

λf(x2) + (1− λ) f(x1) = λf(μ1x
1) + (1− λ) f(x1) ≤ f((λμ1 + (1− λ))x1) (2)

and

λf(x2) + (1− λ) f(x1) = λf(x2) + (1− λ) f(μ2x
2) ≤ f((λ+ (1− λ)μ2)x

2) (3)

Now define

β ≡ λ

λ+ (1− λ)μ2
Then, since μ1μ2 = 1, we have

1− β =
λ+ (1− λ)μ2 − λ

λ+ (1− λ)μ2
=

(1− λ)μ2
λ+ (1− λ)μ2

=
(1− λ)

λμ1 + (1− λ)
.

Therefore,

λf(x2) + (1− λ) f(x1) ≤ min
©
f((λμ1 + (1− λ))x1), f((λ+ (1− λ)μ2)x

2)
ª
(from relations (2) and (3)

≤ f((1− β) (λμ1 + (1− λ))x1 + β (λ+ (1− λ)μ2)x
2)) (by quasi-concavity)

= f((1− λ)x1 + λx2)

(b) Suppose α ∈ (0, 1) and f is strictly quasi-concave. Consider any x1, x2 ∈ Rn
++ where x

1 6= x2.

There are two cases to consider.

Case I: x2 = μx1 for some μ > 0. Then, defining hx as above, α ∈ (0, 1) implies h00x(t) < 0 so that
each hx is strictly concave and therefore. Therefore, for any λ ∈ (0, 1) , we have

λf(x2) + (1− λ) f(x1)λf(μx1) + (1− λ) f(x1) = λhx1(μ) + (1− λ)hx1(1) < hx1(λμ+ (1− λ))(1)

= f((λμ+ (1− λ))x1) = f(λx2 + (1− λ)x1)(1)

Case II: x1 6= μx2 for any μ > 0. Define μ1 and μ2 as above. Then (2) and (3) imply

λf(x2) + (1− λ) f(x1) ≤ min
©
f((λμ1 + (1− λ))x1), f(

¡
λ+ (1− λ)μ2

¢
),
ª

< f((1− β) (λμ1 + (1− λ))x1 + β (λ+ (1− λ)μ2)x
2)) (by strict quasi-concavity)

= f((1− λ)x1 + λx2).
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