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d. Suppose preferences are locally insatiable and x solves the CP, but p- z < y.
Let 3=y -p-z, v=max {p;i =1,...,k}, and € = 3/(ky). By local insa-
tiability, some &’ within € of r is strictly preferred to z; that is, u(z') > u(z).
Butp z' = Zi,plwi < Zf.;l’e(mi*’f) <p-z+kye=p-z+( =y. That
is, 2’ is affordable at prices b with wealth y, and it is strictly preferred to z,
contradicting the supposed optimality of z for prices p and income y. u

A simple picture goes with the proof of part d. See Figure 3.3 and the accom-
panying caption.
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Figure 3.3. The picture for the proof of Proposition 3.1d. If p-x < y, then z lies
“below” the budget line, and we can put a ball of strictly positive radius around = such
that p- =’ < y for every z’ inside the ball. Local insatiability ensures that no matter
how small the radius of this ball, as long as it is strictly positive, some (nonnegative)
point inside the ball must be strictly better than x, which contradicts the optimality
of z at the given prices and income.

3.3. The Marshallian Demand Correspondence
and Indirect Utility Function

Fix the utility function u for a particular consumer. Assume u is continuous,
reflecting this consumer’s continuous preferences. For each set of strictly positive
prices p and nonnegative income level y, we have a version of the CP for this
consumer. By virtue of Proposition 3.1b, we know that the CP has a solution. Let
D(p,y) denote the set of solutions for the fixed u, as a function of p and y, and
let v(p,y) denote the value of the optimal solution; that is, v(p,y) = u(z*) for any
z* € D(p,y). (D is a mnemonic for demand.)

Definition 3.2. Fixing u, the set D(p. y) is called Marshallian demand at prices p and
income y, and the correspondence (p,y) = D(p,y) is called the Marshallian demand
correspondence. The number v(p,y) is called the indirect utility at p and y, and the
function (p,y) — v(p,y) is called the indirect utility function.

Proposition 3.3 (Berge’s Theorem applied to the consumer’s problem).
a. Forallpe R*,, y > 0,and A > 0, D(p,y) = D(\p, \y) and v(p,y) = v(Ap, Ay).

b. The Marshallian demand correspondence is upper semi-continuous. If, for some open
set of prices and income, Marshallian demand is singleton valued (that is, the CP has a
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unique solution for all price-income pairs inside that open set), then the function that
describes the solution as a function of (p, y) is a continuous function.

c. The indirect utility function is continuous.

If the notion of a correspondence or an upper semi-continuous correspondence
is new to you, or if you have never heard of Berge’s Theorem, also known as
the Theorem of the Maximum, please consult Appendix 4 before attempting to
understand either the statement of this proposition or its proof.

Proof. Part a of the proposition is a simple corollary of Proposition 3.1a. As for parts
b and , these come from a straightforward application of Berge’s Theorem, givenin
Appendix 4 as Proposition A4.7. Since this is our first application of this important
general result, I spell out the details: The consumer’s problem is a parametric
constrained maximization problem

maximize u(r), subject to x € B(p, y).

The variable in the problem is z, and the parameter is the vector (p, y). Berge’s The-
orem tells us that the solution correspondence is nonempty valued if, for each set of
parameters, the constraint set is nonempty and compact and the objective function
is continuous in the variables; moreover, the solution-set correspondence is upper
semi-continuous and the value-of-the-solution function is continuous, both in the
parameters, as long as the objective function is jointly continuous in the variables
and the parameters and the constraint-set correspondence is locally bounded and
continuous in the parameters. (The version of Berge’s Theorem givenin Appendix
4 is somewhat more robust than this simple rendition, but the simple rendition is
adequate for now.)

In this particular application, the objective function is independent of the pa-
rametersand assumed continuousin the variables. Therefore, the objective function
presents no problem. We already showed that each B(p, ) is nonempty and com-
pact. So once we show that (p.y) = B(p, y) is a continuous and locally bounded
correspondence, the conditions of Berge’s Theorem are met, and its conclusions are
established. To begin with local boundedness, fix a pair (p,y), and let

W

€=~ min p,.
=1,....k

For all (¢, y) within € of (p,y), z € B(p', y') must solve p' - & < y/'. Since in the
sum p’ - = each term is nonnegative and y’ < y + ¢, this inequality implies that
Pizi < (y + ¢€); hence ri < (y+e/p,. Butp, > p, —¢€ > %p, > 2¢; therefore
T, < (y +€)/(2¢), which provides a uniform bound for ¢ B(', ).

Continuity of the constraint correspondence is shown by proving separately that
the correspondence is upper and lower semi-continuous. To show upper semi-
continuity (having shown local boundedness), we take a sequence {(z™,p",y™)}
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with z" € B(p",y") for each n and with limit {(z,p,y)}.2 (We are using super-
scripts here because subscripts denote components of the vectors z and p.) Of
course, z" > 0 for each n, and since the positive orthant is closed, this implies that
z > 0. Moreover, p™ - 2" < y" for each n; using continuity of the dot product, this
implies that the limit of the left-hand side, p - z, is less than or equal to the limit of
the right-hand side, y. Therefore, p-z < y and z € B(p, y). This establishes upper
semi-continuity.

To show lower semi-continuity, for each sequence {(®™,y™)} with limit (p,y)
and a point z € B(p,y), we must produce a sequence {z"} with limit x and such
that 2" € B(p",y") foreach n. If y = 0, then z = 0 (prices are strictly positive);
therefore 2™ = 0 for all n works. If z = 0, the same choice of z™ will do. Therefore,
we can assume that y > 0, z # 0 and, by going far enough out in the sequence, that
the p™ - 2 are uniformly bounded away from zero. Let

n YT T.
Y
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P

Since y™ — y and p" — p, continuity of the dot product implies that z* — z. It
remains to show that z" € B(p", y"). Nonnegativity of " is no problem, since 2"
is just a scale copy of z. Moreover,
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3.4. Solving the CP with Calculus

When economists build models populated by consumers, it is common practice to
specify the individual consumer’s utility function and to solve the CP analytically,
using calculus. (It is also common to begin directly with the consumer’s demand
function, or even with a demand function that aggregates the demands of a pop-
ulation of consumers. We discuss these alternative practices in later chapters.) To
build and work with such models, you must be able to carry out this sort of ana-
lytical exercise. In this section, we discuss how this is done, and (more important
to future developments) how to interpret pieces of the exercise.

The CPisa problem of constrained optimization: A numerical objective function
(utility) is to be maximized, subject to some inequality constraints (the budget
constraint, and all variables nonnegative). Assuming the objective function and
constraint functions are differentiable and otherwise well behaved, the standard
theory of constrained optimization establishes necessary and sufficient conditions

In proving upper and lower semi-continuity, we look at sequences of parameters—in this case,
sequences {p”, y"} —that converge to points in the domain of the correspondence. Therefore, the limit
price vector p here must be strictly positive.
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