CHAPTER 2
ELEMENTARY LOGIC

2-1 Introduction. Logic may be described roughly as the theory of sys-
tematic reasoning. Symbolic logic is the formal theory of logic. There are
many kinds of logic, but we shall consider only the logic that is most
commonly used in mathematics and other sciences. ’

Symbolic logic has important applications in science and industry. In
the New York Times of November 25, 1956, a well-known producer of
electric products advertised for “men with ideas” to work in the field of
electronics. The advertisement called for students of mathematics who
had done “creative and original work in all fields of mathematics,” and
who had “an interest in the theory of numbers, theory of groups, Boolean
algebra and symbolic logic. . ..” In the following chapters the reader will
get some inkling of why a great corporation is interested in such matters.

We introduce symbolic logic now for three reasons: (1) We can utilize
its symbols and laws to simplify later work. (2) The axioms and proofs of
elementary symbolic logic are simple and serve to illustrate the nature of
a formal mathematical theory. (3) The laws and methods of logic will be
useful to the reader in all his thinking in mathematics and other areas.

The purposes of this chapter are (1) to familiarize the student with the
most important concepts and notations of symbolic logic, (2) to supply
him with logical laws of wide applicability, (3) to develop his skill in read-
ing formal mathematics, and (4) to apply logic to the algebra of real
numbers.

2-2 Some simple logical formulas. Logical formulas are sentences
whose variables stand for propositions. The purpose of this section is to
familiarize the student with the following logical formulas.

Logical formula Informal verbal synonym

(1) ~p It is false that p.
2) pPAg pand g

(3) pVyg p and/or ¢

4) pVYyg p or else ¢

We do not take the space constantly to suggest that the student carry out the
operations listed in Section 1-17. Occasionally we ask questions, but the reader
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should still refer to the check list and work over the material on his own. Item
3 on the list indicates that sentences should be substituted for p and ¢ in (1)
through (4). (a) Carry out (p: I shall buy a car, ¢: I shall sell my old car) in
(1) through (4). (b) What is the difference between (3) and (4)?

Negation. We call ~p the negation of p. It is the sentence that denies .
We read ~p as “It is false that p,” “p is false,” or “not-p.” The negation
of a sentence is the sentence that is false when the original is true, and
true when the original is false. We indicate this in table (5), in which 1
means truth and 0 means falsity.

pl1}0
~p |01

®)

When a proposition is true we say that it has the truth value truth
(represented here by 1), and when it is false we say that its truth value
is falsity (represented here by 0). Then table (5) indicates in its first
row the possible truth values of p and in the second row the corresponding
truth values of ~p. It shows that p and ~p always have opposite truth
values.

To find the negation of a sentence, we must find a sentence that con-
forms to both columns of (5). For example, “He is a good hunter” and
"‘He is not a good hunter” are each the negation of the other, because
if one is true the other is false. However, “He is a bad hunter” is not the
negation of “He is a good hunter,” because both might be false (if he is
not a hunter at all!).

(c) Why, in view of the meaning we attach to “proposition,” does (5) repre-
sent all possibilities?  (d) Why is “It is white” not the negation of “It is
black”?  (e) Express ~p in several ways if p = (z is happy). (f) Why is
“~3” nonsense? (g) How do we usually express ~(a = b)?

Conjunction. Wecallp A g the conjunction of p and q. It is the sentence
that asserts both p and ¢. We read it as “p and ¢,” “Both p and q are true,”
or “pis true and ¢ is true.” The conjunction of p and ¢ is true when both P
and ¢ have truth values 1, and it is false otherwise. This is indicated in
table (6), which gives the possible combinations of truth values of p and ¢
in the first two rows and the corresponding truth values of P A qin the
ast row.

p 1/1(0{0
(6) q 1{0f{1]0
pAq|1i0{01]0
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(h) True or false? (2 2 =’4) A (“3” is a name of 3). (i) What is the
scope of A in (h)? (j) Why is (2 = 4/2) A (0 = 1) false? (k) Why
is “2 A 5” nonsense?

Disjunction, the inclusive “or.” The word “or” in English has two dis-
tinet meanings. The exclusive “or” means “or else,” as illustrated by
“Either the Repubocrats will win or (else) I’ll eat my hat!” The inclusive
“or” means “and/or,” as illustrated by “I intend to study French or (and/
or) German.” The inclusive “or” means one or both of the two possibili-
ties; the exclusive- “or” means one but not both. It turns out that the
inclusive “or” is more frequently used in mathematics, and we adopt for
it the symbol V.

We call p V q the disjunction of p and ¢q. It is a sentence that asserts
that at least one of p and ¢ is true. We read it as “p or ¢,” “p and/or ¢,”
or “p or else g or else p and ¢,” according to convenience. Table (7) shows
how the truth value of p V ¢ depends on the truth values of p and of g.

P 111(010
) q 10
pVaql|ll 1)1

() True or false? (2 = 10/5) V (2 = 5). (m) True or false? (George
Washington was our first president) V (John Hancock signed The Declaration
of Independence). (n) Why is “George V Mary” nonsense?

Often we wish to state that one number, q, is less than or equal to an-
other, b. We write a < b, defined as follows.

(8) Def. [a <bl=(a<b)V (a=0h).
(o) Why is 2 < 3? (p) Whyis 2 < 2? (q) Definea > b

Exclusive disjunction. The exclusive “or” is not used as much as V, but
it is occasionally convenient, and for this reason we include it here. We
call p V ¢ the exclusive disjunction of p and ¢. It is the sentence claiming
that one and only one of p and ¢ is true. We read it “p or else ¢,” “One
and only one of the following is true: p or ¢,” or “p or ¢ but not both.”
Table (9) indicates the way in which the truth value of p V ¢ depends on
the truth values of p and of q.
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o pllfllﬂ

9) ' q 1/0
|pvag|of1 1[0

" u(é)bthhg \i;; ;ufply_?dovzrg” éxonsense? (s) Under what conditions is P Vg
V g false? an p V g be true and p V ¢ false f

truth values of p and q?  (u) Comp ing of “1 will st e
. ' ? pare the meaning of “I will st

matics V I will study physics” with the same sentence with (V/ :\j)Ud.Y mathe-

Definitions. The logical s i ‘
. ymbols introduced above are not indepe
, ndent,.
I;V‘Ve can take some of them as undefined and use these to define thg othzrrl:
or example, we note f_rom (7) and (6) that p v ¢ is false only when an(i
q are both false, that is, when and only when ~p A ~q is true IfI)ence

P V q is true when and only when i
] ) ~p A ~q is false, that is, v
~(~p A ~q) is true. This suggests the definition B when

(10) Def. PV gl = ~(~p A ~q).
Similarly (9) and (7) suggest
(11) Def. bYad=((mVaA~payg.

(v) In (10) and (11) what symbols are taken as undefined ? (w) Justify (11)

ProsrLEMs
Translate 1 through 6 into words. '
1. ~ .
! (x(i>3)3<} 2B<HYA @4 <5
5. =3)V (x = 4). L (=3)V (= <0).
.(z<0)\_/(z=0)_\[(x>0). 6.~z <0 A z> 0.

Translate 7 through 14 into symbols, using ~, \VV, A, V/
7. 3 does not satisfy z2 = 10. B
8. 21is less than 10, and 2 is a digit.
9. (1-13-16).
10. 22 = 2.2 but 32 = 2.3,
11. One and onl i :
Pl yet}iit;la:it_}fsljollowmg holds:a < &, ¢ = b,a > b
13. 3 < 4, however —4 < —3,
14. 0 is neither positive nor negative,

Suppose that p is ¢ i i
Ml P rue and ¢ is false. Determine the truth value of 15
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16. ~p V ¢.
15. ~gq. g
17. ~(p V ~q). 18. p A Vq.)
19. ~p V ~q. 20. ~(pv q)-
' 22. ~p VY ¢
2. p VY ¢ ) ’
23. Let P be the truth value of p. Then show from the truth tables that
(12) ~p=1-—05
(13) pPANe=P"%
(14) pVe=p+7—7%
(15) pvq=1p—1

%24, Suppose we take ~ and V as undefined. Define A.
%25, Define V and A in terms of ~ and V.

ANSWERS TO EXERCISES

i 1l not buy a car. (2) I shall
false that I shall buy a car. I sha
bu(;t)a (cla),rI;x:(si szll my old car. (3) I shall buy a carb?n’g}/lorﬁseil myn(;hii tc}i:r
» 1d car. ( e first mea
buy a car or else I shall sell my o (b) The |

(4)b(1)tsl?a31e l;Zcond one but not both.  (¢) A proposition is elthe; tlrue or (f:)ls;
(t))ll‘lt not’ both, by definition of “proposition.” (fi) hBoth ;1'11(gh1:,sb§ a; ps;) Lo
i . it is false that z is happy; not-(z is appy); (# 1 ; _
l(sf)n(ge};:jﬁgey :‘?l:t”" 112 :ost a sentence and hence not a significant substitute in 0.

(g)(h(; T ; (i) “2+ 2 = 4" onleft, “3"is a name of 3” onright  (j) See (6).

{4 r » and llMary”
(k) “2” and “5” are not sentences. (M) 1. (m) 1. (n) “Geotge

= 2. a>b] = ~[fa <b] or
e el senteniesl;) V(O()a 2=<b):.3. (g))“%p” 2and (“qd)ov[vn” are n‘ot sentences.
. ZWI;} \ ((:md g are both true. (t) No. (u) First means either or both,
o d eIilt}?er but not both. (v) ~ and A. (w) It says .tha‘t p V q means
ii?cnp ies true or ¢ is true but not both, which is what (9) indicates.

ANSWERS TO PROBLEMS

i 5. One and only one of the following
is not greater than 3. 3. z is 3 or 4. ly the foll
ho}('ls? 12 n< (;g, z=01z>0. 7..~(3125 =1 101):{ 09. [ly9 —-1 \/g]1 1.[1123. Ffo/l\n

12,15 = 5 A |—5] % —5. 15. 1. 17. 0. 19. 1. 2L ;
grliho’iables bly Iconsiclering all cases; or show (12) and (13), then use (IQ) an

(11).

2-3 Implication. Sentences of the form “If p, then q”. are very commor;
in scientific discourse. The if-then idea is expressed in many ways, O

which the following are synonymous examples.
(L) If p, then q.
Y qif p.
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@) p implies gq.

2) ) g is implied by p.

3) ‘ p only if g.

4) Hyp: p, Con: q.

(5) p is a sufficient condition that ¢.

(6) ¢ is a necessary condition that p.

In everyday discourse such expressions are used with various meanings
and connotations. In scientific discourse these sentences are synonymous
and have a precise technical meaning. In mathematics a special symbol
is usually used, the most common being an arrow pointing from the
hypothesis to the conclusion. We shall adopt this notation and write

@ p—gq

as a synonym for sentences (1) through (6).

The meaning we attach to p — ¢ is indicated by the formal definition
(12) below. To prepare for the definition we indicate the significant
substitutes in (7), the conditions under which it is true or false, and the
nature of the information that it may convey.

The expression “p — q” is a propositional Sformula in which

(8) significant substitutes for the variables are sentences and only

sentences.

(a) What does p — ¢ become if for the variables we substitute statements?

(b) numerals? (c) names of people? (d) Why is every value of p — q either
true or false? .

A statement of the form p — ¢ is considered true under any one of the
following three conditions:
p is true, and ¢ is true.
9) p is false, and ¢ is true.

p is false, and ¢ is false.

It is considered false only in the following case:
(10) p is true, and ¢ is false.

A statement of the form p — ¢ makes the claim that one of the three
possibilities listed in (9) is the case, but it makes no other claim. In particu-
lar, it says nothing as to whether p is true or false, as to whether ¢ is true-

or false, as to the meanings of p and g, or as to the relation between these
meanings.
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We may summarize the above in terms of a table for p — ¢.

s J1]1]o]o
(11) q 1
p—q|l1]0]|1]1

Which of the following are true? (e) (2 = 2) — 3@ = 3), () 2=3 -
4<1), @E=3—->3@>1, h€=2—(2=23).

We note from (11) that p — ¢ is false just in the one case when p is
true and ¢ false. In other words, p — ¢ is true just when p A ~¢ is
false, that is, when and only when ~(p A ~g) is true. This suggests

(12) Def. (p—q =~@{@AN~9.

We call p — ¢ the conditional of p and ¢. The special technical meaning
assigned to p — ¢ [and to the synonymous expressions (1) through (6)]
by (12) may not seem entirely natural to the reader. He may think that
we are not following the criteria of (1-13-9). It turns out that this idea
of implication is entirely satisfactory for scientific purposes, is more in
keeping with ordinary usage than first appears, and is more convenient
than any alternative yet proposed. However, other kinds of implication
are considered by logicians, and the one defined by (12) is called material
implication to distinguish it from the rest.

For each of the following, first decide whether it is true or false on the basis
of the everyday meaning, then decide the same question on the basis of (11):
(i) If the ocean is mostly water, then it contains about twice as many hydrogen
atoms as oxygen atoms.. (Nole: We assume that the formula for water is H20,
i.e., each molecule of water contains 2 hydrogen atoms and one oxygen atom.)
(j) If the ocean is entirely grade-A milk, then it contains about twice as many
atoms of hydrogen as atoms of oxygen. (k) If the ocean is entirely grade-A
milk, then ocean water is a nourishing beverage. () If the ocean is mostly
water, then ocean water is a nourishing beverage.

The previous exercises serve as examples to indicate that unless we per-
mit p — ¢ to be true under any one of the three conditions of (9), we shall
find a marked contradiction between our technical meaning and ordinary
usage.

A still further illustration of the advantages of (9) is the way in which
it facilitates the statement of laws. Consider, for example, the following
law of elementary algebra (to be proved in Section 2-6):

(13) (@ = b) — (ca = cb).
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We certainly are inclined to agree that this is a law, i.e., that if a = b,
then ca = be. Indeed, this is the law suggested by “If equals be multiplied
by equals, the results are equal.”

Now we recall that a law is a sentence that is true for all significant
values of its variables. Since in (13) any number is a significant value of
any of the variables, we are free to consider the following cases:

(1) [2=®6-—4]—>[3-2=3-(6—4)] (13)(a:2,b6 — 4,c:3),

15 @2@=3)—-(0-2=10-3) (13)(a:2, b:3, c:0),

(1) 2=23 —>((5-2=25-3) (13)(a:2, b33, c:5).

If (13) is a law, then (14) through (16) must each be true. In (14) both
hypothesis and conclusion are true, and hence it is true by the first case in
(9). In (15) the hypothesis is false and the conclusion true, and hence it
is true by the second case. In (16) the hypothesis and conclusion are both
false, and hence it is true by the third case in (9). We cannot find an ex-
ample for which the hypothesis is true and the conclusion false, because
(13) is a law. We see that unless we agree that p — ¢ is true in all three
cases in (9), we shall be unable to say that (13) is a law! The same is true
of many other laws of the form p — ¢.

(m) Discuss the law (@ = b) — (a2 = b?) as we did (13).

In discussing and using the implication concept and the symbol —, we
shall make use of the different synonyms listed in (1) through (6). For
this reason and because these synonyms appear very frequently in scien-
tific discourse, it is important to be able to translate from any one form
into any other, and particularly to and from the form p — ¢. The essen-
tial thing is to think of the meaning and to recall that a hypothesis or
sufficient condition is always at the heel of an arrow, whereas a conclu-
sion or necessary condition is always at the point of an arrow, as indicated
in Fig. 2-1. This reflects the fact that one argues from hypotheses (suf-
ficient conditions) to conclusions (necessary conditions).

Sufficient “ Necessary
condition condition
. Figure 2-1
Translate into each of the forms (1) through (6); (n) (13). (o) The sen-
tence of Exercise (i). (p) If two triangles are congruent, they are similar.

. We call g=p the converse of p — ¢q. It is the sentence obtained by
interchanging hypothesis and conclusion in p — ¢. We call p «» ¢ the
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biconditional of p and g. It is the sentence that claims that p — ¢ and
¢ — p; thatis, p — ¢ and its converse are both true.

(17) Def. ped=I1—a9d A @0k
From this definition and (11) we easily get table (18):
P 11110 OT

(18) g |1(0}11]0
peqg|110[0}1

There are many ways to read p <> ¢. One is “p— ¢ a'md gom'lerse(liy.,
and in this we may replace p — ¢ by any one of'the ”re“ad.lngs mdliatff 1r:
(1) through (6). Other forms are “p if £'md only 1,f’ q“, ¢ if and only 1 lglyt,h
“p is a necessary and sufficient condition for 7 p has the sa,mef T :
value as ¢,” and “p is logically equivalent to g.” The last form refers to
the equality of the truth values of p and ¢ when p < ¢.

7 @ =4 @B =2+2, =2 @2=23), (2=
2 -(;l%) Eu?20r= fg;s,'e Qa (= 2) <—)> (3=238. () Why is “2e ?” n(znserll::‘r?
(s) Give an example from geometry of a lz‘a,w whose cqnverse? is n(; ;:;d iS.
(t) What conclusion can be drawn if (p « g) is true and ¢ is true? (u)and p
true? (v) and p is false? (w) and g is false?

ProBLEMS

In Problems 1 through 4 cite cases corresponding to the possibilities in (9).
1. If ABC is an equilateral triangle, then 4BC is isosceles. (Draw figures

for each case.)

2. (z =y) = (—z = =)
3. (AB|| A’B' A AC|| A'C") — (LBAC = LB'A'C).

4. @@=y —lz=9V &=-—p

In Problems 5 and 6 both the theorem and its converse are true. Cite cases
to illustrate the possibilities. Why do you find only two?

5. (ABC = 90°) — (AB*-+ BC? = AC?) (The Pythagorean theorem).

6. (a=>b) > (atc=0b+0).
7. How are the following consistent with our definition of implication? “If
to do were as easy as to know what were good to do, chapels haq been churc}}‘es
and poor men’s cottages princes’ palaces.” (Merchant of V(fmce, Act 1) I’f
all the year were playing holidays, to sport would be as tedious as to work.
(King Henry IV, Part 1, Act 1)
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Translate 8 through 23 into symbolic language.

8. There can be no great smoke arise, but there must be some fire.

9. There is no fire without smoke.
*10. “The existing economic order would inevitably be destroyed through
lawless plunder if it were not secured by force.” (The Law as a Fact, by
K. Olivecrona, p. 137)

11. 3is a root of 22 = 9.

%12. In a good group you can’t tell who the leader is.
%*13. “In order for a country that imports capital goods to have a high rate
of investment, it must have a large export industry.” (A Survey of Con-
temporary Economics, Vol. I1, p. 156) v

14, “When an organism is conditioned to respond to one stimulus, it will
respond in the same way to certain others.” (Principles of Psychology, by
F. 8. Keller and W. N. Schoenfeld, p. 115)

*15. “ .. an adequate command of modern statistical methods is a necessary
(but not sufficient) condition for preventing the modern economist from produe-
ing nonsense. . ..”

*16. “He is well paid that is well satisfied.”

*17. I mean what I say.

%*18. I say what I mean.

%*19. “The surface of the leaf must be coated so as to prevent evaporation of
the water that has been so laboriously gathered by the root system.” (H. E.
Stork, Studies in Plant Life, p. 36)

*20. You will make 6%, provided the dividend is paid.

%21, He’ll win as long as he’s better.

22. “It has been shown ... that the equality is necessary if the third and
fourth marginal conditions are not to be violated.”

23. Tt is known that the totally blind are able to detect objects at a distance.
Although the blind often think they possess “facial vision” based on skin sensa-
tions, experiments have shown that such clues are neither necessary nor sufficient
for the blind’s perception.

%24. Restate each of Problems 8 through 23 in terms of necessary conditions.
%*25. Restate 8 through 23 in terms of sufficient conditions.

*26. Explain the following: “The argument that no clear and present danger
to American democracy now exists inside the country should not be taken to
mean that no group would constitute a danger if it were powerful. For that would
be a confusion of necessary and sufficient conditions.” (R. G. Ross, “Democracy,
Party, and Politics,” Ethics, January 1954)

*27. One of the symptoms of tuberculosis is persistent coughing. Is coughing
a necessary or a sufficient condition for tuberculosis? What can you say about
medical symptoms generally?

*28. Read “What does ‘if’ mean?” in the Mathematics Teacher for January 1955.
*29. Does p — ¢ mean that ¢ follows p in time? :

*30. Speaking of gamblers, Cardano (1501-1576) wrote, “If a man is vie-
torious, he wastes the money won in gambling, whereas if he suffers defeat,
then either he is reduced to poverty, when he is honest and without resources,
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or else to robbery, if he is powerful and dishonest, or agair'l to the gall'ows, if
he is poor and dishonest.” Formalize and draw a conclusion. (Oystein Ore,

Cardano, The Gambling Scholar, p. 187)

ANswERS TO EXERCISES

(a) A statement. (b) Nonsense. (c) Same. '(d) By (8),.and.3ee tSeg:—
tion 1-7. (0 T. T (& T .(h) F. (i) True, as is ev1.enT g'
arguing from the hypothesis to the conclusmn.; here p and ¢ are true. (1? True,
as above, since milk is mostly water; here p is false, and ¢ is true. (h) fr:h,
since milk is nourishing; here p and g are false. ()] Fal'se. In each of the
first three cases the conclusion follows from' th.e hypot}}es'ls by everyda;y rea-
soning. It does not in the last, since many liquids containing I.nostly ;ab‘?f.. s;r)e
not nourishing. Here p is true and ¢ is false. (m) (a:2,5:2), (a:2,b: ,

9 b l '
(aki)bi:sf);z = b, then ac = be. a =10 implies ac = be. a =1 only if ¢_z_c b= be.
From a = b, it follows that ac = be. Hyp:a = b, Con: ac '='bc. a = :sba
sufficient condition that ac = bc. ac = bc is a necessary condlt}on thatl’, a —t .
(0) The ocean is mostly water — it contains.... The ocean is most. y water
implies it contains . . . . The ocean is mostly water .only if it con't’al,}lrlxs e
From the ocean is mostly water it follows that it conifams .... Hyp: The oce;in
is mostly water. Con: It contains.... The ocean is mostly wa!;er is fa suffi-
cient condition that it contains.... (Note: The bgst Procedure in per Qr;)m‘ng
translations of this kind is to first write the expression in the form p — ﬁ, temg
careful that p and q are sentences. Then write in oth’er forms and makz w ;1 e.ws:
adjustments are required to conform to good English usage.) (p) A sufficie
condition that two triangles be similar is that they be cong.rufznt. A nece;sa;‘y
condition that two triangles be congruent is that they be similar.  (q) T, F,
T, F. (r) “2” is not a sentence.  (t) p. () ¢ (v) ~g. (W) ~p.

ANSWERS TO PROBLEMS

1. Cite an equilateral triangle, one that is isosceles bu't not e:qui-lateral, and
a scalene triangle. 3. Cite congruent angles, placed with thler s1'des |, con-
gruent angles placed otherwise, and noncongruent angles with sides not ||

A

B C B c

FiGURE 2-2
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5. When the converse is also true we have only the possibilities of both hy-
pothesis and conclusion true or both false by (18). Figure 2-2 shows two tri-
angles ABC. In the first, the hypothesis and conclusion are both true; in the
second they are both false. Hence, unless we wish to deny that the Pythagorean
theorem is a law, we must agree that p — ¢ is true when both p and q are false
as well as when both p and ¢ are true. This is an example of the convenience of
the property of — embodied in the last column of (11). Of course, we do not
care to apply a theorem when its hypothesis is false, but the meaning assigned
to — and its various verbalizations makes the stating of laws much simpler.

9. There is fire — There is smoke. Fire is a sufficient condition for smoke.
(Note here a violation of the agreement that only sentences be substituted for
variables in p — ¢q. However, this is really an abbreviation for “A ‘sufficient
condition that there is smoke is that there is fire.”) 11. (z = 3) — (22 = 9).
13. A country importing capital goods has a high investment rate — It has a
large export industry. 27. Some are necessary but not sufficient (always present
with the disease but also present at other times), some are sufficient but not
necessary (their presence always indicates the disease but they may not always
accompany it), some are both, and others are neither.

*2-4 Truth tables. A iruth table of a logical formula is a table that
shows the truth value of the formula that corresponds to each combina-
tion of truth values of its variables. Truth tables are not essential to the
development of logic, but they are a convenient tool for investigating logi-
cal formulas and provide a procedure for testing any logical formula to
see whether it is a law. If we set up truth tables as our criteria for es-
tablishing laws in logic, we could use them as a device for proof. We
prefer to work with axioms instead and to use tables as an informal device
outside the theory.

For example, is p — (p A ¢) alaw? To answer the question we make
table (1):

y 111010
q 1{0l1]0
1)
PAQ 1{0{01}0
p—={@Ag {1011

- The third row comes from (2-2-6). The fourth row is obtained from

* the first and third by reference to (2-3-11). We see that the formula is

not a law, since it is false when p is true and g false.

To be able to compare the truth tables of different formulas it is es-
sential to adopt a standard form of construction. To this end we always
write the first rows in the following way. If one variable is present:
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® 21110

If two variables are present:

p|1{110{0

ﬁlOl

If there are three variables:

®3)

4) glifl1jojo{1|1]|0
rl1jol1l0}1]0]1

Note that each of these tables is formed fr(?m the previous oneitlily ;el-
writing each column of the previous one twice, the first tlmle v;he b
below it and the second time with a 0 below it. For examl()i el, the firs:
column of (3) reads 1, 1; and the first two columns of (4) }ll*ea:i ’d’fourth
1,1,0. The second column of (3) reads 1, 0; and the third an
cz)lumns of (4) read 1,0,1 and 1,0, 0.

(a) Using the indicated procedure, write the first four rows in a truth table
involving four variables. . .

In Section 2-5 we assert a number of identities, each. of which 1c1a1;x;:
that two logical formulas are synonymous. If two logical formulas

synonymous, certainly both should be true or both false in any glver; 1.2;
stance. In other words, their truth tables should have the same entrl

in the last row. In symbols, (p = ¢) = (@ < 9)- How}eiver, thet:l(;?};
verse is not true, since p <> ¢ whenever p and ¢ have the same

value, and this may happen without p and ¢ being equal.
(b) Give an example of the observation in the preceding sentence.

From the above discussion, we see that we can test an aile%edoi‘?sgl;:i
identity by making truth tables for its me.mber.s. Ifl;c}ﬁir lazt ;Ows are
different, we know the equation is not an 1dent1ty.‘ 'te a;
the same, we have verification but not proof of the identity.

i : —5— (d) (2-5-9),
Verify the following by truth tables: (c) (2-5-2),
(e) ((321—27—7),6 () (2-5-8), (g) (2-5-23), (h) (2-5-28).

The truth table of a law of logic ought to contain only' 1’s in its last row.
Consider, for example, the formula p V ~p. Its table is (5):
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P 1{o0
®) ~p |0

pV~p |11

Evidently. this formula is a law. If we read it verbally, we have “p or
not-p,” “p is true or not-p is true,” “p is true or false,” or “any proposition
is either true or false.” We prove this in Section 2-7.

Make truth tables for the following laws: i) (2-7-5), (G) (2-7-9),
(k) (2-7-23), () (2-7-12).

In the following, change = to <> and make a truth table of the result:
(m) (2-5-6), (n) (2-5-15), (o) (2-5-24).

Show that the following are not laws and indicate the truth values for which
they fail:  (p) (p > 9) > (@ —p), (@ P — g — (~p — ~g),
@ ((p—9 A ~p) > ~q.

A logical formula that is a law, or a sentence in the form of such a for-

mula, is called a faufology. The negation of a tautology is called a con-
tradiction.

(s) Show that p A ~p is a contradiction. (t) Show that P — ~p is not
a tautology. Show that it is not a contradiction! (u) Why is “I went or I
did not go” a tautology?  (v) Why is “I went and I did not go” a contradic-
tion? (w) Show that the following is a tautology: It is snowing in Denver and
it is not raining in Nashville, or it is not snowing in Denver and it is hailing
in Kansas, or it is not hailing in Kansas, or it is raining in Nashville,

Whenever a statement is in the form of a tautology we know that it
must be true without further consideration of the truth of its parts.
Surprisingly often people try to prove a tautology by arguments about its
terms, without realizing that this is not necessary. Consider, for example,
the following quotation from a newspaper editorial. “There may be
justification for a subsidy—defense needs, for example—but it should be
clearly understood that it is never economically justifiable. So the reasons
for a subsidy must be strong enough to override the drawbacks.” This
sounds as though the second sentence follows from the first. But the second
sentence is a disguised tautology. It says that if a subsidy is a good thing
its advantages must outweigh its disadvantages, i.e., subsidy is justified —
reasons for it must override its drawbacks. But what do we mean by say-

‘ing that anything is justified except that the reasons for it override its

drawbacks? In other words, by definition, x is justified = reasons for z
override reasons against z. Hence the second sentence is logically equiva-
lent to p — p, with p = the subsidy is justified, and is therefore true
quite independently of the first sentence.
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PROBLEMS

1. Make truth tables for other laws in Sections 2-5 and 2-7.

‘Which of 2 through 6 are laws?

2~V g (~p V ~0-

3.IpA @V nleleAgVrl

4. p—o—l— @A D

5. (p—q — s> @— 9l

6. p— g — e AN = @ADL

7. Make a truth table for (2-7-39). Show that its converse is not a law.
8

. Experiment with other logical formulas.
Why is this a disguised contradiction? “Our speaker was born in Man-
north of the Mason-Dixon line.”

a tautology?

9.
hattan, the first of his family to venture
%10. Is the following verse by John Donne

I am unable, yonder beggar cries,
To stand, or move, if he say true, he lies.

11. Is an argument based on a tautology necessarily a poor argument?

12. Ogden Nash once wrote, “1 regret that before people can be reformed
they have to be sinners.” Why is the clause beginning “before .". .7 true?

13. Why is “Either an electron is excited to the fullest extent, or it is not
excited at all” not a tautology? Why would it be a tautology if “to the fullest
extent” were deleted?

14. How many columns are there in a tru

variables?

th table for a formula involving n

ANSWERS TO EXERCISES

(b) (p2 = 2,¢:3%2 = 9).
> |1l1]o 0|
q 1lo|1]o0
pAg |1|0f0]0
~(pAgq j0Il1 11
© P il1]olo
q 110]11]0
~p oloj1j1
~q ojl1l0]l1
~pV~g|O|Ll1]1

Note how we include an additional row for each formula that is a part of the

final formula, then calculate each row in order.
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Y4 111]0{0
9] q o140
- 1j1]0f1
u_’ @—p) [1|1]1]1
(p) Fails when ¢ i ﬁ
. 5 ¢ 18 true and
it snowing in Denver, g — p false.  (q) Same. (r) Same. (w) Ifp = it

it is rainine i .
then the sentence is » A ~ql)s f/"lefi 11/1\ I\1I'!)Ls}\l/vme’ \
to be a tautology by a truth table.

it is hailing in Kansas,
~r V g, which is easily shown

ANSWERS To PROBLEMS

4 5 a d . .
. 6 are IaWS ; Ihe converse falls fOI q tlue p and 7 ialse
3 Yy » .

2-5 Logical identities.

: ... In thi : .
identities from a few very s section we derive a number of useful

lausible axi
defined and p axioms. We let A, ~ °
that ‘:ohenfol(}eﬁl.1e V, ¥,—,and ¢ as in Sections 2-2 aI,ld £~anW—_ be un-
owing are sentences: ¢ = b ~p, DA g v e specify
’ ’ . Y4 g p _\l q,

P — ¢, p <> ¢, and expression i
. s obt, T
other variables or sentences. ained by substituting for their variables

(1) Ax.
(2) Ax.
(3) Ax.
(4) Ax.
(5) Ax.
(6) Ax.

€r T

(Law of identity),
PAGg=qA p,

PA@AT=(@AQ AT,

PA@V)=mAQV (AT,
PpAp=np,

~~p = p.

{(a) Make the substituti

. on (p:You can walk, ¢:Y :

1 (1 walk, q: K

na( ) ;hrough (6).  (b) What is the scope 0;1 eam}i can swim, r:You can fly)
mes for (2), (3), and (4), ¢ in (6)7  (c) Suggest

or;:rbmlding any mathematical theory
S 1 ’
lished ,l provided, of course, that each proof uses onl i

aws. The order here has been ¢ y previously estab-

.

we can list laws in many different

~PAQ=r~pV o~

N(p \Y4 q) = ~p A ~q. (De Zl/IOTgan’s laws)
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To prove Eq. (7) informally we note that (2-2-10)(p:~p, g:~q) is
Hence ~p V ~g = ~({@ A g). In more formal style,
(6)(p:9)

(2-2-10) (p:~p, q:~q)-

9) ~p A q =~(~~p N~ ~q)
(10) = ~p V ~q

Similarly, (8) is proved by

(1) ~p V q = ~[~(~p A ~q)]  (2-2-10)

(12) = ~p N ~¢ 6)(p:~p A ~0)-

(d) Rewrite this proof informally.

Laws (7) and (8), named after the English mathematician Augustus
De Morgan (1806-1871), are useful in proving other laws and in stating

the negations of compound sentences. The first law states that to deny a

conjunction is to affirm the disjunction of the negations of its terms.

The second states that to deny a disjunction is to assert the conjunction
of the negations of its terms. To apply them,
pound sentence in the formp A qorp V ¢. For example, John and Jim
are here = (John is here) A (Jim is here). Hence the negation is (John
is not here) V (Jim is not here), i.e., (John or Jim is not here).

Simplify: (e) ~(We won and we are happy). (f) ~(We won or we are
happy). (8) ~(John and Jim are 17).
State the negation of the following in two ways, first using logical symbols

and then using familiar English: (h) John should honor his father and mother.
(i) He is neither rich nor poor.

(13) pVeg=4qV D

(14) pVi@Vn=@VOVTNH

(15) pV(qAr)=(qu)A(er),
(16) pVP=Pp

Remember Section 1-17!  (}) Interchange V and A in (13) through (16)
and state your conclusion in words. (k) What must be the key to proving . -

(13) through (16)? (1) Apply (VW Aey ~:—) to (1) through (6) and
(13) through (16) and state your conclusion in words.

one must first state a com- .

2-5]
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To prove (13), we write
17
Elsi PV g=~(~p A ~q (2-2-10)
= ~(~g A ~p)  (2)(p:i~p, ¢:
o (pi~p, g:~q)

=aVve (2-2-10)(p:q, ¢:p).

(m) Give reasons in the following proof of (16).

@0 PV Pp=~(~p A ~p)
@D = ~(~p)
(22) _

gll‘le o‘zllllers [(14).and .(15)] are proved similarly.
om the above identities it is easy to derive many others. We list belo
. w

those that are most fre i
those quently used or are required for later proofs in this

(23) P—qg=~pVy
(24) ~(p—q9 =p A ~q,
(25) ~Ped=(~pAQV (p A ~q.

Because of (3) and (14
V or A are invelved. (14), parentheses are usually omitted when only

(26) ~PAGAT)=pV ~qV ~r
?
7) "‘(PVqu)=~p/\~qA~r'

State the negation of: (
: n) If we lose, I'll
. \ eat my hat.
Wﬂr1 ;f;gi :;c;ni ft(;(ils;ly. ](p)f ﬁt least one of our three teams won t(((:c)laéu tl(l(;)eelgf
only if he passes this test. “ ’ ithe :
manhood, nor good fellowship in thee.” (Kfig Hegg/ I’f/'})lere " neither honesty,

2

Since ~q — i
~p is called the contrapositive of
Lo ) on p—q (28
antlmphcatlon and its contrapositive are synonymousq’ (T ) peserts that
rote by (2) thit (0 =) = (~p V 9 = (¢ V ~p) e e
g = ~p), the last step being justified by (23)(p:~g, ¢: ” qV ~p) =
i~q, gimop).

(s) Write out the i
precedi ;
(p:He wins, ¢:I lose). ng proof with reasons. (t) Illustrate (23) for
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we very often begin by assuming the nega.%i}(l)'n
; . <
of the conclusion and arguing to the negation of the hypothesis. it

i le, in economics
i iustified by (28). TFor example,
Do Completelg; L‘;fsgclt thatb;vhen resources are allocated so as to

there is a theorem to t. _ B A ot that
imur 1 product (the addi
yield maximun OWPYS e ol ani pf input) is the same for all enter-

unld e frgf;;:x(l)j?s‘i?(;: ?Illa‘;{rilrlrtxu(;n — Marginal produ(:,ts are e((llua:.
D eno S).’Tzl ar 1,1es for this as follows. Suppose that marginal pro uc1 3
o economlsl '%‘hen an additional unit of input in one entel.'prlse' wfou
;Za:ffitn?rf ?g(xj‘l::t;er output than would be lost bird rgmo;{rfxfintghfe;:::ce;orﬁ
i i increas y shi ces,
?n()t}tler ;?(ic;t;?rr:. V?’III::: t(})l‘;tgcu(fngi?istt)ilas proved by tl}is argument is that
%in((l)\/I:;ginal products are equal) — ~ (Output 1s maximum).

d in snow we usually conclude that no one has

To prove an implication,

(u) If no tracks are obsgr've
passed by. Why is this legitimate?

The following are listed for future reference:

(29) peqg=4q<D
(30) p—(gonl=Ilp A0~ rl,
(31) p—@onl=lg—> 0@~ ),
(32) p—o@onN=I~r—0@— ~q),
(33) pAQ—p=lg—0@V ~p)},
(34) po@oBAD=l~EADY @ADL
(35) pAg—rl=1lpA~)— ~ql,
(36) p—a A@—onl=1[— (g A D]
i ible: ~p—gq W) (o OV
( Refiieq;n ” ?;I;lpf(zfo/r\mj;,posmag ~[z()v3\ (5 v )l (z) ~(~pV
ep V ~(a VD).
PROBLEMS
Derive the identities in Problems 1 through 6.
=~ o~ ~p. 2. ~p A\ ~p = ~Pp
AN 4. ~(pV ~q) = ~p N ¢

3.~(~p AN Q) =PV~

5. (23). P )

In Problems 7 through 17 write the negation in good Englis
it in logical symbols.

6. [p — ~ql = lg = ~pl.

h after first writing
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7. I am rich and happy.
8. John or Jim is mistaken.
9. Mathematics and physics are sciences.
10. Neither of you is right.
11. If it rains today, I'll stay home.
12. One and only one of you may go.
13. 7 and 14 are primes.
14. John, Jack, and Jim are 17.
15. New York is a big city if and only if Chicago is not a big city.
16. If he wins, I can’t lose.
17. Both countries are at fault.

18. Assuming that if one cannot do mathematics he cannot be an engineer,

show that if one is able to be an engineer he must be able to do mathematics.

19. Argue that if an enterprise is engaging in various activities in such a way

" as to maximize its profits, the additional revenue from increasing expenditure
by one unit is the same in all activities.

20. Provea # 0 — —a = 0.

*21. Investigate the properties of V, looking for laws involving it. Is it associa-
tive? Distributive over V ? What is the negation of P V q? Showthatp V ¢ =
P> ~q.

*22. Start with — and ~ as undefined and define the other logical symbols in
terms of them.

*23. Suppose we take p/q as our only basic term, where we take it to mean that
it is false that both p and ¢ are true, that is, p/g = ~(p A q). Make a table
for p/q as we did for other formulas in Section 2-2. Then define all other
formulas in terms of “/””. (Note: This is called the stroke and is of interest be-
cause it shows that all logical formulas can be defined in terms of just one.)
Work out some laws involving the stroke.

*24. What does “p unless ¢” mean? Is it synonymous with ~q — p or with

*25. Every logical identity involving only V, A ; and ~ remains an identity
. if V and A are interchanged. Verify this in particular cases. Prove that it is
true for all identities derivable from our axioms.

ANsWERS To EXERCISES

(a) There are various possibilities; for example, one rendering of (2) is:
To say that you can walk and you can swim is the same as to say that you
an swim and you can walk. (b) ~p and p. (c) Commutative, associative,
and distributive laws. () We did not win and/or we are not happy. (f) We
did not win and we are not happy. (g) John and/or Jim is not 17. (h) John
does not have to honor both his parents, or (John need not honor his father) VvV
John need not honor his mother). (i) He is either rich or poor. (j) The
esults are all laws of the theory. (k) The relation between A and V em-
“bodied in (2-2-10), (7), and (8). (1) All but (5), (15), and (18) are laws of
_elementary algebra. Evidently the algebra of logic has some similarities to the
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algebra of numbers, but it is different. (m) (2-2-10)(g:p), (5)(pl:~:)), ((6)).
(n) We’ll lose and I won’t eat my hat. (o) At least one of thexr}los t 3_
None of them won. (q) He will graduate and not pass, or he will no hg.ra,-
uate and will pass.  (r) Thou hast some hqnor, manhood, or good fellowship in
thee, and possibly more than one of these virtues, (s)

(37) p—og=~pVyq (23)

(38) =qV ~p (13)(p:~p)

(39) =r~~qV ~p (6)(p:q)

(40) = ~g—~p (23)(pi~q, ¢:~p)-

(u) (28)-. MpVe WpV~pVegVe~rn ®p—ge G)~pV
(~g A ~r). (@) pA(~pV (aA b))

ANSWERS TO PROBLEMS

: 2-5-7) to (2-3-12). 7.1 am

1. (6)(p:~p). 3. (2-2-10)(g:~q). 5. Apply ( : : _
either( n)o(g) ricﬁ)or not happy. 9. Not both mathematics anq physics are sc1ence,s.
Either one or the other or both are not sciences. 11. It rains today an.d I don't
stay home. 13. Either 7 or 14 is not prime. 15. New York and Chicago are

big cities or they are both not big cities.

2-6 Rules of proof. Everyone is familiar with the fact .that what seems
reasonable, even obvious, to one person may seem quite unreasonable

and obscure to another. An argument that convinces some may not appear

at all convincing to others. Nevertheless, in science, and pax:ticula.trly ni
mathematics, we wish to prove laws in such a way as ’90 obtaln' universa
agreement. How can this be done in view of the diversity of opinions and

experiences of men?

To see the answer to this question, let us imagine that we wish to con- -

vince someone of the correctness of a certain stat.ement. We might try
to convince him by citing some authority ir} Whl'ch he “behfv?‘s (sofn;)e—
times called “proof by intimidation”), by getting him t0. see” ( pr;)io b y
intuition”), by appealing to his emotions (“proof by waving the“red lag’ ),
by confusing and tricking him with words and faulty logic ( ela;tlizl in-
ference”), or by other methods familiar to everyone. These methods a\;e
two serious disadvantages: they can be used to establish false state:men ?
just as easily as to establish true ones, and they do not lead to universa
agi?i?::e\r:rgnt a more satisfying procedure we must l?egin by assuming some
axioms, as indicated in Section 1-16. But what if our llste.ner d0<'es not
agree that our axioms are truly laws? Is there no way out if he will noli,
accept the axioms we propose? There is a way out; namely, we may as
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our listener to agree merely that if our axioms are indeed laws, then our
theorems are also laws. If we take this tack, we eliminate argument about
the truth of both the axioms and the theorems. We ask our listeners
merely to agree that the theorems really do follow from the axioms! This
is precisely the procedure we follow in mathematics. The mathematician
claims only that the theorems follow from the axioms, and he has no ob-
jection if someone prefers to adopt different axioms.

But suppose that our listener objects to the manner in which we derive
the theorems from the axioms? Then we shall have to come to some agree-
ment with him as to what procedures are legitimate. And if we cannot
agree with him on method of proof? Then we take the same way out as
before. We say to him, “Let us merely agree that if these axioms are
accepted and if these methods of proof are used, then these theorems can
be obtained.” In constructing a formal mathematical theory we state in
advance the acceptable methods of deriving theorems from axioms. Then
all we claim is that the theory is derived from the axioms according to
these rules. If the axioms and the rules are acceptable to anyone, the
theorems should be also. If the axioms are applicable to any particular
situation (i.e., are true in a particular case), the theorems may be applied
to that situation.

Our first two rules of proof are the Rule of Replacement and the Rule
of Substitution introduced in Section 1-11 and used frequently since. For
convenience of reference we recapitulate them here.

RULE oF REPLACEMENT: If a term in an expression is re-
(D placed by a synonym, the resulting expression is synonymous
with the original. If the original is a law, so is the result,

To use the first part of this rule we need to cite the law that asserts the
synonymity of the term and its replacement. Thus we write

2) a+b= —(—a)+b Rep, (1-9-33).

The reason indicates that a replacement, justified by (1-9-33), has been
made in the left member to get the right member. To use the second part
of the rule we must have two previously established laws, the law in which
we intend to make the replacement and the law asserting that the replace-
ment is a synonym of the term it replaces. We use the abbreviation “Rep”
followed by a reference to the law in which the replacement is made and
to the law asserting the synonymity. For example,

(3) a+b=1>b+ (a+0) Rep, (1-9-7), (1-9-22).
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i ent in
The reason on the right indicates that (3) was obtained by replacem

If every law were stated as a theorem, axiom, or definition, each proof
(1-9-7) of a by a + 0, which is a synonym according to (1-9-22).

would consist of a single statement justified by one of the above rules, How-

ever, many laws are not worth displaying as theorems even though they
are needed to prove other more interesting laws. Accordingly, a proof

usually consists of several steps, each one justified by a rule of proof.

A complete formal proof is a sequence of steps such that:

RuLk oF SussTITUTION: If 0 senience is obtainedhby mal;tzz'g']s
“) significant substitutions for the variables in_a law, the resu
a law.

p se? llence.
p Ste 8 a

ion 1 indication of the
ce o the law in which the substitution 1s made and an indication
en

II. Each step is an established law (axiom, definition, or
substitution. For example,

(11) previously proved theorem) or is the result of applying a rule
of proof to a previous step or to an established law.

®) (b +c)a = alb+o) Sub, (1-9-14)(@ + ¢, bia). III. The last step is the theorem to be proved.

i 1 hat the
Recall that substitutions are permitted only for vtmablefi :?(()ir ;nf; o ngi
must be made throughout, whereas replacements may be ma

and need not be made throughout.

A formal proof is a complete formal proof or an abbreviation of one ob-
tained by omitting or consolidating steps and reasons. An informal proof
is an expression of the steps of a formal proof in paragraph style by using
everyday language. In this book we use the word “proof” to apply only
to formal or informal proofs. “Show” or “argue for” are used for other
discussions tending to convince. We call such arguments heuristic dis-
cussions or plausibility arguments. (See Section 2-12.)

(a) Review Section 1-11. (b) Review previous uses of these rules.
a

T . o
Our next rule is based on the meaning of implication 1n;11c2ted Irllrlllsfebe
t-ionu2r—3. As indicated in (2-3-11), when p — ¢ and p are true, ¢
true. Schematically,
P—4q
(6) . p
C.q

(d) Cite examples of different kinds of proofs given in this book so far.

If we relied only on the three rules of proof given above
unreasonably long and cumbersome.
proofs short by omitting steps, abbreviating reasons, and adopting fur-
ther rules of proof. Such measures are considered perfectly legitimate
provided they really do amount merely to ways of abbreviating proofs
that could be carried out by the use of Rep, Sub, and Inf.

One very useful rule of proof, known to the reader from high-school
plane geometry, applies to proving laws of the form p — q. This rule
permits inserting p as a step “by hypothesis.” Then if g can be derived

from this assumption, we consider that p — ¢ is proved. For example,
consider the theorem

, proofs would be
It is therefore customary to cut

We embody this idea in the following rule of proof.

RuLe oF INFERENCE: If an smplication is a law and tts hy-
O pothesis 18 @ law, then its conclusion is a law.

i i tel
It is this rule that enables us to detach a gon(_:lusmn anfi state 1t§;§2irism§
hlsn we know that a hypothesis from which 1t.: foll.ows' is tru:ei. e e
‘: . write “Inf” followed by reference to the implication an
it we 0
sis. For example, from

(12) If three sides of one triangle are equal in length respectively
® o VEi—3-2=3 Vi Sub, (2-3-13)(a:2, b4, ¢:3), to three sides of another, the triangles are congruent.
© 2 — Vi (assumed here), When we use letters for variables, this becomes
(10) 32 =3vi Inf, (8), (9).

( ) Would we get a satisfying rule of pl‘OOf by interchanging hypothe51s = A
- AC

d [ ncl S10n. 1 ( ) p
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we assume the equations in the hypothesis and then reason step by step
to the conclusion. When the conclusion is reached, the proof of (12) is
considered complete, and we write “Q.E.D.,” an abbreviation for a Latin
phrase meaning “that which was to have been demonstrated.”

In using this method of proof, we treat the variables in the hypothesis
as though they were constants. For example, the above theorem is sup-

posed to hold for all values of 4,B,C X, Y, Z (that is, for all points),

but when we assume 4B = X7 by hypothesis in the proof, we do not

assume that AB = X7 forall 4, B, X, Y. To assume this would be to
assume that all segments are equal! What we do, rather, is the following.
We imagine 4, B, C, X,Y,Ztobe definite but unspecified points for which
the hypothesis holds; i.e., we treat the symbols as constants. Then we
show from this assumption that the conclusion holds for these points.
However, since we have made no special assumption about these points,

to reason from hypothesis to conclu-

the same reasoning would enable us
the theorem is proved, since we are assured that
hich is all that is

sion in every case. Hence
er its hypothesis is true, w

its conclusion is true whenev
required by (2-3-1 1).

In order to prove an implication,
d as a step and treated as @ law,
t be applied to its
the implication

RuLe orF HYPOTHESIS:

its hypothesis may be introduce

(13) except that the Rule of Substitution may no
variables. If the conclusion appears as a step,

1s proved.

When using this rule, we write “Hyp” after an assumed hypothesis.
When the conclusion is obtained, it is justified by whatever rule is appro-
priate. Then the implication is justified by writing Q.E.D. and referring
to the steps asserting the hypothesis and conclusion. Or we may omit
the statement of the implication and just write Q.E.D. when the conclu-
sion is justified. Note that any sentence may be assumed by Hyp as a
step. Note, also, that a step assumed by Hyp and steps derived from it
are not necessarily laws. For this reason, substitution is not permitted

in such steps; however, Rep and Inf can be applied to them.
To illustrate the use of Hyp, we prove several laws of elementary al-

gebra in continuation of Section 1-16.

(14) (a=0b — b= a).
(15) Proof of (14):
(a) e=a Sub, (2-5-1)(z:a),

(b) a=0 Hyp,
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A(C) b=a Rep, (a), (b),
d(@=0b—=>0®=a QED, () (0.

synonym according to the assu i
. 3 mptio . :
and simply written Q..D. afterpstelr)l g;))) We could have omitted step (d)

(e) Similarly prove one of the following.

(16) (a=0b) = (@a+c=0b-+c),

17) (@ = b) = (ac = bo),

(18) (@=10) = (—a= —D),

(19) (@a=b) —=@—c=>b—y),

(20) (@ =10) — (1/a = 1/b),

1) (@ = b) — (a/c = b/e),

(22) (@ = b) — (a® = b?),

(23) (@+c=0>b+c¢c)— (a=D),

(24) (c # 0 A ac=bc) > (a=b),

(25) @a=bAc=d) > (ac=bd Aa+c=0b+d

f) D
an;)nurziser(fg) hd}? for all numbers ¢ and 5? (g) Does (21
any mumber = 20( ) ¥n (15), which steps are laws? @) P) e
- (j) Could we use (i) and Inf to prove that r;)(;,e—- tgg‘t

An argument (or proof) is call )

o BrEUY alled valid when it proceed i
s of 1 f;(ie:ndTr;,l;e:eofi proof, or could be justified by ref:r:z’cealt)g lg';ng
s and vali(.i The r 2, ter should note that any law of logic may be tfl
ot doad tgde en d He should also notice that the validity of :
s Eument does not d a[;en on 'the truth or falsity of its premises f)r ¢ -
bt om0 e Val'dgluefvahdly from true premises to false conclusi -
it one can argu Othexr ﬁranr(;m;) false premises to either true or false (?(?If-,
does not follow that his argur;lerfs 2:: Sveala;dman’S conelusions axe correet it

(k) Give examples to illust
S _ rate the comments in the pr i
o di;}:afsl)(lilo(::;ni two argument‘s are valid: (1) I%i(}:leed;)nr!i;cf ?)rfa%)raph'
e doenmont (o Frases. The' price has increased. Hence the d nand
oot ek o ee ‘competltlon leads to price cutting and e'mand
Ing is rare in our economy and output is usualgsxgnlum
elow
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capacity. Hence free competition is not universal.  (n) Kant held that all
proofs of the existence of God were fallacious. Does this show that he was an
atheist?

An argument that is not valid is called snvalid. A line of reasoning that
is contrary to logical laws is called a fallacy. Many fallacies are based on
misapplication of laws of logic or application of a logical formula that is
not actually a law. Fallacies are often difficult to detect, but it is usually
helpful to restate (or attempt to restate) a suspect argument in symbolic
form. It should be kept in mind that the word “fallacy” refers to reason-
ing and not to the premises or conclusion taken alone.

(0) Collect and/or construct examples of invalid arguments and explain the
fallacies involved.

When we construct a theory on the basis of explicitly stated axioms and
rules of proof, we have not really eliminated all possibility of controversy.
For one thing, there may be differences of opinion as to whether we have
correctly applied the rules of proof. But this is just a question of whether
we have made a mistake. Mistakes may be hard to find, but such dif-
ferences of opinion can be solved by sufficiently careful examination of
the theory. Unsolvable disagreement is still possible, however, on whether
the axioms and rules of proof should have been adopted at all, whether
the theory that results from them is a good theory, and so on. Such
questions are not answered by the theory itself, but they are placed out-
side the theory when we agree to argue on the basis of the axioms and
methods of proof. Hence we may expect universal agreement within the
theory, but no universal agreement about it. To settle arguments about
a theory we should have to construct a second theory about it. A theory
about a theory is called a metatheory. Of course, there would remain
areas of possible disagreement about the assumptions of any metatheory.
Evidently we cannot eliminate disagreement or controversy, but we can
construct a theory in such a way that disagreement is possible only about
certain parts of it, namely the axioms and methods of proof. This is a
great advantage because it leads to universal agreement over a consider-
able area, avoids arguing about matters that can be agreed upon, and
identifies the really controversial issues.

PROBLEMS

1. Suppose we have pﬁ_(_)lred the Pythagorean theorem: Z ABC is a right
angle —» AB%+ B2 = AC2. Now suppose that we have a particular triangle

XYZ in which ZXYZ is a right angle, X7 = 7and ¥Z = 5. Give an informal -

proof that X22 = 5% + 72, Indicate the rules of proof used.
9. Prove one of (16) through (22) with a complete formal proof. Rewrite it
in informal style.

(29)
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3. Prove others in the K
s ist (16) thro
4. Prove that if the ocean is lemon s,
rules of proof. :

5. Accepting as a f.
o5 A act that the oc
indicating rules of proof, oo

do i S,
1t contains citric acid, indicating your

. l . . 1.
an contains sa, t! prove lb contains so lunl!

6. What rules of pr
‘ proof g i i
following complete proof of vzgl—?’)—l’ged i Bection 2-67

@) ~pA g =~@Aqg

b) ~~p = p, ’

(6) ~~g =g,

)~ A g =~(~mp A ~~g)

(&) ~p V ~g = (o ~p A ~mg)

)~ A g) = ~p V ~q. ’

Insert reasons in the

7. Similarly prove (2-5-8).

8. Give a compl
: plete proof of (2-5-2
9. Explain why the followin( D

pront hapiet® WA g schema is valid, and state a possible rule of

pP—q
~q
.~p

(26)

(valid)

10. i
0. Explain why the following schemata are invalid

- P —q P—q
~p -
P (fall !
por acious!) _q? (fallacious!)

11. I rom [ 5 = 3/2 n ”le laW m 22 l)y wha y
. = a d i e
( ' ) ( / ) ( ), ’h' t pattern can ou Conclud
. tWO l'neS ar . y (¢] ll()b nleet

] 12 If 1 e parallel, 1,]|e d
Ineet, What COnCluSiOn can you draw and Why '

13. Suppose you kno
q w that the squares of tw
";Z fgt’;lpéi:)t;he conclusion that the numbe‘:s ;2122?:1'? r%equa.l :
their squares a 0 mumbers are not equal. Can you dra ‘th "plain i
5. poare (2213 Itl)Ot equal by relying on (22)? Explain w the conclusion that
- 2T0) vy using (13)(a: . ) ’
} g Similarly prove (25 (18)(a:a + ¢, b:b + ¢, c:—¢).
. Show that = bo) :
lowing fallacious Iffgof. %C; (—1*7)(((1 = b) is not a law. Detect the error in the fol
be(1/c) or ac = be o g < § aac, bibe, c:1/c) we have ac = be —» ac(l/i) ol-
18. Show that the convers; )
0
%19, Prove nverse of

(28)

If two particular lines do

Can you

(22) is not a law.

(P =9 = (~p = ~q),

P=0—>@Ar=qAnr.
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20. What conclusions can you draw from a2 # b%?

21. If we know that an argument is valid and that it leads to a false conclu-
sion, what can we conclude?

22. If we know that an argument leads from correct assumptions to false
conclusions, what can we conclude?

ANSWERS TO EXERCISES

(¢c) Noj; from p — ¢ and ¢, p does not follow. (d) In Section 1-16 we gave
informal and formal, but not complete formal proofs. (e) 16)a-t+c =a 4+ ¢;
a=bjatc=btca —p—oate=b+ec (O Not for a = b = 0;
but (20) is a law as it stands, since a law is a sentence all of whose values are
true, and (20) is not a sentence for (a:0,5:0). (g) Not forc = 0. (h) (a)
and (d) only. (1) (17)(a:2, b4, ¢:5). (j) No, since we do not know that
2 =4

ANSWERS TO PROBLEMS

1. We have given as true that £ XYZ is a right angle, XY =17,YZ = 5.
Now ZXYZ is a right angle — X724 YZ2 = XZ2 by Sub, (Pythagorean
theorem)(4:X, B:Y, C:Z). Also, XYZ is a right triangle by Hyp. Hence
X724 YZ2 = XZ? by Inf and the two previous steps. Hence 72 + 52 = XZ?
by Rep. The equation to be proved then follows by Sub, (14)(a:72 + 52, b:XZ2)
and Inf. 2. (16) By the law of identity, a +¢ = a+c. Since a = b by
hypothesis, we may replace a by b in the right member to get a 4+¢c=b+r¢
which is the desired conclusion. 4. Use Hyp and others. 5. Use Inf and others.
9. (2-5-28) and Inf. 17. The proof is informal and incomplete, but it would
still be in error if omitted steps were inserted. The point is that “1 /c¢” is unde-
fined for ¢ = 0. Hence the substitution is not significant unless ¢ 0. Since
ac = bc — a = b is still a sentence when ¢ = 0, we must exclude this possi-
bility by inserting ¢ # 0 in the hypothesis, as we have done in (24).

2-7 Laws of implication. We now use our additional rules of proof to
prove theorems that enable us to reason from a sentence to another that
is not synonymous with it.
(1) p— P (Law of tautology).

This law is so obvious that it would seem out of the question to prove it.
However, it can be proved by use of the Rule of Hypothesis.

2) Proof of (1):
(a) p Hyp,
b)yp—0p Q.E.D,, (a).

it

(8)

)

that

. that

that ~ ~p — p.

2-7]
LAWS OF IMPLICATION 99

Note that (b) is justi ;
justified, since we have assum
3 - u £

tained p as a step, in conformity with (2—6—13)?(1 p and so, of course, ob-

@) =9 - @9

This is pro i
proved by assuming p = ¢ by hypothesis and then replacing

p by ¢ in the right member of (1).

(a) Does it follow from (3)
that 4 — 22 since 4 = 22?
. = 2¢? (b)) Prove f )
(c) Derive (4) and (5) from (1) by using (2—5—2r§)ma£13ci

(2-5-7).

4

(4) PV ~p (Law of excluded middle)
. 5 y
(5) (p A ~p) (Law of contradiction),
(6) (® A g —p.

T . . . V
o prove (6) it is convenient to first prove g — (p V ~p). Since thi
~p). ce this

law i i
§ not important except for the purpose of proving (6), we do not list

as a theorem. Instead we call it a lemma

(7) Lemma: ¢—> (p V ~p).

Proof;
(a) ¢ Hyp,
(byp V ~p @,

© 9= (Vv ~p) QED, (), D).

- Proof of (6):
@IpA)—pl=lg— (Vv ~p] (2-533),
b)) Ag—p Rep, (7), (a)

p—>(pV Q.

% (d) Prove (9) by showi it i

< ng that it is synonymous with i~

(f)o;vhby a truth table that (6) and (9) are not laws i; w (6)1?1. O e
, ow that the converse of (9) is not a law “hat (o A

is a law by showing that it is synonymous with (6)

Q >,
(g) Prove that (p A ¢q) — ¢
(p:g, ¢:p).

Alth i
ough we cannot include the pl‘OOfS of all theorems we list those
’

are i i
eaChmc(;sI;o lljlzterestu(xig and n(?t too complicated, and in an order such
proved conveniently by relying on those already listed
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(10) p—lg— @ A0l

Theorem (10) follows from (2-5-34) and (4). It permits us to infer
that p A gis true if we know that two propositions p and ¢ are each true,
for by (10), from p and Inf we can conclude that ¢ — (p A ¢). Then

from q and Inf we can conclude (p A @).
(11) p—q—lpVvn—@Vnl

Theorem (11) enables us to “add” the same proposition to both members

of an implication.

12) p—o AN@— Nl— @—1 (Law of syllogism).

rinciple of logic that permits us to construet

chains of reasoning. Thus, if we know a — b, b —¢c,c— d, ...,
and y — 2, then we may conclude by using (12) repeatedly that @ — ¢,
ea—d,a—>%, ¢Y, and finally that ¢ — 2. Arguments based on it

are called “syllogistic.”

Theorem (12) is the p

*(13) Proof of (12):

@) (~q— ~p) = (~q V r) = (~p V 1) Sub,

A1) (pi~a, ¢:~P)s
Rep, (a), (2-5-28),
Rep, (b), (2-5-23),
Rep, (c), (2-5-30).

®@—9 =~V =PV ]

© -9 —lg—n—@=0]

@ip—9Ag=2nl— @0
bA@PoOIG

(14)
(15) [~¢ A (p = 9] = ~P,
(h) How are laws (14) and (15) related to the discussion in Section 2-67
(16) pA@@VD—=@ADVT
)] pVi@AD— @V

Laws (16) and (17) illustrate how implication and identity are quite
different. With = in place of —, they would certainly not be laws.

(18) peD
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(19) (P« q) — (g p),
(20) (peog) AlgenN]— (o).

i) Whi
@ ch of (18) through (20) hold when «> is changed to —»? (j) to =?
(21) )
=9 > @y
(k) From (21) prove that (> q) e (~q¢g—~pisal
aw.

Note that (21) i
. permits us to writ .
sponding to each identity in logic. © & theorem on equivalence corre-

(22) @G=n A @y=2]>@=n2.
*(22) Proof of (22):

(a‘)x=y/\y:z Hyp,

bz =y Inf, (6)(p:x = y, q:y = 2),
)y ==z same, (2-5-2),
(d)z = 2 Rep, (¢c), (b), Q.E.D.

The following 1
g laws are stated here
theorem . as examples from the infinite li
asoren s provable from the axioms of logic. They were el infinite list (_)f
Interest or because we shall use them later selected for their

(23) p— (g — p),

- (24) ~p > (p > q),

(25) =0 —=IlpAr)>(gAr),
2
(26) (= A —8]=1[p Ar—(¢A )
(27) =9 —p Ar) >4,
(28) =9 —p— (V]
The first asserts that a true statement is implied by any statement
ent.

The last two sa; i
y that a true implicatio i
. ’ n rem i o
ment to its hypothesis or disjoin one to its cifciti?ifnlf e conioln & state-

(29) (=N A@G@—=nNI>lp Ve —r],
(30) 7= [(p A 9 & p],
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31) ~g— VD« P
(32) g— oV 9ed
33) ~g =l A9 d |
(34) p—glpAde pl
(35) pogeloyoed N
(36) peog—lpAne @A ,;H(qu)],
@37 (perg) A eV o
(38) p—n A @—9l—[P —->_+ A
39) [~p— (gDl A @ 7)) ‘

hich
Any argument based on _28), but they take many forms, of whic

basis of such argumepts is (2-5
the following are typical.

(~g— 0 O
((z(;)) Al A~ —dl ]; —q: )
(42) (p Allp A ~0) > ~P
(43) [~g— (@ A ~P1 0
(44) (~g—D) A~} 0 Cew
p A~ — @ A~nl— (@ )
((::56)) (p A ~g — ~pl = (1;—;;),
- o - different lines parallel
An example of the use of (44) is the proof that two dr

itten:
theorem be wrl

line are parallel to each other. Let the

to the same

ts b,
~(a || b). Then a meets §
— (a||b). Suppose ~(a P). But this
(@le A bl fl A (aa ﬁéc)b_)/\ (b( ) A (aand b pass tl;;x?:il;d I),arallel to a
say 10 P.' T o(iﬁy one line can be drawn t\}‘lr())u%\h (ai’lﬁ c) A (a and b pass
is false since . alld, p= (allc f may
! . = ) 4) and Inf we
given line,  Lething ¢ ¢ — p and ~p. Hence by (él e)siS establishes the
through P), \;et y allb. Then the Rule of Hypo
conclude g, that 1s, ’

desired implication.

(1) Usea similar aurgumentli,o1 sho
same line, then they are para }el .
50 as to maximize his return, then

investments.

i the

that if two lines are pet:pendlcu}}?ar I;ooney
o ) Argue that if a man invests his oney
hgn rate of profit must be the same on a |
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Proofs by elimination are ba
is one term of a disjunction th
false. It is based o

sed on showing that the law to be proved

at is a law and each of whose other terms is
n such laws as the following,.

(48) [PV @ A ~g — p,

(49) [PV agVA~gA ~] > p.

(n) Argue for the plausibility of (48) and (49).
angle is greater than another, the side opposite the 1
prove this, we note that the first side must be great
than the second. The side opposite the greater angl
other, since if it were the two angles would be equal.
the opposite angle would be less instead of greater,
that if one side of a triangle is larger than another, th
is greater than the angle opposite the second.) Hence

plain how (49) applies.  (p) What other logical
argument?

(0) If one angle of a tri-
arger angle is larger. To
er than, equal to, or less
e cannot be equal to the
It cannot be less, for then
(We assume it is known
e angle opposite the first
it must be greater. Ex-

ideas are involved in this

It would be possible to formulate additional rul
theorems of logic. For example, because of (6),
is a law, then p is a law. Instead of formulating s
the theorems when they are needed.
sponding to (2-5-28).

es of proof based on the
we could say that if p A q
uch rules, we refer directly to

(q) Formulate a rule of proof corre-
(r) Do the same for (15).

ProBLEMS

1. Show that the converse of (3) is not a law.
2LV oernel~p-go )] a law
is changed to —? Justify your answers.
3. Rewrite (7) informally.,
*4. Explain (13) by giving a more complete proof.
*5. Rewrite (13) informally.
*6. Discover and prove some laws involving V.
7. Prove that (p <« Q) (~p & ~q).
8. Formulate a rule of proof corresponding to (3).
9. Formulate rules of proof correspondin
10. Prove (p ¢ ¢) — (g < p).
1. Assuming that there is one and onl
points, prove that two lines intersect in
12. A prime number is by definition a natural number greater than 1 with
no factors other than itself and 1 Euclid proved that there is no greatest prime

? Isit a law if the central «»

g to other laws of implication.

y one line passing through two different
at most one point.

number in the following way. Suppose

that there is a greatest prime. Let us

call it N. Now consider all the prime n
. struct a number
: 2:83-5-7-11...N)+ 1.

since there is always a remai

umbers, 2, 3, 5, 7, ..

M equal to the product of all of these plus 1, that is, M =
Now M is not divisible by any of these primes,

nder of one after such a division. Hence 4f is g

., N. Let us con-
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i have to
since if it had a factor other than itself (;;; 1, thSl: Ef}ci;(,)éuvivdottl)l;l e o
ivisi i d in either ca

i be divisible by a prime, an o agest
by pn([)xflet}(:erz piimes. But obviously M > N ) ar%d hen(ice Nisn
byir?lleu? Explain the use of indirect arg'ument 1;1 this proof.
pr13' .Show that the converse of (21) is not a law.

prime,

ANSWERS TO EXERCISES

. . o (3).
ly sentences are significant substitutes for the variables in (3)
only

~ - . (p‘-) p) =
Hence by (3) and Inf ~~p P ~((Zf)/\ ~p). (d)

(a) No;
~~p = D. e o~ —
?i) VB =BV ~p = ~lp A~ ) = () {’,A I[)lzy (2-5-23)] = ~p V
P. =[p A~ =l =~ A~g P (p V ¢). () When
O VAV D =~V @V @ = p v A p) — g, which
~~g VP ; true, it fails. (g) The substitution yields }(1q tg (2—6—’6) and
p is false an ag (p /’\ g — ¢ (h) They embody the ;czg;na
i e . _5-28).
o @ Firsb and third only. () AL () (25 § P. Then through
SR | 8 — [a meets b in some point]. C_all this poin 1in'e can be drawn
(tlt)x ~(a e two lines Lc. But this is false, since onl(y ;)nIef b rtes of profit
P there ar Y i line. m,
. : dicular to a given ) the
fromd‘?’f gnftn }Il):l?:np;:s:; S;C his return by transff_:rrlngt 501;1;:i I:leusrc:lurce:ﬁhtéo e
are different, i fit is not m :
: d hence his pro . 1
II;OI'?» prf?)ﬁg?sli))lfnée—sggz;?, 3(’;) (49) (p: first greater than second, ¢:first equals
clusion

ibility i false by
d. r:first less than second). (p) Each posmblht}f is zl;;))v\(fn‘ :c; )t.)e o
Showin rt;hat it implies a false statement, i.e.,.by applymgSitive q: O D e
Showmgn implication it is sufficient to prove its contrapo .
prove a

t b t/ false lt 18 Sufﬁ(}lenb bO pIOVe tlla:t 1b 1mphes a fﬂ.lse Stabenlent.
a statemen 3

ANSWERS TO PROBLEMS

@ s B e e i
L@ ce, i ith the Rule of Hypothesis,
i in accordance wit ‘ 818, amed,
oon 11MV' bya(g;eaiegge; step in a proof in which ;(.he }Eyp_(f};tzslj\ l?qaf ) =
conclusion bep I a 7 g = ( :
tion. 14

and we ha;re/\pr(oved _t)he ;;n};h(!(il 1; «» ~g). Then use (21).N 12. t’}Il‘helaIrI;z::
(~q = ~p =P - : is no largest prime, p:N 18 bhe

S e by (43)(g:There is gest | PV s o by a
argulr;entTls sll‘:st;ﬁz(fl isypfimza we use (44)(¢:M is prime, p:M is divisible by
prime).

prime).

p g g . . 1
fOI II].UIa:tled m treI ms Of eq ua:t/lolls. Ille fOllO W lllg are some Of the pl‘Oble[nS
y 3 p

g .
1()gl(: a]ld. tlle algebla ()f numbeIS h.a:‘/e alI‘ea(ly beell ven
y‘

false).
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III. To prove that o gwen value of the variable in qn equation is a solution.
The proof is accomplished by substituting in the equation and proving
that the result is an identity. Hence this problem reduces to I.

IV. To find some solutions of an equation. This is quite a different matter
from III. Indeed, before we can try to prove that a number is g solution,
we must find it! The difference between III and IV is very much like the
difference between the jobs of a prosecuting attorney and a detective.
A trial cannot be held without an accused! The prosecuting attorney
(III) wishes to prove that the accused is guilty, and he is bound by very
strict rules (rules of evidence, court procedure, etc.) He wishes to prove
that the accused is a solution of the sentence “z committed the crime.”
On the other hand, the detective (IV) wishes merely to find the guilty
party. In this search he may guess, use his intuition, listen to gossip, and

do all sorts of things that would not be considered proof by any court of
law. Similarly, we may use any convenient method to find solutions of an
equation, but we must not imagine that this is the same thing as proving
that what we have found is indeed a solution.

V. To find all solutions of an equation, i.e., to solve it. This involves
more than IIT or IV,

VI. To derive some equations from others. This problem is more general
than I, since here we do not require that the equations be identities. It
arises very frequently in science when the scientist assumes that certain
relations hold among values of his variables and desires to discover the
consequences of this assumption.

To solve such problems we make use of manipulations of several kinds:

A. Manipulations yielding synonymous sentences. If we replace an ex-
pression in an equation by a synonym, the result is an equation synony-
mous with the original. Moreover, by (2-7-21), the original and resulting
equations are logically equivalent. Because of the equivalence, any value
of the variable that is a solution of one is a solution of the other. If one
is an identity, so is the other., If one is not, neither is the other. If we find
all solutions of one, we have found all solutions of the other,

(a) Why does an equation imply any equation found by a manipulation of
Type A above?

For example, to prove that 2 is a solution of z? +2z—6=0 we
may write :

1) 2 +2-6=00442-6=0c:0=0

Here each change involves a replacement. Since the last equation is an
identity, so is the first.

(b) Prove that —3 is a solution of z2 +z-—-6 =0,
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B. Manipulations yielding logically equivalent sentences. These include
not only those of Type A but also other manipulations that yield sentences
that are equivalent without being synonymous. For example,

2 2t —1=0e2zr=1,

because 2z — 1 = 0 — 2z = 1 by (2-6-16)(a:2z — 1,b:0, c:1), and
97 =1-—2z — 1 =0 by (2-6-16)(a:2z, b:1, c:—1). Manipulations
of this kind have the same advantages arising out of the equivalence as do

those of Type A.
The most useful laws that justify manipulations of this type are the

following.

&) (@a=b)e(at+c=>b+o0),
) (¢ # 0) > (¢ = b & ac = bo),
(5) (ab=0) o (a=0V b=0).

The first law follows from (2-6-16), (2-6-23), and (2-3-17). To prove
the second, we note that @ = b — ac = bc. Hence by (2-7-23)(p:a =
b — ac = be, g:ic # 0) and Inf, we may assert ¢ # 0 — (¢ = b — ac =
be). From this and (2-6-24) we have (4) by using (2-7-38) and Inf.

We can argue informally for (5) as follows. First to prove ab = 0 —
a =0V b= 0, we assume ab = 0 by hypothesis. If a = 0, we have
the conclusion. If not, (4) justifies multiplying both members of ab = 0
by 1/a to get b = 0. Second, (a =0V b= 0) > (ab = 0) follows
immediately from (1-9-30) and (1-9-31). Hence, by the definition of
logical equivalence we have (5).

To prove (5) more rigorously we use (2-7-39)(p:ic = 0, qia = b,
raac="be) to get [c=0—>(@=berac=0b)] A (c=0—a =
be)] — lac = be «> (¢ = 0 V a = b)]. The hypothesis of this implication
is a law, since its first term is just (4) and its second term follows im-
mediately from (1-9-30). Hence by Inf, its conclusion is a law; that is,

(6) (ac = bc) > (c =0V a=0).
This law is sometimes useful as it stands. We can get (5) from it im-
mediately by the substitution (b:0).

We illustrate the use of these laws by the following manipulations.

(1) 222+ 2r=12o224+2=256 4)
8) o224+ —6=0 3)
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9) S @+3)(zr—2)=0 (1-12-7)

(10) Sr+3=0Vr—2=90 (5)

(11) Sr=—3Var=2 3).

Each sentence is logica,ll.y equivalent to the preceding one for the reason
given. Hence we have simultaneously solved problems IIT, IV, V for this
equation. We know that —3 and 2 are roots and all the roots.’

(c) Which steps in (7) through i
gh (11) involve replacements? d i
sentences are synonymous? (e) Solve 3 — 2z = 3z 4 1 by such (m)anyi‘;};ll(;h

tions, giving reasons. f) Do th 2
par - o BT ® e same for x> — z — 6 = 0 and for (&)

An equat19n of the form az + b = 0 (where a and b do not involve
and a # 0) is ca.lled a linear equation in one variable. Equations that cax’
be reduced to this form by replacements and manipulations like those in
(3) and (4) are also called linear. The solution of such an equation is trivi:';;1

(12) ax+b=0oar= —b
(13) = —b/a.
(h) Solve, giving reasons: /2 -+ 16 — 5z = —2(z + 3).

An equ.ation of the form ax2 + bz +¢c = 0 (where a < 0, and «a, b
and ¢ are 1ndepend'ent of x).and equations that can be reduced t’o this fo’rn;
are called quadratic. Manipulations similar to (7) through (11) may be
used to solve any quadratic equation. Y

ax® + bz +c=0

(14) & 2 + (B/a)z + (c/a) = 0

(15) « 2® + (b/a)z + (b/20)2 — (b/20)% + (c/a) = 0O

(16) < (x + b/2a)® — (b*/4a® — c/a) = 0

(17) o (z 4+ b/2a)> — (% — 4ac)/4a> = 0

(18)  « (z + b/2a + Vb2 = 4ac/2a)(zx + b/2a — Vb2 — 4ac/2a) = 0
(19) Hx+L“W=OVx+b_”bZ“4“c=o

2a
(20) oz b=V —dac  _ —b+vE— dac
2a - 2a :

(1) Give the reasons for steps (14) through (17), (19), and (20).
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Step (18) is obtained by factoring (17) as a difference of two squares,
that is, by using

[a? — b2 = (a + b)(a — b)}(g‘:x + b/2a, b:V'b2 — 4ac/2a).

there is no root.

(o) Show directly that 1/ 3 =

equivalent to 3 — ¢ 1/z has no solution by showing it logically

However, if b2 — 4ac < 0, Vb2 — 4ac is not a real number and does not
even exist in the number system we have used so far. (Why? For a proof,
see Section 3-5.) Hence, for the present when b2 — 4ac < 0 we say that
the equation has no real roots. In Chapter 6 we extend the number system

so that any number has a square root. Then (14) through (20) proves ;
that any quadratic equation with b — 4ac # 0 has two roots given by w%‘ed they are used car efully. » pro-
. o or example, to solve th :
(20). When b? — 4ac = 0 there is only one root, but it is customary to (2-6-22) to Wri%e € equation \/r 4+ ] — VIZ, we m
say that the two roots are equal. We call b> — 4ac the discriminant of ! ay use
(24)

the quadratic. Usually (20) is written VZ A+ 1 = 3z
SV so2vz 4o
= 4z

—b &+ Vb2 — 4ac 25
(@1) altbrt+ec=0cz= % ) ((2)) = 2Vr =3z —
6
and the expression giving the two values of z is called the quadratic formula. —4r = 922 — g 41
27
(j) Carry through (14) through (20) with 22+ 2¢ — 4 = 0.- Use the 27) — 922 — 10z +1=0
quadratic formula to find the roots of: (k) 22 — 2z — 4 = 0,and () z?+ (28)
6z+9 = 0. Solve: (m) 322+ 52 — 1 = 0, and (n) 322 — 5z 41 = 0. (20) = Oz — )z — 1) =0

C. Manipulations yielding a necessary or sufficient, but not a logically —2r=1/9V =1

equivalent, sentence. For example, to solve z? = z we may divide both
members by z to get x = 1. According to (2-6-17)(a:z, b:1, c:2), * =
1 > 22 = z. Hence 1 is a root of 22 = z. But the converse is false;
that is, ? = z — x = 1 is not a law. Indeed, its hypothesis is true and
its conclusion false for x = 0. This manipulation yielded a sufficient but
not necessary condition for the original equation, and one root was lost.
Of course, (6) yields

Since the converse
. of (2-6-22) is not a |

. . a 4 '
signs here. The Implication in (29) means‘:h;:eifc%nm)t P

1 ’ .
H

s:hows that 1 is a

(22) @=2)c@=0Vz=1).
E (@) Justify (24) th
Or we could solve the equation by rewriting it as x> — x = 0 and then i As an example of the usefulness of i ; 8 throuh (29).
factoring or using the quadratic formula. ' i.‘ Some equations from others in sciencentampula’.hons of Type C in deriving
As a second example, consider the equation 1/z 4 3 = 1/x. Multi- 5 taken from an article in the Autun ve COHSldfar the following equations
plying both members by z, we have 1 + 3z = 1, 3z = 0, z = 0. But g Psychological Measurements. mn, 1956, issue of Educational and

0is not a root of the original, since “1/0” is undefined. The difficulty arose
because 1/ +3 = 1/x — 1+ 3z = 1, but the converse is false.
Hence we gained a root by this manipulation. Here we found a necessary
but not sufficient condition. Again the difficulty could be avoided by
sticking to manipulations of Type B. By (4) we have

30) A .=\\(‘4 = Ao + (45 —
) L 5 4 (45 A3)1—(1‘15‘A,2)+(A5—A1),

(81)  Ace = A+ Ay + 45 + Ay + 4,
(32) AL = (5d; — Acc)/4.

(23) t#E0>(l/z+3=1/z1+3z=1). The authors say that (30) and 31) i
lmply (32) Now by re
placements we
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find that (30) is equivalent to 10. Sometimes people tr

plies a true statement, Thus, in place of (1)

0-44+2—-6=0-
; = 0 = 0. What i Y
11. Find the fallacy in the followin a4 is the fallacy in this argument?

Factori g:Let2=y. Th 4 =
12, Sotve a7z o 2 ) = 0. Dividing by 2 — vy o o 3 Y e
. — 2z = 4, ! = i),
14. Solve az + b = ¢z |- 4. 13. Solve z/8 — (1 — 22) = z+ 9.

16. Solve x2+ a1z -+ o0 = 0. 15. Solve z2+ z2—1 =0,

% 18. Prove by substitut; 17. Solve 522 — 5 _ 1 =
ut, . 0.
quadratic. 1on that the quadratic formula gives roots of the

*19. Find (21) by the ch i
; ange of variable 1 = y — ;
S:'l;,(l)ngstxhe Pe}slult for y, and substituting back fgr z b/2ainaa® +bs - ¢ = 0,
. Dhow that if »; and r :
—ay and riry = g0 2 are theroots of 2 + g1z + g = 0, thenry + ry =
21. Show [h = (N — ¢?
29, 21)/281 A 22 = 21+ 4 -
o II2l lFrom th.e conclusion of Problem 21 and] : [iz v i_ xf)/2x1].
ula for 23 in terms of z; and N 3 = (N + 23)/2zs, find a
23. (This and the next '
Psychological Measurement

Yy to prove an identity by showing that it jm-

(33) AL = (445 — (A1 + Az + A + 42)/4 they write 22 42 — g o

Also, (31) is equivalent to
(34:) Ace — A5 = A1 + Az + A3 + A4:

Now we make in (33) a replacement of the right member of (34) by its
left member. After slight simplification, the result is (32) as desired. We
see that by assuming (30) and (31) we can derive (32). Hence [(30) A
(31)] — (32) by the Rule of Hypothesis. But the converse certainly does
not hold.

(r) Carry through all the details required to verify the above argument.
Show that the converse fails by finding numerical values for which (32) holds
but at least one of (30) and (31) is false. (s) The following equations are
taken from an article in the Spring, 1955, issue of Educational and Psychological

1Y

problem are taken from articles in Educational and

Measurements. 8, Summer, 1956.) Show that
(35) Ri=(1—0Ti+cn, Un—IL)—Ln—U) y_p
Jn = L) — Ln — U) —
. .= 2 = ’
(36) . R:+ W; = n, . 24. Solve for ry,: " "
@7 T, = Ri — Wi

— (2 2
V= (12 +ris + 1ds) + Irierigrez = 0.

25. (This and Problem
Trade, by J. E. Meade.) (a

Derive (37) from (35) and (36).

. . . . . 26
The discussion of this section refers to equations. However, the general are taken from The Geometry of I néernational

+b =) > la/b = 1/(c/a — DI

comments under I through VI and A through C apply more generally to . 2. =EQAi=1T /e(Q+ E)] — [5 — ,
any sentences. Examples will be given in later sections. Ul + &), N=B = We/@/u+e) A (1/e)(1/Q) =
27. Solve for z:
PROBLEMS _
22 —a b —cx
1. Prove that (22 + y)2+ 43 = (zwwz — y1y2)® + (Twy2 + z2y1)? is b T T g fra=2b=_1.-3

identity. |
an identity 28. Solve for z:

2. Prove that a2 = b — a = V/b is not a law.
3. Prove that 1/a is a solution of 22 4 1/2? = a? + 1/a2. be
4. Find three other solutions of the equation in Problem 3. T —a-= 7 +&2 fora = —3 p —
5. Find all the solutions of z(z% — 1)(z + 2)(2? — 3z — 4) = 0. d 10=0c=—-2d=—2,¢=4
3P — 1 29. Sol .
6. Show that if p = _then P = p+ (1/3)(1 — p). olve for z:
7. Prove zte_s—a_ 1 1 1
T—a z4a g—_g 22 +—
2 - p2 - = — 22 —a2 " g, or 6a -+ 7 = 0.
(38) (a b Yo (a=bV a b). 30. Solve for 4

8. Prove (@ # 0 A b = 0) — (ab = 0).
=G)

9. Prove (a % 0 A ab = 0) — (b m

=X —4a 4b—7a
bz ab_b2~m.
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—b) = —abl & (—a = a). _ d
. 0’ .__a)( b) a - 3 — Ks , an
o glliow Tﬁﬁff’f ;TPb*“[E”] = (807 + (807, [Pb*HIS0F] = Ko
32. Show

e _ KeplHY] 4+ Kgp.  (Note: The
[H4[S07] = KoHS07], then [Pb** = =5 4 within)
i f the chemical named within. ton
brackets stand fO;‘) Cot?lz‘:;l:r;rgisdc’% are taken from M athemaznjfil i"tg’dzc().
?g. (Tzzsalllzg’ CIOC. Evans.) Solve for u: 2u/a — b/a —
to Economics, .

b+ Ba _ b.
34. Solve for p: g——-— = aP +

— B
P = b. |
e ot ? azlj)l_tn are taken from Mathematical Biology of
i xt proble
36. (This and the nex

ive for z1 4 x2:
Social Behavior, by N. Rashevsky, pp. 44 and 139.) Solv
a1 + ag — 2bi(x1 + x2) = 2b2x1 + 2b222.

" Doy 2. (In-
g; glllr(l)%vxtllli:/—(—zg 3'3_) 1/2)(y — 1/49) + 5/2 = —dzy+ -+ 2y +

insey, p. 22)
troduction to the Theory of Games, by J. g C_._ hjch—mz 0:3’ tllien
39. Show that if Ay = y1 — yo and Az =
+ & — 208y _ ! l(y1 — yo)& + yox1 — xoy1l.
bo Az 1 — o
) H. Eves, p. 184)
(F An Introduction to the History of Mathematics, by
40. (From

Solve for z:

Vie/R)T/HE)2 —52+8 _ ,
10

Solve for z:
41. (From Statistical Methods, by G. W. Snedecor) Solv
(a—nd—2) _
® + z)(c + 7)
42. Show that

43. Show that
—PN)’ @GN —ON)" _ N . p2pyg),
- @N PN ) + QN PQ

44 Show that B 1 1(,,3—_(}}'@_}_ A]'
jd_j(A—d)=log§—’d'"2[ J

0 t Ileed tO knOW the meanin ()f 10 1@ JE t() S()lVe thls
(Note- Y u dO no

problem.)
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ANSWERS TO ExERrcisgs

@ =9 - @y, ) (=3)2+ (—3) — ¢ = 09 —3 -6 =
00 =0, (c} (9) only. (d) 8) = (9). () 3 — 2z = 3r+1¢ —2; =~
3z — 26 —5zr = 2, z = 2/5. By adding —3 to both members, adding
—3z to both members, dividing both members by —35, and simplifying. See
Sections 1-9 and 1-14, M 22—2—6=0w @—=3)@+2 =0
x—3=OVx+2=O<—>x=3V:c=—2. (8 22+ 4244 = g
E+22=0c4z=_—9 (h) Check solution by substitution. See Sec-
tions 1-9 and 1-14.

() (14):(4), (15):(1-9-20) and (1-9-22), (16):(1-12-9), (17):(1-14-2) and
(1-14-3), (19):(5), (20):(3). (i) Instead of substituting (a:1, b:2, c:—4)
throughout, carry through each step. &) z = (24 v320)/2 = 1 + /5.
Note that by (1-13-22), v20 = v/4-5 = VAE = a5 (1) Double root,
—=3. (m) (—5 + \V'37)/6. @) (5 = +/13)/s. (0) Add —1/z to both
sides.  (p) By substitution. (@) (25) and (27) by (2-6-19). () Replace n
in (35) from (36) and solve for T..

ANSWERS 1o ProBLEMS

1. Expand each member., 2, {a:—1). 4. % —a, —1/a. 5, 0, +1, —2, 4,
—1. 6. Solve for P and rearrange. 7. a2 = p2 5 g2 _ p2 _ 0o (a-tb)
(@ — b)) = 0. 10. (2-6-27). 11. Division by 2 — y is division by 0. 12. Check
alleged solutiong by substitution. 4. (d — b)/(a — ¢). 15, (—1 \V'5)/2.
17. (1 = v/20)/10. ‘

viation for a formula, that appears severa] times in a discussion, For ex-
ample, we might wish to talk about x* — z + 1 and its values for various
values of z. To avoid having to write out the formula each time we wish
to mention it, we could adopt a single letter as an abbreviation. Thus we
might let s = z2 — , + 1. However, if we wish to indicate what hap-
pens when substitutions are made in a formula, a single letter is unsatis-
factory because it does not involve the variable explicitly. The difficulty
is overcome by adopting an abbreviation in which Z appears. We choose
some letter, such ag J, and follow it by the variable in parentheses, as in
J(@)(read “f of z”). Then we adopt a temporary definition, such as

)] Let f(x) = 22 — 7 4 1.
Now (1) says that f@) = 2% — 341 i an identity by definition.

Hence we get identities from it by any significant substitution for . We
must, of course, substitute for & throughout. Thus

@ @) =22 —2 4,
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3 fla) =a®—a+1,

4 f@) =y —y+1,

(5) ' fety=@+y?*—(@+y +1,

(6) f@?) = @)% — 22+ 1,

(M f@@® = %2 —2® + 1,

(8 fa?+1) = @+ D% — @®+1)+1

Yy ‘tution in th
In this way we can use the notation to indicate any Substlt—l_ltlzo.nﬂlf; ttise
o?iginal formula. Thus f(2) means the value of f(zr) when x = 2; )

f(2) = [f(x)l(z:2). Indeed, for any value of a,
9 f@) = [f(@)](z:a).

“f 6 ” Multiplication
“f of z.” It does not mean “f times x. . :
i V‘;i izi((iﬂ{r(;; ?ns arflyo way. It means the value of a certau.l f(')g;lal;l: Sc\;t)‘
oot here a is any signi -
i he value of z. To find f(a), w : .
r:'stp Otrédxlzfrl}?a:g:eref‘z z, we simply substitute a, however comphsit;:(‘i’i ;ﬁ
fnla; be, into the formula for which f(x) has been adopted a;)ar_l_ a[3 b
tion. Thus if we let f(z) = [z = 3], then f(2) = [2 = 3], f(3) = ,
f(a? 4+ 2) = [a® 4+ 2 = 3], and so on.
i — — 1), flz+ 2),
= — 1. Find f(1), f(2), S( 3}, @), f= )
f(x(zi%)* 3:)etf{fgx-)f— b-f- ¢). (b) Let N(z) = ~x. Find N(p), N(~p), N(N(p)),
NpVv g;), N(p A ¢). Comment on “N(7).

i h as s(x) means “s
eader know whether an expression suc ean

i — ”C?)I; 2219;);‘ 2”? He has to tell by the context. However, he is afl((i»;i

:)?:}Slexfollowing conventions: (1) Ordinarily letterstr.xear the cie;ﬁu)errfog -

i i i e€C 3 ] 1
in the way explained in this section, especia

e o When iplication i t, and confusion might occur,
When multiplication is meant, / sion. mi

o C\ijrthe; 3(2; (s)(z), or sz. Hence, in the absence of indications to the

we -,

contrary, s(z) stands for “s of z.”

(© fl@) = . — 1% (@) f@2) = —a, () flx) = 2%,

Find f(—1) for: (h) Argue that if n(z) = —z, then

0N f@) =xz+y (g flx) = 25

nlrﬁxg(:) x— the father of z, F[F(z)] = the father of the father of x = the

paternal grandfather of #. Let M(x) = the mother of z. Find: (i) M[M(z)],
() MIF@@), (k) FFIF@).

Reading “f-of-2” for f(x) may seem strange, but it listafl(lj)tu;alxgu:otmhz
of ordinary ways of speaking. Thus, suppose we le
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square of . Here f takes the place of “the square” and the parentheses -
indicate “of.” Similarly, in the last exercise F stands for “the father.”
We shall discuss the meaning of f in f(z) more fully in Chapter 5. For
the present the reader may think of it as standing for the relation between
the values of z and the corresponding values of the formula,

~ The functional notation is very widely used in mathematics, and for
this reason it is worth while to develop some skill with it, It is very simple

the eonstant resulting from substituting g for x in the formula. For ex-
ample, if f(z) = 22 and ¢ — 2, fla) =f2) = 4. If g is a variable or

Let f(z) = 3z4+ 2 and ¢(z) = 1 — 4. Find: M f4), (m) g(4),
) f(z+ 2), (0) g(1 — 2, ) f(f(=)), (@) g(g(x)), () flg(x)),
() 9(f(x)).

Often the functional notation is used to stand for an unspecified formula,
When f(z) is used in this way, both f and z are variables, whereas when
f(x) has been temporarily defined, only z is a variable. Indeed we have
been using the functional notation in this way, for we intended (9) to
hold no matter what formula had been abbreviated by f(x).

(t) How would you interpret p(®) > ¢(z)? What sort of formulas would
be significant substitutes here for p(z) and ¢(z)? (u) Suggest a substitute for
p(z) and g(x) for which the implication is a law.

Later, when the functional notation is used to stand for any one of
many formulas, we shall be able to make substitutions for the letter in
front of the parentheses, For the present we treat “f(x)” as though it
were a variable, and we consider any term to be a significant substitute
for “f(z)” and similar expressions. But we have as Yet no constants that
are significant substitutes for “f.” The reason we say that any term may
substitute for “f(z)” is that we may wish to substitute g constant or an
expression not involving “z.” For example, suppose we let f@) = 2 — 2.
Since the right member is 0, we have f(x) = 0 for all values of “z.” This

may seem strange, but it is often convenient to let “f(x)” stand for a
constant.

(v) Let f(z) = (z — 1?2 — 224 22 Find f3), £(D), 1(b), f(—3). Show
that f(z) = 1 for all values of z.
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The functional notation can easily be exti;;xde.d t(i d;f;lo;\;lt:; If;rx;g:ﬁz:

i . simply
i ich more than one variable appears. We ' ! .
:; :)V:flc(;re I;und place in parentheses after it a list of the varl;ables enin Z?rl(;};
we are interested. Thus we may let‘; f(:lf, y) =z —hy. tT e]agx‘lo;;v e
before make any significant substitutions throughout. e 0,
f(y .’6) =Yy -z f(2y4) =2 — 4 f(O) )=0-—1, f( {)lesi;the b
It is important, of course, to notice the order of the varia
’ . 3

breviation and place the substitutes in the same order.

Let h(z,y) = =+ 2y. Find: (%) h(2,3), (x) he, ), "@) A(—1, —2),
(2) 1(0, 0).

ProBLEMS

In Problems 1 through 3 let f(z) = 1 — 2% ¢(2) = 2z.

1. Find f(z) + 1, f(z + 1).

2. Find g(z) — 3, g(:c( ——+3).)

3. Find f(z) + f(y), fx + y). . "

4. State a conclusion from Problems 1 through 3 in terms of the notion 9
distributivity.

Find f(f(z)) for f(z) defined as in 5 through 10.

— 7. ~z.
5. z2. g' o 10. 3 — =
8. 1/x. o

i 15.
Find f(g(z)) and g(f(z)) where f(z) and g(z) are defined as in 11 through

13. —zx, —=x.
2 A/z withz 2> 0. 12. 2z, z/2.
A 1, (1 4+ 2)/2. 15. 1+ 1/z, 1/(z — 1).

In Problems 16 through 26 let T'(x) = the truth value of =.

*16. What are the significant values of x?

% 17. What are the values of T'(x)?

*18. Show that T'(p 5/11\( q)) = T(p) - T(q).

o T 3 = the I i i re equal.
= f T(p) and T(q) or either if they are eq

:Z(l) ;EZ >/\ qu; ; tﬁ: i?ll;i(lefel? of %?p) and T(qg) or either if they are equal.

*22. T(p V q) = the smaller of T(p) + T(g) and 1.

*23. T(p = ¢q) = T(T(p) < T(Q).

*x24. T(p > q) = T(T(p) = T(Q]

*25. T(p V @) = T(p) + T(g) — T(p) - T(D).

*26. T(p V. @) = |T(p) — T}

= — ).
27. If f(z,y) = = — y, prove f(y, z) f(z, y _
i iti f f(z, y) so that f(x, y) = f(y, 2).
gg: JF(?(L)SOS exgein;tl?sw;- ng‘Dind 1@, ), £(2, z), f(y, ©), f(=z, f(z, ¥)).

L— (@492 5. 2% 7.2 9 42 11 13. z. 15. z.
17. 0 and 1. 27. fy2) =y — 2 =
bt 2 — 2,02 b2 — oy 2 (22 4y — zy) — z(z? +
z/2, z/y, y/«2. 36. That h and t determine p, that is,
ment determine the personality. 37. That
rate, the total income, and the individual
explicitly all the factors determining a person’s tax.
the paragraph preceding Exercise (v).
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30. Repeat Problem 29 for I y) = (y = 22).
31. Repeat Problem 29 for fz,y) = y/z.

In Problems 32 throu
~p,C(p,q) = p > q.
*32. Argue that D(p, ) = D(q, p).

%33. Show that N[(D(p, ¢)] = JIN(p), N(q)].
%34. Define D and C in terms of J and N.

*35. State (2-7-23) and (2-7-38) using these symbols,

gh 35let J(p,q) = p A ¢, Dp,9) =pV ¢, Np) =

36. If b = heredity, § = environment, and p =
it signify to write p = S(h,1)?

37. If t = the tax rate of z, ] =
tax paid by z, what would we mea.
to write T = g(¢, I)?

38. As the reader may have observe
quotation marks called for by
interesting to decide where qu
cially in the present section.

the personality, what would

the income of z subject to tax, and T = the
nby T = g, I, z)? Would it be adequate

d, we are almost always omitting the
the discussion in Section 1-3. He may find it
otation marks could properly be inserted, espe-

ANSWERS T0 EXERCISES

(@ f1) =1—1, 72 =2—1, J(=3) = (=8) —1, f) =b—1,

fe—1D=@—-1)—-1,fc+2 = @+2) —Lfa+49 = @+ 9 — 1,
fatb4¢) = (a+bd+c) — 1.

“N(7)” is nonsense. (e) (=1 — 12 (4 —(—1).
® (=13 () n[n@)] = n(—z) = —(—2) = =z
mother of z.  (j) The paternal grandmother of z.
grandfather on the father’s side of z. '

(B) ~p, ~ ~p, ~ ~p, ~(p Vv ), ~(@ A 9.
(€ (=12 (f) —1+4y.
(i) The maternal grand-

(k) The paternal great

) 14. (m) —3. (n) 3(z+ 2) + 2. (0) 1 — (1 — 2). (p) 3(3z -

2+2 (@ 1 — (1—2x). (r) 301 — )+ 2 (s) 1 — Bz 2). (t) Some

propositional formula implies some propositional
PE) = (x = 1), q(x) = 2z = 2).
x2—2x+1——z2+2x =1L (W)8 (x) a- 2. (y) —5.

formula; sentences. (u) Let
(v) All substitutes yield 1, since f(z) =

(z) 0.

ANSWERS T0 PROBLEMS
L2—2%1— (@412 a2 2z — 3, 2(zx —3). 3. I—a? 41 — 42
16. Propositions.
= —@ =y = —f(z,y). 29. 4+ y — 2y,
y — zy). 31. y/2,
that heredity and environ-
the tax is determined by the tax
. Not if we wished to indicate
38. This has been done in
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2-10 Quantifiers. As we have seen, a sentence may be true for all,
some, or none of the significant values of its variables. If we wish to
claim that a sentence is true for all values of its variables, we can simply
display it as a theorem according to the convention explained in Section
1-8. However, it is convenient to have special symbols to indicate how
many of the values of a sentence are true propositions. We call such
symbols quantzfiers.

We adopt the symbol Yz to mean “for all significant values of z.” Thus,
vip = (for all significant values of , p). Usually we say “For all z, p”
or “p is a law.” If f(2) is a sentence involving no variables other than z,
then to claim that Vz f(x) is the same as to claim that f(z) is a law. For
example, Vz 22 = -z is true because z° = z -z is a law. Similarly,
Vp (p — p) is true. We call V the universal quantifier.

(a) vz f(z), (b) vz ~ f(z), () ~Vaf(z),

State in words:
() ~Vz ~ f(2).
True or false? (e) Yoz — z = 0,
We adopt the symbol 3x to mean “for some values of &” where “some”
is understood to mean “one or more.” This meaning of “some” is universal
in mathematics. In mathematics, some = at least one. We also read Iz as
“there exists an x such that.” For example, (3z 2* = 0) = (for some value
of ¥, 22 = 0) = (there exists an z such that 2> = 0). We call 3 the

() Ve (z + 1)2 = 224 1.

existential quantifier.
. State in words:  (g) EIxf(x), (h) Iz ~ f(z), (@) ~ 3z f(z),

(i) ~ 3z ~ f(z).
- True or false? (k) 3zz = x-+ 1, (1) 3zz? = 0.

Express, using quantifiers: (m) ~~p = p is a law, (n) p = ~p is
sometimes true, (0) p A ~p is never true.

We take Vz f(z) as undefined and define 3z f(z). It is to be understood
that significant substitutes for f(z) in Vz f(z) are only sentences or formulas

standing for sentences.

(1) Def. 3z f(@)] = ~Vz ~ f(z).

This definition merely reflects the idea that to claim that f(z) is true
for some x is the same as to say that it is not false for all ! Several examples
have appeared in the exercises above.

Still further light is shed on the definition and the meaning of quantifiers
by considering the special case when the quantified variable has only two
significant values, say a and b. Then Vz f(z) = [f(a) and f(b) are true] =
[f(@) A f(b)}, and 3z f(z) = [at least one of f(a) and f(b) is true] = [f(a) V
f(®)]. Then ~¥z ~ f(x) = ~[ ~ f(a) A ~f(b)]. But the right member,
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by De Morgan’ .
gan’s law, 1S synon .
32 f(z). Hence (1) i verified in tﬁg 23; With ft@) v f(v), that is, with

The following theorems are easily derived

2)

@)
~32f(@)] = Vi ~ f(z),

(p) Illustrate (1) throy
. : gh (3) f 2
S)vf}z’;)reasgns in the fOHOWing ;:(;fo(;;)of(z)_% ;i, ind for (Q) f(x)- r A ~Zz.
rand (8): ~ 3z f(2) = ~ (g ~ f(x')) = fo(x) ;( ’)va ~ e -
~ f(z).

We now state ;
. an ax L g
universal quantifies iom that embodjeg the

(4) Ax.

essential property of fhe

Yz f(@)] - f(y).

I . .
val lilewo;‘ds, 4lf a sentence is true for ajl values of z
- In (4) we may substitute for f(x) any

(s)ubstitution is also a law. It permits us to
ur convention ahout displaying laws, di

(5
) ¥ — [32 f(2)).

its variable, it is t
, rue for som i
. . e value. W
v [fly) » Bxf(x)]]. It is proved by the s;tlflst?ittq on
= (~¢—> ~p)
(s) Write out the j .
. proof just i
of only two significant values of(') Zthned'

ntifiers shown, it is

ion (f(z):~f(z)) in (4)
(t) Treat (2) through (5) in the case

called an ?xistence theorem, By (5), to
value of g, say y, S:lCh
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(6) Ixa-+z=a.
Proof:
(a)a+0=a (1-9-22),
b)a+0=a—>3xa+2z=a Sub, 5)(f(x):a+z=a,y:0),
() Izra+2z=a Inf, (b), (a).

(u) Similarly prove that 3za-z = a.

Another way in which existence theorem§ are sometimes proved is to
assume the contrary and derive a contradic'tlon. Because of. (1), to pSrov}ci
Iz p, one may show that ~(Vz ~ p), that is, t.hat Yz ~ p is false. Suc
indirect existence proofs are called nonconstructive.

(v) Prove (6) using indirect proof to establish ~ Vza + 2z # a.
) ~fy) — [~Vz f(z)],
(8) vz f(x)] — [3z f()].

(w) Prove (7) and (8).

If we know a law of the form 3z f(x), we know‘that f(x) for some Vahlls,
of z, but we may not know any particular solution. However, it wou ;
seem legitimate to adopt some name for the unknown value (or .for orlx)e ot
the unknown values) of z, provided we do not assume anyt.hlng abou
this value except that it is a solution of f(z). For -example, if we know
that {3z z has run the mile race in less than fot_lr minutes], we may Qrajw
some conclusions about whoever has done so wn;hot‘lt knowmg. who 11: :)s
In carrying on such a discussion it w01'11d be cqnvenlent to say: Le?, ) e
a person such that 4 has run the mile race in less than four rmm; es.
Then we might say some things about 4, such as tha.,t he Ipust ha\(;e ein
in good physical condition at the time. These considerations lead us to
adopt the following additional rule of proof.

RuLk oF Cuoice: If a law asserts the existence of a solu-

tion of a sentence “f(x),” then “f(c)”’ may appear as a step in a
proof, provided ‘‘c” s treated as a constant and no other as-

sumplion 18 made about it.

(9

Like the Rule of Hypothesis, this rule could be omittfed at the cost of
lengthening and complicating proofs considerably. It is me_rely alcon—
venience, and any proof using it could be rgp%aced by one relying only on
the previous rules. We shall see later how it is used.
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ProsLEMS
Prove or disprove 1 through 6.

1. Vza/z = 1, 2. 3zz/x = 1. '
3. Vo ~ (22 = 22). 4. Iz xr = 2z,
5.~z 22 £ g3, 6. Ixz? =g 1.

Express 7 through 12 in ordinary language.

7. 3xz = —z.

8. ~Vzr a2 = 2z,

9. ~Vzlz] = 2.

10. 3z 2| = 0.

.vzVya? = Pz =yv g = —y.
12. V2 3y s+ y = 2,

Express 13 through 18 in symbols two ways, one using 3 and the other V.

18. z = z - 1 is false for all .

14. 22 = 2 is not always false.

15. 2% = gz is sometimes true.

16. “All plant and animal tissues are made up of units known as cells. . . .

All cells contain a living substance known as protoplasm.” (Harvey E. Stork,
Studies in Plant Life, 1945, p. 19)

17. |z| = z is sometimes false.
18. There is an z such that for all yy/y = =x.

19. Complete the following verbalizations of (2) and (3): (2): To say that
it is false that f(z) is true for all z is to say that there is some z for which f(x)
s . (3): To say that it is ____ that is true for some z
is to say that f(z) is ______ for _— =z

20. Write out (1) through (5, (7) and (8) for three values of z: a, b, and c.

21. What is the scope of the first ~ in (1)? of vz?

22. Would (1) mean anything different if we substituted y for z in only the
left member? in both members?

23. What theorem in this section expresses the idea that to prove that a -
sentence is not a law it is sufficient to cite a counterexample?

24. Which theorem expresses the jdea that in order to prove that a sentence
is sometimes true it is sufficient to cite a case in which it is true?

25. Prove that it is false that all natural sciences are based primarily on
controlled experiment,

26. Prove ~ Vz (z < 1,000,000).
27. Prove Va 1/a = 0.

Quantifiers are helpful in clarifying the meaning of statements involving
“all,” “some,” and “none.” For example,

(10)  All squares are positive = vz 22 >0 =~ (10)).
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(10') Not all squares are positive = ~ vz 2% > 0 = ~ (10)

Iz ~ (2 > 0)

= Some squares are not positive.

(11) Some squares are positive = 3z 22> 0 = ~ (11').

(11") No squares are positive = ~ 3z 22 >0 =~ (11)
=V~ (22 > 0)
= All squares are not positive.

Often the last form in (11’) is used carelessly when (10") is meant. Such usage
is incorrect (see H. W. Fowler, A Dictionary of M odern English Usage, under)
“not”). To avoid confusion it is best not to use the last form in (117).

28. Justify the identities (10) through (11').
99. Which of the sentences within the identities (10) through (11") are true?
30. Repeat (10) through (11') with the sentence “All men are mortal”

(Vz z is a man — z is mortal). -

Taking the negation of a quantified statement is easy if one can express it
with quantifiers as above and then make use of laws of quantification. It should
be noted that because of (1) through (3) and the flexibility of the spoken
language, there are many ways of stating each idea. The solution to any con-

fusion may be found by translating into mathematical temms, re-expressing, .

and translating back, being sure at each translation that the meaning is un-
changed. Express in normal English in two ways the negation of each of 31
through 34.

31. All Negroes favor an end to segregation.

32. Some Negroes favor an end to segregation.
33. No Negroes favor an end to segregation.

34. Not all Negroes favor an end to segregation.

Express 35 through 43 symbolically. Then express the negation in normal
English in two ways.

35. Nothing is good enough for him.

36. Not all white people favor segregation.
37. He is always happy.

38. He is not always happy.

39. He is always not happy.

40. He is sometimes happy.

41. He is sometimes not happy.

42. “All that glisters is not gold.”

43. There’s nothing new under the sun.

The following laws express formally the meaning of equality.
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(12) [z = yl & VS [f@) = f(y)],
(13) [z = yl & Vf [f(x) < f(y)).

44. What rule of proof corresponds to (12)?
%45. Prove that the left member of (12) implies the right.
%46. Prove the converse by letting f(z) = z.
%47. Why do these two results prove (12)?
*48. Prove (13).

49. Write out the laws of quantification for the case of four values of z:
a, b, ¢, and d. -
%50. Justify the following:

(14) Ax. Vz(f(z) A g@@N] = V2 f(2)] A [V g(2)],
(15) Bz(f(z) V g=)] = Bz f(z)] V Bz g(z)),
(16) Ax. Vz(f(z) — g@@)] — (V2 f(z)) — (Vz g(z))],
17) Vz(f(z) — 9(@))] = {Bz f(2)] — [3z g(2)]}.

51. Show that (14) and (15) are false if V and A are interchanged.

ANSWERS T0 EXERCISES

(a) '[For all z, f(z)] = |Every significant value of z is a solution of f(x)]
[f(z) is always true] = [f(z) is a law]l. (b) [For all z, not-f(z)] = [f(z) is
always false] = [No value of z is a solution of f(z)] = [f(z) is never true] =
'[For no z, f(@)]. (¢} [For not all z, f(z)] = [Not every significant value of z
is a solution of f(z)] = [f(z) is not always true] = [f(2) is not a law]. (d) [For
not all x, ~f(x)] = [Not every significant value of z fails to be a solution of
f(z)] = [f(x) is not always false] = [the negation of f(z) is not a law] = [For
some z, f(x)]. (e) 1. (f) 0, since the sentence is false forz = 1.

(g) [For some z, f(z)] = [At least one significant value of z is a solution of
f(z)] = [f(z) is sometimes true] = [There exists an z such that f(z)] = [~f(z)
is not a la\‘V] = Exercise (d). (h) [For some z, not-f(zr)] = [Some significant
value of z is not a solution of f(z)] = [f(z) is sometimes false] = [There exists
an z such phat ~f(z)] = Exercise (¢). (i) [For no z, f(x)] = [No significant
value of' z is a solution of f(x)] = [There exists no x such that f(z)] = Exercise
(b).  (§) [For no z, not-f(z)] = [No significant value of z fails to be a solution
(()f)f(lx)] = [There exists no x such that f(z) is false] = Exercise (a). (k) 0.

(m) ¥Vp~~p =p. (n)Ipp— ~p. (0) ~Ipp A ~porVp~ ~
{p) (For some z,z2 > 0) = (It is false that forpa{)l z, zg < Og). (gg fa?s)t;
that for all z, 22 > 0) = (For some z, 22 < 0). (There is no z such that
22 > 0) = (For all z, 22 < 0). (r) (1) and ~~p = p. (s) f(y) —
~[~f))] = ~[¥z ~ f(2)] - 3z f(z) by (2-5-6), (2-7-3), (4), (2-5-28), (1).
(t) (2), (3), (4), (5) become (2-5-7), (2-5-8), (2-7-6), and (2-7-9). ,

—
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The results of Exercise (t) should not be surprising. The universal quantifier
asserts the conjunction of all the values of the formula that follows it, since
Vz f(x) means that every value of f(z) is true. Hence Yz f(z) = fla) A f(b)
A f(e) A ..., where the values of z are a, b, ¢,.... Similarly 3z f(z) =
fl@ ViV fe)V....

(u) (1-9-25). (v) (Vze+ z = a) > (Yrz = 0) > (0  0); by (2-5-28),
©0=0)—>(~vVza+tz #a). (w) (7) = (4) by (2-5-28); (8) follows from
(4), (8), and (2-7-12).

ANSWERS To PROBLEMS

1. True. Zero is not a value of z here. 3. False. 22 = 2-2. 5. True, since
Vz ~ (2% # z-z). 7. There is a number equal to its own negative. 9. Not
all numbers are equal to their absolute values. 11. If the squares of two num-
bers are equal, the numbers are equal or one is the negative of the other.
B.vez# e+ ;~zs =x-+1. 15 Iz22 =1, ~ Vaa? > x. 17, 3z 2| #
x; ~Vz|z| = z. 19. False; false; f(z); false; all. 21. [Vz ~ f(z)]; ~f(z).

28. Use the theorems with (f(z):z? > 0). 29. 22 = 0 for z = 0; otherwise
2% > 0. 30. All men are mortal = ~ (Not all men are mortal) = ~ (Some
men are not mortal). Some men are mortal = ~ (No men are mortal). 31. Not
all Negroes favor an end to segregation = Some Negroes do not favor an end
to segregation. 32. No Negroes favor an end to segregation = All Negroes
are against an end to segregation. 33. Some Negroes favor an end to segrega-
tion = Not all Negroes do not favor an end to segregation. 34. All Negroes
favor an end to segregation = No Negroes do not favor an end to segregation.
35. ~ 3rxis good enough. 37. V¢ Heis happy at time £. 42. ~ Vz z glisters —
z is gold. (# Vx x glisters — z is not gold). This is an example of improper
usage. 44. Replacement. ’

*2-11 Multiple quantification. The most useful applications of quan-
tifiers occur when more than one variable is quantified. We have the
following possibilities for two variables.

(1) VyVz ... = Forevery y, forevery z . . ..

(2) VeVy ... = Forevery z, forevery y . . ..

(3) Vz3y... = For every x there exists a y such that . . ..

(4) Yy3x... = For every y there exists an z such that . . ..

(5) 3y Vx... = There exists a y such that for every . ...

(6) JxVy... = There exists an z, such that for every y . ...

(7) 3x 3y ... = There exists an = such that there existsa y such that . . . .

(8) 3y 3z... = There exists a y such that there exists an z such that . . . .
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- Read (1) through (8) with each of the following in place of the dots, and
decide on truth values: (a) z -+ y = 2z, (b) zy = z.

Exercises (a) and (b) suggest that (1) = (2) and (7) = (8), so that the
order of quantification is immaterial when only like quantifiers are in-
volved. But clearly no two of (3) through (6) are synonymous, so that
unlike quantifiers are not commutative.

(9) Ax. Vz ¥y f(z, y)] = [vy Yz f(z, y)),
(10) (3= 3y f(z, Y)] = [y 3z f(x, y)].

To avoid unnecessary parentheses, we follow the convention that the
scope of a quantifier is the entire following expression or extends to the
end of the smallest parentheses within which it lies. This convention is
illustrated in (1) through (8) where, for example, Yy V... = Vy[vz .. ],
in (2~10-1) where the right member means ~[Vx{~f(x)]), and in (2-10-8)
where the parentheses are essential. Because (1) = (2) and (7) = (8)
we usually read Vz Vy as “for all z and y” and 3z 3y as “for some z and
y.” We also adopt the following abbreviations.

(11) Def. Ve f(z, y) = Vz vy f(z, y),
(12) Def. dr,y f(z, y) = 3z Jy f(x, ).

It i§ easy to extend the laws on negation to two quantifiers by simply
applying (2-10-2) and (2-10-3) carefully. :

(13) [~ V2 Vy f(z,y)] = Bz Iy ~ f(=z, y)],
(14) [~ Ve 3y f(z, y)] = Bz Vy ~ f(=z, )],
(15) [~ 32 vy flz, )] = V2 3y ~ f(z, y)],
(16) [~ 3z 3y f(x, y)] = Ve Yy ~ f(z, y)].

(c) Prove (13) through (16). (d) Negate each statement made in Exercise
(a) and compare truth values.

Numerous other quantifiers could be defined, but only one is in general
use. It is 3Ilz, which is read “for one and only one value of z” or “for just
one z.”

(17) Det. [z f(z)] = 3z f(@)] A Yau [(fz) A @) >« = g,
(18) Blz f()] — [z f()],
(19) [~ 32 f@)] = {Vz ~ f@)] V 32y [f(x) A f@y) A y = 2]}
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(e) Verbalize (17) through (19) and argue for them informally. (f) Discuss
31z f(x) for the case where z has only two significant values and the case where
it has only three. (g) Prove (18) and (19). (h) Prove Yydlzy+a = y.
(i) Does 3! commute with ¥ or 37

A variable that is within the scope of a quantifier is said to be quantified.
From the discussion in this and the previous section the reader is already
aware that some care is necessary when dealing with quantified variables.

Consider, for example,

(20) Iz Vy =z dislikes y,

which says that there exists an x such that for all y, x dislikes y; that is,
there exists a person who dislikes everybody. Now if we substitute z for

y we have

(21) Iz Vz « dislikes z,

which says that there exists an z such that for all z, x dislikes z. If it
makes sense at all, it certainly means something different from (20). On
the other hand, if we substitute z for y in (20), we get ’

(22) Iz Vz x dislikes z.

This evidently has the same meaning as (20). We see that for a quantified
variable we may safely substitute another variable only if the latter does
not already appear within the scope of the quantifier.

Since Vz f(zr) means that the formula f(z) is true for all values of the
variable x, the substitution of a constant for x would result in nonsense.
Similar remarks apply to 3 and 3!. We see then that we cannot substitute
constants for quantified variables. Of course, if Vz f(z) is a law, we can
substitute a constant for z in f(z) standing alone, but not in the whole
expression Vz f(z). For similar reasons it is not convenient to substitute
formulas for quantified variables.

If we recall the definition of “variable” in Section 1-3; we see that in the
context Vz f(z), « is not a variable (since constants are not to be substituted
for it), even though it is a variable in the formula f(x) considered alone.
A symbol that is a variable in part of its context considered alone but is
not a variable in the whole context is said to be a dummy in the whole
context. For example, z is a variable in z — z = 0, but it is not a vari-
able in Vz  — z = 0, so we call it a dummy in the second context. We
limit substitutions for dummies to variables not appearing elsewhere in
the same context.

From the preceding discussion it is evident that a quantified variable
is a dummy. In (20) both z and y are dummies. Hence (20) actually in-
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volves no variables, which fits with the fact that when we express (20) in
words it is seen to be a statement and not a propositional formula. How-

ever, “Vy z dislikes y” in i it i iti
form,ma. y” involves the variable r, and it is a propositional

(j) When we use the Rule of H i i
ypothesis, any variable in the hypothesi
becomes a dummy. Why? (k) Why in using the Rule of Hypoth};;s)?s i:s;:

legitimate to substit i i
Lekitima ute a variable not already appearing elsewhere in the

ProBLEMS -

Letting S = z is the f:a;ther of
) y, where
in words and decide on truth value;. ? and y are men, state 1 through 18

1. vz vy S. 2.V
. Vyvz S. 3. Vz 3y S
g. \;’y;xSS 5. 3z vy 8. 6. 3y VZ S.
.3z 3y S. 8. Iy3az S 9. vz '
. . Iy 8.
:g ;’y;'!z:SS. 11. 3z vy S. 12, 3ly V:ZS
LAz 3y S, 14, Iy 31z 8 i5, 31 .
. Az 3y 8.
16. 3y 3z S. 17. 3z 3y S. 18. 3y 3"yxé:5’

19. Repeat 1 through 1 — . .
season 7. ough 18 for S = the season x immediately follows the

State 20 through 26 symbolically.

20. Every man has one and only one father.
21. Some men are brothers.
22. All men are brothers.

23. There are two numbers whose product is 16.
24. Every man has ancestors.

25. Any even number H .
conjecture), greater than 4 is the sum of 2 odd primes (Goldbach’s

26. Ideas have consequences.

27. Negate each of Problems 1 through 18
28. Do the same for Problem 19. ‘
29. Prove Ylavyzr 4y = y+z =y

30. Prove dlzVyz -y = y.-2 = Y.

31. Provevzillyz+y = y+z = 0.

32. ProveVzz = 0 — lyzy = 1.

33. Is Az 3y f(z, y) = ly Iz f(x, y) alaw?

ANSWERS To EXERCISES

@ F,F,T,T,FFTT () FFTTTTTT. (¢ Apply(2-10-2)

g:]d _(2—10-—3). (d) Apply (13) through (16); for example, [~ 3y Vz z + y =
2 = [:’y Jzz+y = 22] = [Ff)r every y there exists an z such that z 4 y
oes not equal 2z]. (e) The right member of (17) reads “There exists an z
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such that f(z), and if both z and y a:: ;()lt;tionsmofb');f:tz)ztl;eg):f ﬁ:jcg Emlrse) 1;113(';; .
" i mber of (17) — its first term, by (2—~0J;

cTa;.ge;r ElleQ)rl%v}:at;I;;ate both(members of (17). The right member of Ehe ;‘es';‘lilté
by De Morgan’s law, becomes ~ 3z f(z) V ~ V&,¥ Iflx) A %;y) —;—;0::[:1 d——Sig:n .pliﬁes
first term in this conjunction is Vz ~ f(z) by (2-10-3). e sThen rimp)ifes
as follows: Let p = f(x) A f(y), and let ¢ = (z = y)b. . o o
[~VzVyp > g = BzIy~ (p— @] = Bz3yp A ~q] by using

¢ (?)—2};4‘2);‘ two significant values, [3 1z f(x)] = fle) ¥ F). y (gi Aini ine;s.
indicated in Exercise (e). (h) Vyy +0 = v Henc? v 1\11/0
wt+z=yAy+ad=yl-ltez= y+ - k=21 0 k)-It i We
excluded substitutions in a hypothesis introduced by this rule}.l (_ It makes
no difference what symbols we use so long as they are not otherwise

ANSWERS TO PROBLEMS

1. Every man is the father of all men; 0. 2. same as Problem 1. -31. E(:}(:l};
mar.l is the father of some man; 0. 4, Every man is a son of.some man; b e
truth value and others below may be considered controversial by some, bu

book is not concerned with theology.) 5. Some man is the f}z:therf o(f) I.f;lel $§g i (1)

6. Some man is a son of all men; 0. 7. hSon’}e x:an lsszl:f gat 1(3' oEzery o ilas
. 9. Every man has just one ;0. 10.

S';{lsfaorﬁ: ?:tlll);)-b lle?m171. Just oney man is the father of all men; 0. 12. J.uit 0&6

; is a-son of’ all men; 0. 13. Some man is the father of just one son; 1. ! .

I';‘lﬁ:r::sisa: man who is a son of just one father; 1. 15. Just one man is the fa;;l e;;

of a son; 0. 16. Just one man is a son of some man; 0. 17. Just one m

i ; 17.
ther of just one son; 0. 18. Same as ‘ '
th(;()fa\/a:r[x is Ja man — 3ly y is the father of z]. 21. 3z 3y x and y are brothers

92. Vz Vy x and y are brothers. 23. Iz Iyzy = 16. 24. Vx [z is a_r‘l—lan; (aé/ngé
is an ancestor of z)]. 25. Va [z is even ANz > 4 —3ydzx = yf ]z Y
2 are odd primes]. 26. Vz [z is an idea — 3y y is a consequence ol I].

2-12 Heuristic. Logic is concerned with deductions that are cefrtlalmz)r‘l\.’
As explained in Section 2-6, in a deductive theory all the t?eoremsceo o
with certainty if the axioms, deﬁnitions,. and rules_of proo are (:iacm I()laﬂ};
Although strict logical thinking is very important in §01ellllceta1;1 ity
living, it is by no means the only k{nd of W(')I‘t;h-Whlle 1nte_ ectu e theré
Indeed, without ohservation, ex;;)erlm‘ent, discovery, and inspira

i i ut!
wo]l?»lla(flol;: Zo‘fllllégfefr? S::nl Ot%écii:veod, it must be conceived and considered
plausible. Before axioms can be used, they must. be formulatidi)eBce;f:;:ez
theory can be built about certain concepts, basic terms. musb.ect reated
and defined. Before a logical theory can be constructed, its slx)l j e
must be understood to some extent. Before an answer can be jusu re’au
must be found. Such activities are exploratory and uncertain, as a

activities of creation and discovery.

2-12] HEURISTIC 129

The word “heuristic” is used as an adjective to describe activities
serving to discover or reveal, including arguments that are persuasive and
plausible without being logically rigorous. It is used as a noun to refer to
the science and art of heuristic activity.

Heuristic is obviously very important, and the high rewards that some-
times go to its most successful devotees are well deserved. Why, then, is
not more attention devoted to studying and perfecting this art? The
most obvious answer is that, by definition, it includes just those things
that have not yet been systematized and made scientific. As soon as we
discover a formula for solving a particular kind of problem, we no longer
need heuristic for dealing with it. It is possible, also, that most heuristic
experts prefer to practice the art rather than to talk about it!

(a) Look up “heuristic” in an unabridged dictionary.

(b) Could heuristic
be entirely formalized?

We do not attempt here to discuss heuristic in any detail. Instead we
make some brief observations and refer the reader to the very few books
on the subject. Among these, the best one for a beginning is How To
Solve It, by G. Polya (Princeton University Press, 1945, and also in a
paperback edition issued by Doubleday, 1957.) In it we read: “The first
rule of discovery is to have brains and luck. The second rule of discovery
is to sit tight and wait till you get a bright idea.” A third rule might be:
while waiting for brains, luck, and a bright idea, spend some time ex-
perimenting, some time thinking, and some time resting. If there is any
rule that applies to all heuristic situations, it is: observe, experiment,
think, and rest. The greatest difficulty comes in combining thought and
action. Some persons act without thinking. Others are afraid to act until
they know the answer. In Shakespeare’s classic lines,

Our doubts are trattors,
And make us lose the good we oft might win
By fearing to attempt. (Measure for Measure)

Polya gives a very useful outline of steps that may be helpful in problem
solving. The main steps are: (1) understand the problem, (2) devise a
plan, (3) carry out the plan, (4) check and reconsider the results. Al-
though the bare outline may not seem to be very helpful, Polya gives
many practical suggestions under each step. The methods are applicable
to all kinds of heuristic activity, both to problems where a simple answer
is sought and problems consisting of discovering a proof. Perhaps a fifth
step might be added: (5) clean up the problem. This suggestion would
involve reformulating the problem and its solution in a logical and clear
way after eliminating all the experiments and confusion of the heuristic
process. Step (5) has usually been performed on the mathematics that



130 ELEMENTARY LOGIC [cHAP. 2

students see in books, which is the reason there is often no clue to how the
results were discovered. ' . ‘

It is possible to formulate heuristic rules that serve as guides in 'crea.tlve
work. They differ from rules of proof or theorems of mathematics since
they suggest possible lines of activity and do not claim to be laws. For
example, -

Heuristic Rule: An identity may sometimes be proved by writing an
identity whose left member is the left member of the identity to be proved
and then modifying the right member by replacements until it is the same
as the right member of the identity to be proved.

(¢) Give an example of our use of the procedure described in the preceding
rule.  (d) Suggest an obvious modification of the rule.  (e) Formulate a heu-
ristic rule to cover the cases in which we work with both sides of an identity.
(f) Formulate other heuristic rules for doing proofs. Keep a list and add to
it. (g) Read Polya’s How to Solve It.

Among the very few books on heuristic, the student will find the fol-
lowing most helpful:

How to Study—How to Solve, by H. M. Dadourian, Addison-Wesley,
1951. Emphasizes problems in elementary mathematics.

The Psychology of Invention in the Mathematical Field, by J. Hadamard,
Princeton University Press, 1949. A fascinating little book by a great
mathematician.

Also interesting are:

Mathematics and Plausible Reasoning (two volumes), by G. Polya,
Princeton University Press, 1954.

The Creative Process, by B. Ghiselin, University of California Press,
1952,

Problem-Solving Processes of College Students, by B. 8. Bloom and L. J.
Broder, University of Chicago Press, 1950.

Productive Thinking, by M. Wertheimer, Harper & Brothers, 1945.

ProOBLEMS

Problems 1 through 12 are to be solved in the light of Polya’s discussion
of heuristic and his outline. The answer should include an analysis of how
the problem was solved as well as a justification of the solution. Of course, all
problems in this book are exercises in heuristic.

1. How much must a merchant mark up an article costing him $12 in order
that he may later mark it down 259, from its sale price and still make a profit
of 209, on it? )

2. A man agrees to build a garage to be owned jointly by himself apd his
neighbor, each to share equally in the cost. The man does all the labor himself,
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working 200 hours, and the neighbor contributes $500 worth of material. If
the man’s labor is worth $1.50 an hour, how should settlement be made?

3. According to a recent news item, a mail-order house installed a $500,000
electronic computer with which ten girls could do the work formerly done by
150. Is this a money-saving move?

4. Which would you rather have, four annual salary increases of $100 each
or two salary increases of $200 each at two-year intervals?

5. Did Greek authors of the pre-Christian era use footnotes?

6. A lady asks how long she should make a valance to go all around a cir-
cular table of diameter 3 feet 64 inches. What do you tell her?

7. Fill in the blank in the following quotation from the Wall Street Journal.
“Alden’s, Inc., voted a quarterly of 30 cents on the increased common, payable
July 1, to stock of record June 14. A 509, common stock dividend was paid
May 7. Before that 37 1/2 cents was paid quarterly on the old common. In
announcing the increase, Robert W. Jackson, president, said the ‘previous com-
mon quarterly dividend of 37 1/2 cents is equivalent to 25 cents based on out-
standing shares reflecting a 509, distribution made May 7, 1954. The current
rate of 30 cents, therefore, represents a % increase in the common stock
dividend.””

8. A reed growing in the middle of a pond 8 feet in diameter just touches
the edge when it is pulled over. How deep is the pool if one foot of the reed
is above the water? (An old Chinese problem.)

9. Find a formula for the long diagonal of a rectangular box of sides a, b, and c.

10. Show that in chess it is impossible to reach a position in which all pawns

of one color are in the same file.
*11. In chess, a “won position” for White (Black) is one from which White
(Black) can force a win no matter how Black (White) plays. A “draw position”
is one in which either player can force at least a draw. It has been proved
that every position in chess is a won position for Black, a won position for
White, or else a draw. There is no known method of deciding which of these
possibilities is the actual one in any case, however. If we modify the rules
to permit a player not to make a move when it is his turn, it follows that the
initial position is either a draw or a won position for White. Prove this last
statement.

12. A chess board can easily be completely covered by dominoes of a size
that cover two adjacent squares. Show that this cannot be done if two di-
agonally opposite corner squares are removed from the board.

Let 8, C, T, s, ¢, t be undefined terms satisfying the following axioms and
subject to the laws of algebra of real numbers.

0 ' 8242 =1,

@) T = 8/C,
3 t =C/S,
4 s = 1/8,
(5) ' c=1/C.
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Prove 13 through 20.
2 o o2
13. T2 4+ 1 = ¢4 14. 142 = 2
15. C’Tt S. 16. 8s = Cc = Tt = 1.
7.0 — 8+ T) =C. 18. ¢/(T+ t) = S.
19. T2 = 8272 4 §2. 20. (c2+ s2)/(sc) = T+ L.

91. An auditorium with 800 seats was not full one evening. Exactly $340
was taken in. Adults paid 50¢, children 20¢. Prove that more than three times as
many adults as children were present.

If a sentence is true in a particular case we say that it is vqiﬁed i.n tha.t case.
Verification is important. In empirical sciences it is the- way in which smen.tl.ﬁc
hypotheses are checked, but it should not be confused w1th proof. The physgclcsit
checks his hypotheses by attempting to verify them experimentally. If he finds
a counterexample, he has to reject an alleged law. If he does not, he accepts
the law tentatively. Usually he tries to prove the allege\d law by mathematlcgl
methods from other laws thought to be correct. In sht?rt, he trle‘s to provgﬁ‘hls
hypotheses by constructing a deductive theory, but this process is quite differ-
ent from the process of checking by experiment and observation.

99. Write a sentence that is true for 100,000,000 values of its variable but is
not a law. . .

23. Write one that is true for an infinite number of values of its variable,
and also false for an infinite number! . .

24. Cite an example of an accepted scientific law and explain why it could
not be verified for every case. \

25. Could verification by numerous cases ever prove a law?

According to Webster, evidence is “that which furnishes, or ’t:ends to furm'sh
proof, ...” If p — g, we call p conclusive evidence o'f q, but ev1den.ce for ¢ in-
cludes also any proposition that verifies, makes plausible, or o'therw1se supp.orts.
belief in g. For example, F. H. Elwell in Elementary A;countmg (p. 83) writes:
“The fact that a trial balance ‘proves’ does not necessarily mean that the ledger
accounts accurately record all transactions of the period. . x In general, how-
ever, the fact that the bookkeeper obtains a tr’i’al balance is usually accepted
as evidence that the ledger accounts are correct.

26. Letting p = ledger accounts are correct, and ¢ = books balance, which
is true, p — qor ¢ — p? ‘
97. In what sense is ¢ evidence for p?

Since evidence includes so much, it is impossible to indicate all‘tyipe.s. per-
tainly, however, when p — ¢, ¢ is used as evidence for p, an(‘i this is justified
on the ground that the truth of g at least establishes conclusively that p may
be true,.

28. Justify the last remark by showing the implications of ¢ being false in

such a situation. )
29. If p — ¢, is ~¢ conclusive evidence for ~p?
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In legal practice evidence includes only such matter as conforms to the
established rules of evidence. Direct evidence is evidence that “immediately
establishes the fact to be proved by it,” while indirect evidence is that which

“establishes immediately collateral facts from which the main fact may be
inferred.”

30. If q is the fact to be proved, p expresses the direct evidence, and r the
indirect evidence, indicate symbolically the relations between P, ¢, and r.

31. X is accused of stabbing Y. A testifies that he saw X stabbing ¥. Direct
or indirect? Conclusive?

32. Z testifies that he saw X running from the scene with a bloody knife,
that Y gasped out X’s name, and that Z saw no one else in the area. Direct
or indirect? Convincing? Conclusive?

The last question indicates the frequency, and indeed the necessity, of mak-
ing decisions on the basis of evidence that is, strictly speaking, not conclusive.
The law requires merely certainty “beyond a reasonable doubt,” which is much
less certain than strict deductive proof. For example, in Problem 32 there may
be doubts about Z’s honesty, his memory, his accuracy of observation, the
meaning of Y’s last words, and the possibility of someone else having been
present and committed the crime without Z’s knowing it. Nevertheless, the
evidence is convincing because we feel it very unlikely that these things be
accompanied by Z’s testimony. We ignore here the aspects of evidence that
involve probability judgments, and consider merely examples in which (the
evidence) — (the fact) and those in which it does not. Evidence of the latter
type is usually called circumstantial evidence.

33. Would you call Z’s testimony circumstantial?

Let @ = (X committed the crime), and b = (X was present at the time of

the crime). An alidi is a claim on the part of X to have been elsewhere, i.e., a
claim that ~b.

34. Which is correct,a = bor b — a?
35. Why is a valid alibi conclusive proof of innocence?

Let G = the defendant is guilty, I = ~@, ¢ = evidence for G such that
G — C, but ~(C — @), and E = the evidence such that E — G.

36. Write various relations between @, I, and E.

37. What is the basis in logic for the requirement that the prosecution must
prove G (“assumed innocent until proven guilty”) rather than the alternative
of requiring the defense to prove I (“guilt by accusation”)? In this connection
consider the possibility of both truth and falsity for E and C, and also the
possibility that all evidence is inconclusive.



