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Envelope theory shows us how to deal with the interplay of direct and indirect
effects of parameters in a constrained maximization (or minimization) problem:

Consider the following problem:
Choose x to maximize (or minimize) f(x, a) subject to the constraint that

g(x, a) ≤ b. where x is an n vector, a is an m vector, and b is a scalar. Think of
a, b as a vector of “parameters” for the problem, x as a “choice vector” and f
as a payoff function. Assume that f and g are twice continuously differentiable
functions and that a unique maximum exists x(a, b) = (x1(a, b) . . . xn(a, b) exists
for all a and b in in some open set.

To avoid complications, let us assume that f and g are both strictly increas-
ing functions of x.1

Define v(a, b) = f (x(a, b)). The v(a, b) is the maximum payoff attained with
the parameters a, b. We know from earlier considerations that at a maximum,
it must be that for some scalar, λ, and for all i = 1, . . . n,

∂f (x(a, b), a)

∂xi
= λ

∂g (x(a, b), a)

∂xi
(1)

and also that for all a and b in the domain,

g (x(a, b)) = b (2)

Since Equation 2 holds for all b, the derivative of the left side equals that of the
right side, so we must have∑

i

∂g (x(a, b), a)

∂xi

∂xi(a, b)

∂b
= 1 (3)

Similarly, since Equation 2 holds for all a, it must be that for every j = 1, . . .m,
the derivative of the left side with respect to aj is equal to that of the right side.
This tells us that∑

i

∂g (x(a, b), a)

∂xi

∂xi(a, b)

∂aj
+
∂g (x(a, b), a)

∂aj
= 0 (4)

Now we know that
v(a, b) = f (x(a, b), a) . (5)

Lets see what we can learn about the derivatives of v. First we have

∂v(a, b)

∂b
=

∂f (x(a, b), a)

∂b
(6)

=
∑
i

∂f (x(a, b), a)

∂xi

∂xi(a, b)

∂b
(7)

1This assumption can be greatly relaxed.
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= λ
∑
i

∂g (x(a, b), a)

∂xi

∂xi(a, b)

∂b
(8)

= λ (9)

where the step from Equation 7 to Equation 8 follows from Equation 1 and the
step from 8 to 9 follows from Equation 3.

Next let us take derivatives with respect to ak. We have

∂v(a, b)

∂ak
=

df (x(a, b), a)

dak
(10)

=
∑
i

∂f (x(a, b), a)

∂xi

∂xi(a, b)

∂ak
+
∂f (x(a, b), a)

∂ak
(11)

= λ
∑
i

∂g (x(a, b), a)

∂ak

∂xi(a, b)

∂ak
+
∂f (x(a, b), a)

∂ak
(12)

= −λ∂g (x(a, b), a)

∂ak
+
∂f (x(a, b), a)

∂ak
(13)

= −∂v(a, b)

∂b

∂g (x(a, b), a)

∂ak
+
∂f (x(a, b), a)

∂ak
(14)

So we have

∂v(a, b)

∂ak
= −∂v(a, b)

∂b

∂g (x(a, b), a)

∂ak
+
∂f (x(a, b), a)

∂ak
. (15)

Why is this interesting? Notice that Equation 15 involves only the deriva-
tives of the function v and the “direct” effects of the parameter ak on the payoff
function and on the constraint function. It doesn’t involve any terms that relate
to the indirect effects of changes in the xi’s. If the functional form of the direct
effects is fairly simple, we can make useful inferences.

Let us consider two familiar examples.

Example 1: The standard consumer budget problem. In this case we inter-
pret x be a vector of n commodities, a as a vector of n prices and b as income.
Then in our earlier notation, f(x, a) = u(x) and g(x, a) =

∑
aixi and x(a, b) is

the demand vector that maximizes u(x) subject to px ≤ b. In this case, we see
that

∂f(x, a)

∂ak
= 0

for all k. (Consumers don’t care directly about prices, but only about how they
affect their budgets.) We also see that

∂g(x(a, b), a)

∂ak
= xk(a, b).

Therefore the equation 15 tells us that

∂v(a, b)

∂ak
= −∂v(a, b)

∂b
xk(a, b)
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which if let p = a and m = b implies that

xk(p,m) = −∂v(p,m)

∂pk
÷ ∂v(p,m)

∂m
.

and so we are able to find the Marshallian demand functions just by taking
partial derivatives of the indirect utility function.

Example 2: Cost minimization problem Again, let x be a vector of n com-
modities, a as a vector of n prices and b as income. This time, let f(x, a) =∑

i aixi, let b represent a specified utility level u and let g(x, a) = u(x). Then
x(a, b) is the solution to the constrained minimization problem Minimize f(x, a)
subject g(x, a) = b. The value of the solution v(a, b) is this time the “expendi-
ture function”’ e(p, u) where e(p, u) is the cost of achieving utility u at prices
p.

This time the direct effects are

∂f(x(a, b), a)

∂ak
= xk(a, b)

and
∂g(x(a, b), a)

∂ak
= 0.

So when we apply Equation 15, we have

∂e(p, u)

∂pk
=

∂e(p, u)

∂u
× 0 + xk(p, u) (16)

= xk(p, u) (17)

The solution x(p, u) to this problem is known as the “Hicksian demand function”
and the function xk(p, u) is the Hicksian demand for good k.

3


