Problem 1.50 in Jehle and Reny is stated in a way that is at best confusing and if taken literally.

The problem is stated as follows:
Someone consumes a single good and his indirect utility function
is

$$
v(p, y)=G\left(A(p)+\frac{\bar{y}^{\eta} y^{1-\eta}}{1-\eta}\right)
$$

where

$$
A(p)=\int_{p}^{p^{0}} x(\xi, \bar{y}) d \xi
$$

and $G(\cdot)$ is a positive monotonic function of one variable.
a) Derive the consumer's demand for x and show that it has constant elasticity equal to η.
b) Suppose the consumer has an income equal to \bar{y} and the price rises from p to $p^{\prime}>p$. Argue that the consumer's change in utility caused by this price change can be measured by

$$
-\int_{p}^{p^{\prime}} x(\xi, \bar{y}) d \xi<0
$$

Interpret this measure.
If we take the statement of the question literally, there is only one commodity. Where p is the price of that commodity and y is income, the budget is simply the scalar equation $p x=y$. This implies that $x=y / p$ and if this commodity is desirable, then the function $u(x)=x$ would represent preferences. So the indirect utility function would be a monotone increasing function of y / p. If we want the separable form in the problem, we could write $v(p, y)=G(\ln y-\ln p)$, which means we would need $A(p)=-\ln p$, but instead of $\frac{\bar{y}^{\eta} y^{1-\eta}}{1-\eta}$, we would have something like $\frac{\bar{y}^{\eta} \ln y}{1-\eta}$.

So the single commodity interpretation of the problem doesn't make much sense. Suppose that instead, we assume that the writer of the problem meant that there are two commodities, where good 1 is numeraire and that the p is the ratio of the price of good 2 to good 1 , while the y is the ratio of income to the price of good 1. Now we get a much more interesting problem. Suppose that the problem is interpreted as:

Someone consumes two goods. Let Good 1 be the numeraire with price 1, let p be the ratio of the price of good 2 to the price of good 1 and let y be the ratio of income to the price of good 1. The consumer's indirect utility function can be written as

$$
v(1, p, y)=G\left(A(p)+\frac{\bar{y}^{\eta} y^{1-\eta}}{1-\eta}\right)
$$

where

$$
A(p)=\int_{p}^{p^{0}} x(\xi, \bar{y}) d \xi
$$

and $G(\cdot)$ is a positive monotonic function of one variable.
a) Derive the consumer's demand for good 2 and show that it has constant elasticity equal to η.
b) Suppose the consumer has an income equal to \bar{y} and the price rises from p to $p^{\prime}>p$. Argue that the consumer's change in utility caused by this price change can be measured by

$$
-\int_{p}^{p^{\prime}} x(\xi, \bar{y}) d \xi<0
$$

Interpret this measure.
To answer a, we apply Roy's identity. Where $D_{2}(1, p, y)$ is the Marshallian demand for good 2 , we have

$$
\begin{aligned}
D_{2}(1, p, y) & =-\frac{\partial v(1, p, 6)}{\partial p} \div \frac{\partial v(1, p, y)}{\partial y} \\
& =x(p, \bar{y}) \div \bar{y}^{\eta} y^{-\eta} \\
& =x(p, \bar{y})\left(\frac{y}{\bar{y}}\right)^{\eta}
\end{aligned}
$$

This elasticity of demand for good 2 with respect to income is $\frac{d \log D_{2}(1, p, y)}{d \log y}=\eta$.
To answer b, note that since G is simply a monotone increasing function, indirect utility can also be represented by the function

$$
v^{*}(p, y)=A(p)+\frac{\bar{y}^{\eta} y^{1-\eta}}{1-\eta}
$$

Then

$$
v^{*}\left(p^{\prime}, \bar{y}\right)-v^{*}(p, \bar{y})=A\left(p^{\prime}\right)-A(p)=-\int_{p}^{p^{\prime}} x(\xi, \bar{y}) d \xi
$$

We note that $D_{2}(1, p, \bar{y})=x(p, \bar{y})$ for all p. So the integral in the previous expression is just the change in the area under the demand curve as the price is moved up from p to p^{\prime}.

Further things to note:
We can show that if $x(p, \bar{y})$ is a decreasing function of p and if $0<\eta<1$, then the proposed function $v(1, p, y)$ satisfies all of the necessary conditions for v to be an indirect utility function. (You can prove that $v(1, p, y)$ is convex in p and y by looking at the Hessian. It has zero off-diagonals and positive diagonals. You can also show that if $v(1, p, y)$ is convex in p and y, and v is homogeneous of degree zero, then $v\left(p_{1}, p_{2}, y\right)=v\left(1, p_{2} / p_{1}, y / p_{1}\right)$ must be convex in p_{1}, p_{2}, and y.) The other conditions are pretty easy to check.

This means that we know there is some utility function that generates demand functions of the form

$$
D_{2}(1, p, y)=x(p, \bar{y})\left(\frac{y}{\bar{y}}\right)^{\eta}
$$

Even if the direct utility function doesn't have a nice closed-form solution, we have seen what the indirect utility function looks like.

One can generate lots of useful special cases of this form. Just one example: Suppose that $x(\xi, \bar{y})=A-B \xi, \eta=1 / 2, \bar{y}=100$ and $p^{0}=A / B$. Then

$$
\begin{aligned}
v(p, y) & =\int_{p}^{p^{0}}(A-B \xi) d \xi+\frac{10 \sqrt{y}}{1 / 2} \\
& =A \xi-\left.\frac{B}{2} \xi^{2}\right|_{\xi=p} ^{x=A / B}+20 \sqrt{y} \\
& =\frac{A^{2}}{2 B}-\left(A p-\frac{B}{2} p^{2}\right)+20 \sqrt{y} \\
& =\frac{B}{2} p^{2}-A p+\frac{A^{2}}{2 B}+20 \sqrt{y}
\end{aligned}
$$

Then applying Roy's law, we find that the demand for good 2 is given by

$$
D_{2}(1, p, y)=-\frac{(B p-A)}{10 y^{-1 / 2}}=(A-B p) \frac{y^{1 / 2}}{10}
$$

To complete this example, we should also find the demand $D_{1}(1, p, y)$ for good 1 and make sure that we have an interior solution.

From the budget equation, we see that it must be that $D_{1}(1, p, y)+p D_{2}(1, p, y)=$ y. Therefore

$$
\begin{aligned}
D_{1}(1, p, y) & =y-p D_{2}(1, p, y) \\
& =y-\left(A p-B p^{2}\right) \frac{y^{1 / 2}}{10}
\end{aligned}
$$

One last thing to notice. For this demand function to be well defined at $(1, p, y)$, we therefore need

$$
y-\left(A p-B p^{2}\right) \frac{y^{1 / 2}}{10} \geq 0
$$

This will be the case for large enough y. Just for fun, we can play around and see how big y would need to be.

We have

$$
y-\left(A p-B p^{2}\right) \frac{y^{1 / 2}}{10} \geq 0
$$

if and only if

$$
10 \sqrt{y} \geq A p-B p^{2}
$$

Now $A p-B p^{2}$ is maximized when $p=A / 2 B$ and the maximal value of $A p-B p^{2}$ is $\frac{A^{2}}{4 B}$. So we can be sure that

$$
10 \sqrt{y} \geq A p-B p^{2}
$$

if

$$
10 \sqrt{y} \geq \frac{A^{2}}{4 B}
$$

which is equivalent to

$$
y \geq \frac{A^{4}}{1600 B^{2}}
$$

