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Lecture 3

Congestion

Trouble on the Highways

Residents of Hot Rod, Indiana drive cars and eat Big Macs. That’s it.
Resident i has initial wealth, Wi and Big Macs cost one dollar each.1 Each
hour of driving uses fuel that costs pF . Driving also causes congestion. Let
H be the size of the highway network in Hot Rod and let D be the total
amount of driving by citizens of Hot Rod. The level of congestion is given by
a function C(D,H). Denote the partial derivatives of C(D,H) with respect
to D and H respectively by CD(D,H) and CH(D,H). We assume that
CD(D,H) > 0 and CH(D,H) < 0 for all D > 0 and H > 0.

Let Mi and Di denote the number of Big Macs consumed and Di the
number of hours of driving by resident i. Preferences of Hot Rodder i are
represented by a utility function:

U i

(
Mi, Di, C(

n∑
i=1

Di,H)

)
(3.1)

We assume that U i is an increasing function of its first two arguments and
a decreasing function of its third argument. The set of feasible allocations
in Hot Rod is described as the set of vectors (M1, · · · ,Mn, D1, · · · , Dn,H)
such that total expenditures on Big Macs, fuel, and highways in Hot Rod
add to the total wealth of its citizens. If the price of a Big Mac is $1, a
unit of fuel costs pF , and a unit of highway costs the community pH , this

1At the time this lecture was written, the U S. Federal Reserve Bank was committed
to a monetary policy which maintained the price of Big Macs at this level.
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feasibility constraint is:
n∑

i=1

Mi + pF

n∑
i=1

Di + pHH ≤
n∑

i−1

Wi. (3.2)

Samuelson Conditions for Efficiency

We could use Lagrange multipliers to solve for the necessary conditions for
Pareto optimality. Alternatively we could notice that this model is formally
equivalent to one with n + 1 public goods and one private good. Since
everyone dislikes congestion, and i’s driving increases congestion, driving
by i makes each everyone other than i worse off. Therefore driving by any
individual must be treated as a public good. Of course this public good
is one that everyone except the driver hates, but the Samuelson conditions
apply just as well when some people like and some people hate a public good
as when all people like it. Highway expenditures are also a public good, since
increased highway expenditures reduces congestion for everyone. But Big
Macs remain private goods. Nobody except i cares about how many Big
Macs i eats.

Before we state the Samuelson conditions, it is useful to make note of
a subtle point about the marginal effect of one’s own driving on one’s util-
ity. Let us denote the partial derivatives of U i(Mi, Di, C) with respect to
its three arguments by U i

M (Mi, Di, C), U i
D(Mi, Di, C), and U i

C(Mi, Di, C),
respectively. Then U i

D(Mi, Di, C) is the derivative of i’s utility with respect
to i’s own driving holding constant the level of congestion. This is not the
same thing as the derivative of i’s utility with respect to her own driving
holding constant the amount of driving by others, because if i drives more
and others continue to drive the same amount as before, then congestion
will increase. The partial derivative of i’s utility with respect to her own
driving, holding constant the amount of driving by others is given by

∂U i(Mi, Di, C)
∂Di

= U i
D(Mi, Di, C) + U i

C(Mi, Di, C)CD(D,H) (3.3)

For all i and j, let us denote resident j’s marginal rate of substitution
between driving by resident i and Big Macs by

MRSD
ij (Mi, Di, C). (3.4)

Using Equation 3.3, we find that

MRSD
ii (Mi, Di, C) =

U i
D(Mi, Di, C)

U i
M (Mi, Di, C)

+

(
U i

C(Mi, Di, C)
U i

M (Mi, Di, C)

)
CD(D,H) (3.5)
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The part of Equation 3.5 to the right of the plus sign is the difference between
i’s marginal willingness to pay for a unit of driving when the amount of
driving by others is held constant and i’s marginal willingness to pay for a
unit of driving when the congestion level is the same after his entry as before.
The difference between these two measures is the amount that i would be
willing to pay to have one less car on the road. Where the population is
large and the road is also large, this difference will typically very small.
(Although congestion costs imposed by any one individual on a single other
individual are small, total congestion costs imposed by one individual may
be still be large because this small cost is imposed on each of a large number
of individuals.)

Since for j 6= i, i’s driving affects j’s utility only through its effect on
congestion, we have for all j 6= i,

MRSD
ij (Mi, Di, C) =

(
U j

C(Mj , Dj , C)

U j
M (Mj , Dj , C)

)
CD(D,H) (3.6)

The Samuelson condition for an efficient amount of driving by resident
i is that the sum of all residents’ marginal rates of substitution between i’s
driving and their own consumptions of Big Macs equals the resource cost
pF of driving by i. That is:

n∑
j=1

MRSD
ij (Mi, Di, C) = pF . (3.7)

From Equations 3.5 and 3.6 it follows that Equation 3.7 is equivalent to:

U i
D(Mi, Di, C)

U i
M (Mi, Di, C)

= pF − CD(D,H)
n∑

j=1

(
U j

C(Mj , Dj , C)

U j
M (Mj , Dj)

)
(3.8)

In words, this condition requires that i’s marginal rate of substitution be-
tween driving and Big Macs holding constant the level of congestion must
equal the fuel cost of driving plus the sum of individual valuations of the
damage caused by the marginal congestion from extra driving.

The Samuelson condition for an efficient amount of highway expenditures
is that the sum of residents’ marginal rates of substitution between highway
expenditures and Big Macs equals the cost of highway expenditures. This
Samuelson condition can be written as:

CH(D,H)
n∑

j=1

(
U j

C(Mj , Dj , C)

U j
2 (Mj , Dj , C)

)
= pH (3.9)
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From Equations 3.8 and 3.9, it follows that for all i,

U i
D(Mi, Di, C)

U i
M (Mi, Di, C)

= pF − pH

(
CD(D,H)
CH(D,H)

)
. (3.10)

Equation 3.10 has a nice interpretation. Suppose the congestion level is set
at some fixed level. If D is increased by a small amount, then in order to
hold congestion constant, we would have to increase H. In fact if we totally
differentiate the expression C(D,H) = k, it must be that

dH

dD
= −CD(D,H)

CH(D,H)
(3.11)

With the aid of Equation 3.11 we see that Equation 3.10 tells us that i’s
marginal rate of substitution between driving and Big Macs (holding con-
gestion constant) should be equal to the fuel cost of driving plus the cost of
adding enough extra highway to eliminate the extra congestion caused by
the marginal bit of driving.

Optimal Tolls

Let us consider a system of uniform tolls that results in approximately Pareto
efficient amounts of driving by each resident. From equation 3.8 it appears
that a likely candidate for this toll rate is

T = −pH

(
CD(D,H)
CH(D,H)

)
. (3.12)

If the toll is set at pF +T , resident i will drive enough to equate her marginal
rate of substitution between driving and Big Macs to to the cost of driving.
In this case

MRSD
i (Di,Mi, C) = pF + T = pF − pH

(
CD(D,H)
CH(D,H)

)
(3.13)

The right side Equation 3.13 is the same as the right side of the Samuelson
condition stated in Equation 3.8. But the left side of Equation 3.8 is i’s
marginal rate of substitution between driving and Big Mac’s holding con-
gestion constant, while the left side of Equation 3.13 is i’s marginal rate of
substitution holding the amount of driving by others constant. Where the
population is large, the amount of congestion that i imposes on himself is
small and so the difference between these two concepts of marginal rate of
substitution is small. Thus the amount of driving by each individual is close
to the efficient amount.
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Will Optimal Tolls Finance Optimal Highways?

The government in this model has two tasks. Collecting (and returning)
tolls and providing (and taxing for) highways. An interesting question is
whether the revenue collected from efficient tolls would be sufficient to pay
for highway construction.

Let us suppose that the congestion function is homogeneous of some
degree, k. If k = 0, there are “constant returns to scale” in the sense that
doubling both the amount of driving and the amount of highways leaves
the level of congestion unchanged. If k > 0, there are “decreasing returns”.
Doubling driving and highways makes congestion worse. If k < 0, there are
increasing returns. Doubling driving and highways leads to less congestion.
According to Euler’s theorem on homogeneous functions, it must be that

DCD + HCH = kC. (3.14)

Where the government charges the approximately optimal uniform toll
given in Equation 3.12, the government’s revenue is

TD = −pH

(
CD

CH

)
D (3.15)

From Equations 3.14 and 3.15 it follows that when C(D,H) is homogeneous
of degree k,

TD = pHH − k
C

CH
pH (3.16)

Therefore in the case of constant returns to scale where k = 0, the
revenue from tolls exactly covers construction costs. In the case of decreasing
returns to scale, where k > 0, revenue from optimal tolls more than covers
the cost of the optimal highways. Finally, in the case of increasing returns
to scale, where k < 0, efficient toll revenue will not cover total highway
construction costs.
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Appendix: Euler’s Theorem on Homogeneous Func-
tions

This theorem is a useful tool for economic analysis with a simple and beau-
tiful proof. A function f(x1, . . . , xn) whose domain is a subset of <n is said
to be homogeneous of degree k if f(λx) = λkf(x) for all λ > 0 and all x in
the domain of f .

Theorem 1 If a function f is homogeneous of degree k, then∑
i

xifi(x) = kf(x)

for all x in the domain of f .

Proof: Simply differentiate both sides of the identity f(λx1, . . . , λxn) =
λkf(x1, . . . , xn) with respect to λ. This yields

∑
xifi(λx1, . . . , λxn) = kλk−1f(x1, . . . , xn).

Evaluate this last expression at λ = 1 to find that
∑

i xifi(x) = kf(x).
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Exercises

3.1 Residents of Carburetor, Ohio (pop. n), have utility functions

Ui(Di,Mi, C) = AiDi −
1
2
D2

i −Di
D

H
+ Mi (3.17)

where for each i, Di is driving by i, D =
∑n

j=1 Dj , Mi is money expenditure
by i on goods , H is total highway expenditures in Carburetor and where
Ai > 1 is a parameter for each i. Gasoline is available for free in Carburetor,
and it costs nothing to maintain cars. The only goods that money can buy in
Carburetor are Big Macs and highway improvements. The initial endowment
of income is Wi for each i. The price of Big Macs is 1.

1. Since preferences are quasilinear, the Pareto optimal amount of driving
for each i and the Pareto optimal total highway expenditures must
be independent of income distribution (except for the case of Pareto
optimal allocations where some consumers consume no Big Macs).
Find these Pareto optimal quantities.

2. If no tolls are charged, find the Nash equilibrium amount of driving
by each resident of Carburetor.

3. Suppose that each resident of Carburetor is charged a uniform toll
according to the rule suggested in the text of this lecture. What will
this toll be? How much driving will each i do?


