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Abstract-This paper examines some properties of the well-known Braess’ paradox of traffic flow, in the 
context of the classical network configuration used by Braess. The paper shows that whether Braess’ paradox 
does or does not occur depends on the conditions of the problem; namely, the link congestion function 
parameters and the demand for travel. In particular, this paper shows that for a given network with a given 
set of link congestion functions, Braess’ paradox occurs only if the total demand for travel falls within a 
certain intermediate range of values (the bounds of which are dependent on the link congestion function 
parameters). The paper also shows that, depending on the problem parameters, adding a new link might not 
lead to a reduction in total system travel time, even if users are charged the marginal cost of traveling. On the 
other hand, there are ranges of values for the problem parameters for which the new link reduces total system 
travel time. as long as marginal cost pricing is implemented. c 1997 Elsevier Science Ltd 

I. INTRODUCTION AND BACKGROUND 

In 1968, an operations researcher named Dietrich Braess published a paper in which he showed 
that adding a new link to a transportation network might not improve the operation of the system, 
in the sense of reducing the total vehicle-minutes of travel in the system (Braess, 1968 as described 
by Murchland, 1970). Of course, this is a seemingly counter-intuitive and puzzling result, and the 
phenomenon soon became known as Braess’ paradox of traffic flow. This phenomenon is well 
known in the transportation field and has been the subject of considerable discussion in both the 
transportation and more general scientific literature (Arnott and Small, 1994; Bass, 1992; Calvert 
and Keady, 1993; Cohen and Jeffries, 1994; Cohen and Kelly, 1990; Dafermos and Nagurney, 
1984; Fisk, 1979; Lam, 1988; Murchland, 1970; Steinberg and Zangwill, 1983). 

Braess’ paradox occurs because, under the common approach to pricing road usage, users 
attempt to minimize their own travel time while ignoring the effect of their decisions on other 
travelers. (Some other, lesser known paradoxes of traffic flow occur for the same reason, as discussed 
in a recent paper by Arnott and Small, 1994’). The common pricing method, namely average cost 
pricing, leads to user equilibrium assignment in which each user minimizes his/her own travel time 
between an origin and a destination. As a result, it is possible for the total system travel time to 
increase following an expansion of the transportation network, since even if some travelers are 
better off using the new link, they can contribute to increasing congestion for other travelers. 
Conversely, Braess’ paradox disappears if road usage is priced at marginal cost; under such pricing 
the system optimal flow pattern is achieved and total system travel time is minimized. Since we now 
know why adding a new link might cause the total system travel time to increase, the phenomenon 
known as Braess’ paradox is not really paradoxical, and Sheffi (1985) refers to this and similar 
traffic flow phenomena as ‘pseudo-paradoxes’. However, because the phenomenon discussed in 
this paper is still commonly referred to as Braess’ paradox, we refer to it by that name here. 

‘Our interest in the subject of Braess’ paradox arose when the first author asked the students in the Transportation Systems 
Analysis class at Duke University to read the Arnott and Small (1994) paper and solve some problems based on the 
examples in that paper. One of the assigned problems asked the students to show that, by pricing the use of the road net- 
work at the marginal cost, Braess’ paradox is resolved for the example problem in the Arnott and Small paper. The students 
found that while the paradox is resolved through marginal cost pricing, the new link is not used in the system optimal 
solution, and therefore the network expansion would clearly not be warranted in that example. This finding motivated us to 
examine the conditions under which the system optimal solution leads to the new link carrying some positive amount of 
flow (thus improving the performance of the system). Subsequently, we decided to also examine the conditions under which 
the paradox itself occurs. 
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It is clear that under a system optima1 assignment, adding a new link cannot leave the trans- 
portation system (and its users) worse off; the new link can always be assigned zero flow in this 
case, and the total system travel time would be the same as that without the new link. Of course, if 
it is best for the new link to carry no traffic, then it makes no sense whatsoever to add the link to 
the network. On the other hand, if expanding the system reduces the total system travel time under 
marginal cost pricing, then the expansion of the network might be justified, depending on the 
overall set of costs and benefits associated with the new link. 

This paper examines some properties of Braess’ paradox of traffic flow, in the context of the 
classical network configuration used by Braess and most researchers who have examined the 
problem he first described. The paper identifies the conditions of the problem (the link congestion 
function parameters and the total demand for travel) that determine whether the paradox does or 
does not occur in the classical network. The paper also identifies those situations where the new 
link improves the traffic flow (under marginal cost pricing), and those situations where the link 
makes no difference to the operation of the system (even under marginal cost pricing). Specifically, 
four mutually exclusive and collectively exhaustive cases are identified and discussed in this paper, 
namely: 

1. Braess’ paradox does not occur because the demand is too low. In this case, network 
expansion results in reduced total system travel time under the conventional average cost 
pricing approach. 

2. Braess’ paradox does not occur because the demand is too high. Again, network expansion 
results in reduced total system travel time under the conventional average cost pricing 
approach. 

3. Braess’ paradox occurs, but network expansion leads to improved system performance if 
marginal cost pricing is applied. 

4. Braess’ paradox occurs, and network expansion leaves the total system travel time 
unchanged under marginal cost pricing (because the new link does not carry any traffic in 
the optimal flow pattern). 

The remainder of this paper is organized as follows. In Section 2 we formulate the problem 
and show, using the configuration of the classical network for Braess’ paradox, that the paradox 
occurs only for certain values of the problem parameters (link congestion function coefficients and 
total travel demand). In Section 3 we show, again in the context of the classical network for 
Braess’ paradox, that adding a new link and subjecting travelers to marginal cost pricing can either 
improve overall system performance or leave it unaffected, depending upon the values of the 
problem parameters. Thus, while marginal cost pricing always prevents Braess’ paradox from 
occurring, we find that it does not necessarily ensure that the additional link will improve the 
overall system performance. The analytical results in Sections 2 and 3 are illustrated using the 
numerical examples presented by Braess (1968) and Arnott and Small (1994). In the final section, 
Section 4. we state our conclusions. 

2. WHEN DOES BRAESS’ PARADOX OCCUR? 

In this section of the paper we examine the conditions under which Braess’ paradox occurs in 
the classical network employed for illustrating this phenomenon. We first describe the network. 

2.1. Network description 
Consider the simple transportation network shown in Fig. 1, with a single origin node o, and a 

single destination node r. This network has the same configuration as that used by Braess and 
most of the researchers who subsequently addressed the problem he first identified. Figure l(a) 
depicts the network before addition of the new link pq, while Fig. l(b) depicts the network after 
addition of this link. Figure l(c) depicts the two routes (opr and oqr) from o to r for the four-link 
network shown in Fig. l(a), while Fig. l(d) shows the additional route (opqr) from o to r that is 
made possible by the addition of the link pq, Note that the links op and qr are assumed to be 
bottleneck-type situations in which the travel time increases rapidly as a function of the flow 
on the link. 
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Let the total demand for travel from origin o to destination r be Q, and let this demand be fixed 
(i.e. inelastic), as in the problem formulated by Braess. Further, assume that the link volume-tra- 
vel time functions are linear, as in the problem formulated by Braess. Specifically, let the link tra- 
vel time functions be given by: 

where 

tij = ‘ILV + pi&j, (1) 

tij is the travel time on link ij, 

"ij is the free flow travel time on link ij, 

Bii is the delay parameter for link ij (the increase in travel time per unit increase 
in the flow on link ij), and 

.Lj is the flow on link ij. 

As in the classical problem for Braess’ paradox, we assume that the problem is symmetric, so 
that: 

a op = ffqr 1 %q = ffpr 

and 

Pop = Bqr r Boq = pps,,. 

p&:3q p(3E!&iq 
0 

to, = Plfoo 
0 

(a) Four-link network (b) Five-link network 

p<3q ppAq 
0 

0 
0 

(c) Two possible routes in the (d) Additional route created by 

four-link network new link pq 

Fig. I. Description of the network and identification of alternate routes. 

the 
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Further, the bottleneck-type links (op and qr) are assumed to be very short and hence to have zero 
free flow travel time. Thus, we have: 

c! op = ffqr - - 0. 

Finally, the delay parameter for the new link (pq) is assumed to be the same as for links oq and qr. 

Therefore, 

&s,, = Boq = t%s,,. 

Now. let 

%q = (Ypr = ffl, 

cu,, = aa, 

B0p = Pqs,, = BI f 

and 

Ppq = Boq = Bps,, = 82. 

Therefore, the link congestion functions (eqn 1) become: 

t, = BLf& 

tq, = Blfqr, 

10, = al + Bzfoq* 

tpr = aI + BZfpr* 

tpq = a2 + Bzfpq. 

Now, defining 

as the travel time from o to r along route k and 
as the flow from o to r along route k,we have 

(24 

(2b) 

(2c) 

(24 

(24 

t’ = top + tp,,, 

t 
2 

= t,, + tq,, 

t3=tcJp+tpq+tq,, 

and 

Q =f’ +f2 +f3. 

2.2. User equilibrium flow pattern: four-link network 
The user equilibrium solution for the four-link network flow problem can be solved by inspec- 

tion because of the symmetry of this problem. In this case: 

f’ = f2 = Q/2 

and 

TV = t2 = QW + B2) + Q, 

2 

Hence the total system travel time for the user equilibrium solution (before addition of the new 
link) is given by: 

(3) 
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where 

T4 denotes the total system travel time for the average cost solution (user 
equilibrium) for the four-link network. 

2.3. User equilibrium Jlow pattern: five-link network 
Now, we examine what happens when the iink pq is added to the four-link network, as shown 

in Fig. l(b). With the addition of this link, there are three possible routes from o to r (opr, oqr, and 
opqr-see Fig. l(c) and l(d)), and because the network has been expanded, one would naturally 
expect that the total system travel time would not get worse. In fact, one would in general expect 
the total system travel time to decrease if an existing network were expanded. However, as Braess 
showed, one’s intuition is not necessarily correct in this case. Braess showed that the addition 
of link pq increases the total system travel time in the case where the problem is characterized by 
the parameters shown in the second column of Table 1. Specifically, in this case, if the flows are 
distributed according to the user equilibrium criterion, the total system travel time increases from 
498 vehicle-minutes to 552 vehicle-minutes when the network is expanded. 

A relevant question to ask at this point is whether the same situation arises for all possible 
values of the problem parameters. The short answer to this question is “no”. To examine this 
question, we first note that the general expressions for the solution to the user equilibrium problem 
after the addition of the fifth link can be obtained by equating the travel time on each of the three 
possible routes from o to r, i.e. by setting 

t’=$=tj. 

In this case, the user equilibrium solution is given by: 

f' =f2 = ~2 - (~1 + Q(@I + #b) 
I% + 382 ’ (44 

f3=Q-2f’ (4b) 

and 

t’ = t* = t3 = cxl + Q/J + (/I2 - PI) 
~2 - UI + QW + 82) 

I% + 3& 1 . 
(4c) 

Equations (4a-c) apply only if the flow on all three routes is positive. However, for some values 
of the problem parameters, route 3 carries no traffic, while for other values of the parameters, 
routes 1 and 2 carry no traffic. From eqns (4a,b) we find that if 

(5) 

then routes 1 and 2 carry no traffic, and all the traffic uses route 3. That is, if the inequality above 
is satisfied, then: 

f' 'f&O (64 
and 

f3 =Q, (6b) 

Table 1. Parameters characterizing Braess’ classical example and Arnott and Small’s problem 

Parameter Braess’ example (Braess, 1968) Arnott and Small’s example 
(Arnott and Small. 1994) 

al 50 I5 

@2 IO 7.5 

BI IO 0.01 

B2 I 0 

Q 6 1000 

Note: or, az, fir, & are parameters characterizing the link congestion functions on the various links 
of the transportation network shown in Fig. I (see eqns 2ae). and Q is the total demand for travel 
from origin o to destination I). 
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in which case 

and 

t’=$=O 

t3 = Q&91 + B2) + 42. 

(6~) 

(64 

Further, from eqns (4a,b) we find that if: 

2(o1 -a*) 

Qz PI--82 ' 
(7) 

then route 3 carries no traffic, and all the traffic uses routes 1 and 2. That is, if eqn (7) is satisfied, 
then: 

f' =f* = Q/2 (8a) 

and 

f3 =o, WI 

in which case 

I1 = t2 = Q@ + 82) + a, 

2 (8~) 

and 

t3 = 0. W 

We note that we wrote eqns (5) and (7) above for Q in terms of the other parameters, but we could 
alternatively have written an expression for one of the other parameters. We note also that 
eqns (4a-c) above, which apply to the case where there is flow along all three routes, are relevant 
for Q in the range: 

ffl -a2 2h -a*) 

i572+ Bl -82 . 

Figures 2(a) and 3(a) illustrate how the flows along the three routes vary as a function of Q, in 
the average cost pricing case, for the parameters of the problems described by Braess and Arnott 
and Small, respectively (see Table 1 for the problem parameters). 
Now, in general, 

T5 =f’t’ +f*t* +f3t3, (9) 

where 

T5 denotes the total system travel time for the average cost solution (user 
equilibrium) for the five-link network (i.e. after the addition of the link pq). 
There are actually three distinct expressions for T5, corresponding to each 
of the three cases described above. If the flow on the original routes (1 and 
2) is zero, then T5 =f 3t3, with f 3 and t3 given by eqn (6), while if the flow on 
the new route is zero, then T5 =f It’ +f *t*, with f ‘, f *, tl and t* given by eqn 
(8). Finally, if all three routes carry flow, then T5 is given by eqn (9), with 
the flows and travel times given by eqn (4). Thus, T5 is given by: 

p = Q*(281 + 82) + Qcr2 ifQ i E, (loa) 

=Q*@I +82) WI -a*) 

2 +Q~I ifQ L Bl _B2 . (1Oc) 
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To determine under what circumstances the addition of the new link worsens the overall system 
performance, we simply need to find the values of the five parameters of the problem ((Y,, 02, /?t, 
&,, Q) for which the total travel time in the five-link network (eqn 10) exceeds the total travel 
time of the original four-link network (eqn 3). After some manipulation and simplification we find 
that: 

T5 > T4 iffQ(Bl - Bz) -C 2(w - w)orQWA + 82) > WI -cd (11) 

Solving eqn (11) for Q yields: 

2(W - a21 < 2(Ul - a21 

381 + 82 BI -B2 . 
(12) 

Equation (12) above yields the interesting observation that, for a given set of parameters for the 
link congestion functions in the classical Braess’ network, the paradoxical situation occurs only if 
the flow is within the range given by this equation. We note that the upper limit of this range is 
finite unless PI = /I2 (in which case the upper limit on Q for the occurrence of Braess’ paradox is 
). On the other hand, if czl =cz2, then Braess’ paradox will not occur for any positive value of Q. 
The result given in eqn (12) is somewhat surprising. In essence, it says that, for a given set of link 
congestion functions, Braess’ paradox will not occur if the demand for travel is ‘too large’ or ‘too 
small’. The former case implies that a network, subject to Braess’ paradox under a given level of 
demand, might ‘grow out’ of this condition when the travel demand increases over time. More 

Flow on routes 1 & 2 

Flow on route 3 

0 12 3 4 5 6 7 8 9 10 

DEMAND 

(a) Average Cost Pricing 

New Route Makes 

No Improvement 

Flow on route 3 

0 12 3 4 5 6 7 8 s lo 

DEMAND 

(b) Marginal Cost Pricing 

Fig. 2. Route flows as a function of demand - Braess’ example. 
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W 

Flow on route 3 

0 200 400 6W 6W lm 1206 1406 1600 16W ZWO 

DEMAND 

(b) Marginal Cost Pricing 

Fig. 3. Route flows as a function of demand - Arnott and Small’s example. 

importantly, the latter case implies that a network, in which the paradox does not occur at a given 
(low) level of demand, might ‘grow into’ the paradox as the demand increases over time2. 

For example, if we set the parameters of the link congestion functions at the values given in 
Table 1 for Braess’ problem, we find that the paradox occurs if: 

2.58 < Q < 8.89, 

while for the values used in the Arnott and Small example, we find that the paradox occurs if: 

500 < Q < 1500. 

Note that Braess used a demand of 6 units in his example, while Arnott and Small used a demand 
of 1000 units in their example, resulting in the paradoxical situation in both cases. We have shown 
here that demands outside the above ranges would not result in the paradoxical outcome. 

3. UNDER WHAT CIRCUMSTANCES DOES THE NEW LINK IMPROVE OVERALL SYSTEM 

PERFORMANCE UNDER MARGINAL COST PRICING? 

We have seen above that, for the network shown in Fig. 1, the addition of link pq can lead to 
increased total system travel time, if the flow from o to r is distributed according to the user 

*We are indebted to Professor Kenneth Small for having brought this case to our attention. 
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equilibrium assignment rule. It is now well known that this counter-intuitive result will not occur if 
users are distributed across the different routes according to the system optimal assignment rule. 
This latter distribution is obtained by charging users the marginal cost of traveling. 

The question addressed in this section of the paper is “When does adding the new link to the 
existing network reduce the total system travel time if users are charged the marginal cost of tra- 
veling?” To answer this question, we first derive expressions for the route travel times in the case of 
marginal cost pricing. The link travel time-volume relationships given in eqns (2a-e) are average 
cost equations. The marginal cost equations can be derived by multiplying each average cost 
equation by the flow m and then differentiating the resultant equation with respect to flow. For 
the classical Braess’ network, the route marginal cost equations turn out to be: 

where 

tk’ is the marginal travel time from o to r along route k. 

Using the above marginal cost equations, we can easily find the system optimal solution to the 
five-link network shown in Fig. l(b). This is accomplished by equating the marginal travel time on 
each of the three possible routes from o to r. The solution to this problem turns out to be: 

f'* =fZ* = a2 - a2 + &!@I + B2) 

WI + 382) 
(13) 

f3* 1 p - 2f ‘*. (14) 

Now, in networks subject to Braess’ paradox, marginal cost pricing will lead to an improvement in 
system performance only if the new link carries some traffic. That is, marginal cost pricing will lead 
to improved system performance if 

f3* > 0. 
From eqns (13) and (14) we can easily determine that the flow on the new link is positive, in the 
marginal cost pricing situation, if 

Q<;: 1;:. (15) 

That is, if Q satisfies the above inequality, then the new link carries flow, and the total system 
travel time is reduced by the addition of the link pq, as long as users are charged the marginal cost 
of traveling. On the other hand, if Q equals or exceeds the bound given in eqn (15) then the new 
link carries no traffic and cannot be justified even under marginal cost pricing. 

Thus, we find that adding a new link to a transportation system may not lead to a reduction 
in total system travel time, even when users are charged the marginal cost of travel. Whether or not 
this situation occurs for the network represented in Fig. 1, depends on the parameters of the pro- 
blem (the link travel time-volume relationships and the demand for travel). Of course, if adding 
the new link does not decrease total system travel time, the link serves no purpose and should not 
be built. On the other hand, if total system travel time is reduced, the new link may be warranted, 
but this depends on an assessment of all the relevant costs and benefits. 

For the link congestion function parameters of the example problems employed by Braess 
and Arnott and Small (see Table I), we find that the upper bounds on Q for which the new link 
carries a positive traffic flow, are as follows: 

Q < 4.44 (for Braess’ example) 
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and Q < 750 (for Arnott and Small’s example). 
Fig. 2(b) and Fig. 3(b) illustrate how the flows along the three routes vary as 
a function of Q, in the marginal cost pricing case, for the parameters of the 
problems described by Braess and Arnott and Small, respectively. 

Now, in order to determine whether marginal cost pricing does or does not lead to improved 
system performance through network expansion in circumstances when Braess’ paradox occurs, 
we need to examine the relationships between the bounds in eqns (12) and (15). It can easily be 
seen from these equations that the (upper) bound on Q in eqn 15 is exactly one-half of the upper 
bound on Q in eqn (12) in this case (the symmetrical network conventionally used to illustrate 
Braess’ paradox). It can also easily be shown that the lower bound on Q in eqn (12) is less than the 
(upper) bound on Q in eqn (15). Therefore, the bound on Q in eqn (15) lies between the bounds on 
Q in eqn (12). In other words, for a given network, the range of demand in which Braess’ paradox 
occurs can be divided into two sub-ranges. In one of these sub-ranges, namely, when 

2h -a21 aI -ff2 

281+82 xT2- 
(16) 

marginal cost pricing results in a flow pattern in which the additional link is used, and the overall 
system performance is improved. On the other hand, in the sub-range 

(17) 

marginal cost pricing results in a flow pattern in which the additional link is not used. In this case, 
the additional link is not warranted, even under marginal cost pricing. 

Therefore, for a given network, there are four situations that may occur, depending on the 
demand for travel, as follows. 

1. Braess’ paradox does not occur because the demand is too low: 

2@l - 012) 

Q 5 381 + 82 . 

2. Braess’ paradox occurs, but network expansion leads to improved system performance 
under marginal cost pricing: 

2(w -a2) aI -012 

W1+82 <iFE' 

3. Braess’ paradox occurs, and network expansion does not lead to improved system perfor- 
mance even under marginal cost pricing: 

Ql-a2 2(w -a2) 

B1- PI-82 . 

4. Braess’ paradox does not occur because the demand is too high: 

The analytical and numerical results reported above are summarized in Table 2. 
We also note that our work sheds some light on the results reported in Steinberg and Zangwill’s 

(1983) paper. In deriving the conditions for the occurrence of Braess’ paradox in a general 
network, Steinberg and Zangwill assume that all links that carry flow before the network expan- 
sion also carry flow after the network expansion. They point out that if this assumption does not 
hold, however, this does not imply that the paradox will not occur, as it could conceivably occur 
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Table 2. Summary of analytical and numerical results 

215 

Situation General Braess’ example 
expression (Braess, 1968) 

Arnott and Small’s example 
(Amott and Small, 1994) 

Braess’ paradox does not occur because 
demand is too low. 

2(Ul -a?) Qi- %I+82 Q 5 2.58 Q<SOO 

Braess’ paradox occurs, but network W<Q<H 2.58 < Q <: 4.44 SOO<Q<750 
expansion leads IO improved system per- 
formance under marginal cost pricing. 

Braess’ paradox occurs, and network afi < Q < &7-aZ) 4.44 < Q < 8.89 ?SO<Q<1500 
expansion does not lead to improved ’ ’ 

3FF 

system performance even under marginal 
cost pricing. 

Braess’ paradox does not occur because 
demand is too high. 

under other assumptions. Our results, while not obtained for the case of a genera1 network, show 
that Braess paradox can occur even if all links that carry flow before the network expansion do not 
carry flow after the expansion. Specifically, from eqn (5) we know that the original links carry no 
traffic when: 

while eqn (12) tells us that Braess’ paradox occurs when 

Q I 2(Ql - @2) 

381 + B2 . 
(18) 

Now, it is easy to show that there is a finite range of values for Q in which Braess’ paradox occurs 
(eqn (18) is satisfied), but the original links carry no traffic (eqn (5) is also satisfied). Therefore, it is 
not necessary for the original links to carry traffic in order for Braess’ paradox to occur. For 
example, for the numerical values in Arnott and Small’s paper, Braess paradox occurs for Q > 500, 
but the additional link carries all the traffic for Qs750. Thus, in this case, Braess’ paradox occurs, 
although the original links carry no traffic, when 500 < Qs750. 

4. CONCLUSIONS 

The now well-known phenomenon in which addition of a link to a transportation network can 
leave all users worse off than before the link is added is commonly known as Braess’ paradox, in 
recognition of the person who first described the phenomenon in a paper published in 1968. 
However, it is no longer appropriate to refer to this phenomenon as a paradox because we now 
know the cause of the unexpected result. Specifically, under average cost pricing travelers choose 
their routes according to their own best interest (leading to the user equilibrium flow pattern in the 
network), rather than taking into account the effects of their choices on others in the system 
(which would lead to the system optima1 flows in the network). The latter flow pattern can, of 
course, be achieved by charging users the marginal cost of their travel, and it ensures that expansion 
of the network leaves users no worse off than before the expansion. 

This paper employs the classical network configuration used to illustrate Braess’ paradox to 
show that whether the paradox occurs or not is dependent on the parameters of this problem (the 
link congestion functions and the demand for travel). In particular, this paper shows that, for a 
given set of link congestion function parameters, Braess’ paradox occurs only if the total demand 
for travel lies within a certain range of values (the bounds of which are dependent on the link 
congestion function parameters). That is, if the demand for travel is less than some lower bound or 
exceeds some upper bound, then the paradox does not occur. When the demand exceeds the upper 
bound, no one uses the new link because the advantage presented by the low free flow travel time 
is nullified by the increased travel time (at high volumes) on the bottleneck portions of the 
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network. The fact that there is some upper bound on the total demand, given the link congestion 
function parameters, means that a network might ‘grow out’ of the seemingly paradoxical situa- 
tion as the demand increases over time. (This paper shows that for the example problems used by 
Braess and by Arnott and Small, demands somewhat higher than those in their examples would 
prevent the occurrence of the paradox.) More importantly, a network in which the paradox does 
not occur at a given level of demand might ‘grow into’ the paradox as demand increases over time. 

It is well known that charging users the marginal cost of travel (and thus ensuring that the flow 
pattern is system optimal) guarantees that addition of a new link to an existing system will not 
increase the total system travel time; in a system optimal assignment, one can always ensure that 
the new link carries zero flow by charging a prohibitive toll on the new link. Of course, if it is best 
for the new link to carry no traffic in order to avoid a deterioration of the system performance, it 
would clearly make no sense to build the new link. On the other hand, if the new link carries some 
traffic and can improve system performance under marginal cost pricing, then a full examination 
of the costs and benefits of system expansion needs to be undertaken before a decision can be 
made as to whether to build the new link or not. 

This paper shows that whether the new link carries any traffic in the system optimal flow pat- 
tern, and therefore whether the addition of the new link should be examined further, depends on 
the problem parameters. Specifically, the paper shows that, given the link congestion function 
parameters, if the demand exceeds some upper bound then the new link will be assigned no traffic in 
the system optimal flow pattern. In this situation, the new link does not improve the performance of 
the network (even under marginal cost pricing), and the network expansion is not warranted. 

Finally, we note that all the results reported in this paper have been derived in the context of the 
classical, symmetric four-link network used by Braess to illustrate the phenomenon that now bears 
his name. Similarly, we have assumed linear link congestion functions and inelastic demand, in 
common with the classical formulation for illustrating Braess’ paradox. The extension of these 
results to the general case awaits investigation. 
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