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1 Introduction

Fabulists, from Aesop to Walt Disney, have employed animal characters to play
human-like roles in their stories. The success of these stories suggests that
people are willing to take a sharper look at the foibles of their own species if
they pretend to see them in other creatures. In this paper, I confess a similar
motivation. The paper is motivated by the evolution of food-hoarding behavior
in rats, squirrels, and other creatures, but I have found that thinking along these
lines makes it easier to take a fresh look at the way that human preferences
toward wealth-acquisition and risk-taking may have evolved. Unlike the fables
of Aesop and Disney, this paper is inspired by the work of behavioral ecologists
who have studied real animals 1 and I hope that it may be a useful contribution
to the understanding of animal behavior as well as a fable for economists.

2 Models of Storage and Survival

Let us begin to hone our intuition about the evolution of strategies for acquisi-
tion and survival in a risky example by looking at an example that is so simple
that we can almost solve it in our heads.

2.1 A Really Simple Example

An animal must store food in order to survive through the winter. If it does not
store enough food, it will surely die without reproducing. If it stores enough
food to last the entire winter, it may survive and reproduce. The length of
winters are variable and unpredictable. Storing larger amounts of food is costly,
exposing the animal to risks of predation.

∗I am grateful to Carl Bergstrom, O.J. Reichman and Arthur Robson for inspiration and
helpful discussions.

1Food Hoarding in Animals by Stephen Vander Wall [4] is an admirable survey of the
large and fascinating empirical literature amassed by biologists on food storage by rodents,
carnivores, birds, insects, and spiders.
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• There are two kinds of winters, long and short.

• The climate follows a cyclical pattern with cycles of length k = k1 + k2.
In each cycle, there are k1 short winters and k2 long winters.

• Animals can pursue one of two possible pure strategies. Strategy 1 is to
store enough food to last through a short winter, but not enough to last
through a long winter. Strategy 2 is to store enough food to last through
a long winter.

• The probability that an animal will not be killed by a predator while
storing food is v1 if it pursues Strategy 1 and v2 if it pursues Strategy 2,
where v1 > v2.

• Reproduction is asexual. Except for rare mutations, each individual has
the same genetic makeup as its mother.

Pure and Random Strategies

If each animal is genetically programmed to pursue the same pure strategy
that its parent did, then in the long run, the population will consist almost
entirely of animals that pursue Strategy 2. This is the case because every time
that there is a long winter, all animals that pursue Strategy 1 will be wiped
out. If long winters are very rare, but very severe, this means that evolution
would select genes that mandate an extremely conservative and very expensive
strategy, which is “wasteful” most of the time.

Suppose that it is possible for genes to induce induce randomized strategies.
In this case, a gene may be carried by some individuals who store for a long
winter, but also by some who store for a short winter. As we will show, a
population of genes that mandate Strategy 2 can be invaded by genes that
induce individuals to randomize between Strategies 1 and 2, with appropriate
probabilities. The intuitive reason for the success of this strategy is quite simple.
In a large population, a randomizing gene will not be entirely eliminated during
the long winters, since some carriers of the gene will pursue Strategy 2. On the
other hand, in the years with short winters, the randomizing gene will do better
than genes for Strategy 2, since some carriers of the random gene will enjoy the
smaller risks of predation that accompany Strategy 1.

Our task here is to solve for the randomizing gene that in the long run
will reproduce most rapidly. Let π1 be the probability that a gene assigns to
Strategy 1 and π2 = 1− π1 be the probability that it assigns to Strategy 2. In
a large population, the fraction of carriers of this gene who pursue Strategy i
will be close to πi. In a year with a short winter, all animals that are not taken
by predators will have enough food to survive the winter. Therefore in a year
with a short winter , animals following Strategy 1 will survive predation with
probability v1 and those following Strategy 2 will survive with probability v2 <
v1. It follows that in a short winter, the fraction of carriers of this randomizing
gene who survive will be approximately S1 = π1v1 + π2v2. In a long winter,
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all of the animals pursuing Strategy 1 will die of starvation, while those who
pursue Strategy 2 and are not eaten by predators will survive. Therefore the
fraction of all carriers of the randomizing gene who survive a long winter will
be close to S2 = π2v2.

Finding the most successful mixed strategy

Over the course of an entire climatic cycle, there will be k1 short winters and k2

long winters. Therefore if an individual has genes that mandate a randomizing
strategy with probabilities π1 for Strategy 1 and π2 for Strategy 2, her expected
number of surviving offspring after a full climatic cycle will be Sk1

1 Sk2
2 . In the

long run, after a sufficiently large number of climatic cycles, the population will
consist mainly of animals who use random strategies with probabilities π1 and
π2 very close to the values that maximize Sk1

1 Sk2
2 subject to the constraint that

π1 + π2 = 1 and πi ≥ 0 for i = 1, 2.
Since S2 = π2v2 and S1 = π1v1 + π2v2, we can write

π2 =
1
v2

S2 and π1 =
1
v1

(S1 − S2). (1)

Therefore we can state the constrained maximization problem entirely in terms
of the variables S1 and S2. Specifically, the problem is: Maximize

Sk1
1 Sk2

2 subject to
1
v1

S1 +
(

1
v2
− 1

v1

)
S2 = 1 and S1 ≥ S2. (2)

Let us define αi = ki/(k1 + k2) for i = 1, 2. Ignoring the constraint S1 ≥ S2,
the solution to the maximization problem (2) is

S1 = α1v1 and S2 = α2
v1v2

v1 − v2
. (3)

Since α1 + α2 = 1, simple calculations show that S2 ≥ S1 if and only if α1 ≥
v2/v1. Therefore if α1 ≥ v2/v1, the constraint S1 ≥ S2 does not bind and the
solution for S1 and S2 is as above. The randomizing probabilities that lead to
this outcome are

π1 =
α1v1 − v2

v1 − v2
and π2 = α2

v1

v1 − v2
. (4)

If, on the other hand, α1 < v2/v1, the solution to the constrained optimization
problem will be the pure strategy in which π2 = 1, and π1 = 0.

Implications of this Model

This simple model implies the following:

• Evolution will favor genes that result in mixed rather than pure strategies
if the fraction of all years that have short winters is larger than the ratio of
the survival rate in years with short winters of animals who store enough
for a long winter to that of those who store only enough for a short winter.
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• In an optimizing population of mixed strategists, we have

S2

S1
=

α2

α1

(
v2

v1 − v2

)
.

This means that the ratio of the expected number of survivors over a long
winter will be inversely proportional to the probability of a long winter.

2.2 A More General Example

Let the length of winter be governed by a stochastic process in which there are
N possible lengths of winter. Each year, the length of winter is determined by a
random draw that is statistically independent of the length of previous winters.
The probability that the length of winter is t days is αt and

∑N
t=1 αt = 1. For

t = 1, . . . , N , an animal who pursues strategy t will either be eaten by a predator
or will collect enough food to survive a winter of t days. The probability that
an animal pursuing Strategy t is not eaten by a predator is vt, where vt ≥ vt+1.
An animal who pursues Strategy t will survive through the winter if it is not
eaten by a predator and if the length of the winter is no longer than t.

If all animals pursued pure strategies inherited from their parents, then
eventually the only survivors in the population would be those animals who
stored enough food for a winter of the maximal length N . All other genotypes
would eventually encounter a winter that would wipe them out.

Suppose that a gene mandates that its carriers pursue a mixed strategy such
that the probability that a carrier pursues Strategy t is given by πt for each t.
If the winter lasts for w days, the expected number of surviving carriers of this
gene will be

Sw =
N∑

t=w

πtvt. (5)

In the long run, the proportion of all years in which the winter is of length w
will be αw. The long run growth rate of the population of randomizers will with
very high probability be very close to

N∏
t=1

Sαt
t (6)

where the St’s are determined by the randomizer’s choice of probabilities πt. In
the long run, the population will be dominated by genes for a mixed strategy
in which the probabilities πt are chosen so as to maximize the expression in
Equation 6 subject to the constraint that

N∑
t=1

πt = 1. (7)

From Equation 5 it follows that

SN = πNvN and for all t < N, St − St+1 = πtvt. (8)
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Therefore

πN = SN/vN and πt = (St − St+1)/vt for t = 1, . . . , N − 1 (9)

From (9) it follows that the constraint in (7) is equivalent to

S1
1
v1

+
N∑

t=2

St

(
1
vt
− 1

vt−1

)
. (10)

The mixed strategy that maximizes the long run reproductive effort is therefore
one that yields Si’s that maximize the expression in (6) subject to the constraint
in equation (10) and subject to the additional constraint that

St ≥ St+1 for all t = 1, . . . , N − 1 (11)

Ignoring the inequality constraints in (11), the constrained maximization
problem of maximizing (6) subject to the constraint expressed in (10) is of the
familiar Cobb-Douglas form and has the solution

S1 = α1v1 and St = αt
vtvt−1

vt−1 − vt
for t = 2, . . . , N (12)

If for all t < N ., the solutions to equations (12) all have the property that
St > St+1, then these equations (12) describe the constrained maximization
problem of maximizing (6) subject to (10) and (11). If, however, the expressions
in (12) do not satisfy these inequalities, then we must use Kuhn-Tucker methods
to characterize the solution. In general, the the optimal mixed strategy may
assign zero probability to storing enough food to last exactly t days for some
values of t < N . So long as αN > 0, it must be that the optimal mixed strategy
assigns positive probability to storing enough food for N days. Let T be the
set of all pure strategies that are assigned positive probability by the optimal
mixed strategy and let A =

∑
αt∈S . Then for all t ∈ T , the optimal mixed

strategy satisfies
St =

αt

A

vtvt−1

vt−1 − vt
(13)

Example 1

An instructive example is the case where vt = 1/t for t = 1, . . . , N . In this case,
the solution in (12) reduces to

St = αt for t = 1, . . . , N. (14)

These survival rates are achieved by a random strategy in which for t = 1, . . . , N

πt = t(αt − αt+1) (15)

The inequalities in (11) are then equivalent to the condition that αt ≥ αt+1.
Consider the case where the distribution of length of winter is single-peaked,
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with modal length of winter being w∗. Let A∗ be the probability that the winter
is longer than the modal length. Then the constrained maximum of (6) subject
to conditions (10) and (11) is

St =
αt

A∗ (16)

for all t ≥ w∗ and St = Sw∗ for all t < w∗.
In this example, no animal would store only enough food for a winter that

occurs with less than the modal frequency. For winters longer than the modal
length, the fraction of animals who survived through the winter would be pro-
portional to the frequency of winters of that length.

Example 2

Suppose that every day’s worth of consumption that an animal stores subjects it
to a constant additional risk of being eaten by predators. Thus the probability
that an animal who stores t days worth of food will not be eaten by predators
will be vt = ρt where 0 < ρ < 1. In this case, the solution to Equations 12 is

St =
αtρ

t

1− ρ
(17)

The inequality constraints in (11) will hold for t such that αt ≥ ραt+1. If the
distribution of lengths of winter is single peaked with modal length w∗, then
positive probability will be assigned to storage for all winters longer than ρw∗.

2.3 Do Genes Program for Random Strategies?

Richard Levins [1] presents a clear theoretical explanation of how it can be that
in variable environments it may be advantageous for a gene to take a mixed
strategy by producing more than one phenotype. The phenotypes produced by
a given genotype may be determined by environmental cues, or may be stochas-
tically determined. Levins cites many examples, including the determination
of sexual versus asexual eggs in rotifera, the period of dormancy in many seed
plants, the production of winged and wingless aphids, and clutch size in birds.
The case of spadefoot toad tadpoles is another interesting example of phenotypic
variability among individuals with the same genetic inheritance. These tadpoles
live in ephemeral ponds, where the length of time before a pond dries up varies
greatly from year to year. [2] The tadpoles develop into one of two morphs,
a large, rapidly developing carniverous morph and a smaller, more slowly de-
veloping omniverous morph. If the pool dries up quickly, the carniverous type
are more likely to survive than the omnivores, if the pool dries up slowly the
omnivores are more successful. Both types have the same genetic inheritance.
Morph frequency within a pond is stabilized at an equilibrium by frequency
dependent morph reversals by individuals.2

2An extra source of drama is provided by the fact that the omnivores frequently cannibalize
their carniverous siblings.
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In principle, phenotypic diversity in a population could be maintained either
by an essentially monomorphic genetic population of randomizers or by genetic
variation in the population. According to Vander Wall, “The genetics of hoard-
ing is virtually unknown in wild animals, and only an incomplete picture . . . is
available in laboratory animals. ” Vander Wall cites some experimental evidence
that the ratio of genotypic variation to total phenotypic variation of hoarding
in laboratory-bred mice ranges from 0.25-0.55. This seems to leave quite a lot
of room for randomizing behavior as well as for genetic polymorphism.

Whether variation in food storage strategies is the result of randomization
or of genetic variation, there appears to be a large amount of variation in the
amount of food stored by different members of the same species. According to
Vander Wall [4]

“The hoarding performance of animals in both the wild and in
controlled experiments is typified by great phenotypic variability.
Pika (Ochotona princeps)3 hay piles at one site in the Rocky Moun-
tains ranged in size from 400-6,000 grams. . . and red squirrel mid-
dens contained from 280-4360 cones. . . Individual laboratory rats
and Syrian golden hamsters differ so greatly in their propensity to
store food that subjects often have been categorized as hoarders and
nonhoarders . . .” p 112.

It seems that a fairly straightforward empirical test would distinguish be-
tween the hypothesis of randomization by identical genes and that of genetic
heterogeneity. One would simply want to compare the behavior of the next gen-
eration of an animal population after an unusually hard winter or dry season.
If individual genes randomize, then the distribution of offspring of survivors of
a long winter are expected to be genetically no different from those who did not
survive. Since variation of phenotypes is the result of random draws, the off-
spring of the survivors would randomize with the same probability distribution
as the parent generation. Hence the distribution of behaviors would not change.
If on the other hand, phenotypic variation is maintained by genetic polymor-
phism, then in the year after a harsh winter, we would expect the survivors
to store more food than they did in the previous generation. Vander Wall (pp
63-65) cites several studies that show that animals of the same species living in
harsher climates store more than those living in milder climates (a result that is
hardly surprising). However, he does not mention any studies that consider the
ratio between survival rates under harsh conditions and the relative frequency
of these harsh conditions.

Another testable implication of the theory that we have discussed is the
following. Consider populations of the same species living in geographical areas
with different climates, but where the predation costs of gathering food are
similar. Now suppose that we were able to observe winters of length t and t′ in
each of the two places and that we were able to observe the number of survivors
in each place. From equation 13 the theory predicts that in each of the two

3These are guinea pig-like animals.
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geographical areas,
St

St′
=

Kαt

αt′
(18)

where, given that predation costs are the same in the two places, the constant
K is the also the same in the two areas. Thus the ratio of the relative survival
rates in the two places, will be the same as the ratio of the relative frequencies
of winters of these lengths in the two places.

The hoarding example sharply focusses a difference between evolutionarily
formed attitudes toward idiosyncratic risk and aggregate risk that is emphasized
by Arthur Robson [3]. In this example, as in Robson’s theory, it might be said
that evolution selects genes that act so as to maximize the arithmetic mean
success when faced with statistically independent faced by individuals carrying
the gene and they seek to maximize the geometric mean reproduction rate when
faced with risks like the length of winter, which influence the fate of the entire
population of carriers of the gene.

3 Casino Gambling

In human societies, when property rights are reasonably well established, it
is possible for individuals to achieve randomness in their incomes by means
of “casino gambling” rather than by randomly choosing the amount of effort
that they put into wealth accumulation. In particular, we will assume that
individuals are able to make any “actuarially fair” gamble.4 This may not be
so easy for other animals to achieve, though it is interesting to consider the
consequences of allowing such gambles. As we will show, where the risks of
predation are as in the previous section, the optimal strategy for each animal
is to collect a fixed number of days worth of food Y and then randomize its
income by casino gambling. An animal who initially collects Y days worth of
food and survives can gamble to achieve any probability distribution of days’
worth of food, (π1, . . . , πN ) such that

N∑
t=1

tπt = Y. (19)

An animal who collects Y days food will escape predation with probability vY .
It will survive to reproduce if and only if its stock of food after gambling is large
enough to last at least as many days as the length of the winter. Therefore the
number of individuals who survive a winter of length t will be

St = vY

N∑
w=t

πw. (20)

4A gamble is actuarially fair if the expected payoff in the gamble is the same as the expected
cost of entering the gamble.
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From Equation 20, it follows that St − St−1 = vY πt and therefore

πt =
St − St−1

vY
. (21)

Equation 19 can therefore be rewritten as

N∑
t=1

t(St − St−1) = vY Y . (22)

But Expression 22 simplifies to

N∑
t=1

St = vY Y. (23)

The requirement that gambles must be actuarially fair, therefore imposes the
constraint in Equation on the election of Sts. In addition, since the probabilities,
πt must all be non-negative, we see from Equation 3 that feasibility also requires
that

St+1 ≤ St (24)

for t = 1, . . . , N − 1. It follows that a gene would maximize its long run re-
production rate by inducing its carriers to take gambles in such a way as to
maximize

N∏
t=1

Sαt
t (25)

subject to the constraints in Expressions 23 and 24. Ignoring the inequality
constraint 24 and maximizing Expression 25 subject to the equality constraint
23, we find the solution:

St = αtvyY (26)

for t = 1, . . . , N − 1. We see, that this expression satisfies the inequality con-
straint 24 if and only if αt ≤ αt+1.

In general, we can account for the inequality constraints using methods
known to economists as Kuhn-Tucker conditions. In general finding and charac-
terizing solutions may be quite complex, but here we will look at an interesting
special case where this characterization is easy. Recall that αt is the probability
that the winter is of length t and suppose that the length of winter is “single-
peaked”, where the modal length of winter is w∗ and where αt+1 < αt if t < w∗

and αt+1 > αt if t > w∗. In this case, it is not hard to show that the unique
solution to the constrained maximization problem is that every animal will save
at least enough for a winter of length w∗ and for all t ≥ w∗,

St = kαtvY Y (27)

where

k =
N∑

t=w∗

αt (28)
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Looking at Expression 27, one sees that the solution for the best amount of
food to collect will be the value of Y that maximizes vY Y , which is the expected
amount of food collected by an animal that endeavors to collect Y days worth
of food, when account is taken of the probability that the animal fails to collect
this food because it is eaten by a predator.

Implications of the Casino Model

The casino model has implications that are especially interesting if we believe
that human preference toward risk and acquisition of wealth may have evolved
in an environment where storage and gambling were important features of eco-
nomic life.

The model predicts that instead of randomizing on the amount of effort
they devote to accumulation, individuals would accumulate the amount that
maximizes expected payoff, taking into account the costs of effort. The model
predicts that evolution would produce that individuals who earn a fixed, non-
stochastic income would crave opportunities to gamble at actuarially fair odds,
and if actuarially fair odds were not available they would still want to gamble at
unfair odds. Perhaps compulsions to gamble are not maladaptive to the genes of
the gamblers, but instead allow the gene to diversify the portfolio of genotypes
who carry it.

The presence of the casino lottery option allows the economy to run more
efficiently since with the casino lottery individuals can achieve variance in their
payoff outcomes while pursuing the accumulation strategy that maximizes ex-
pected their expected accumulation. If there were no lottery available, indi-
viduals would seek to achieve random final incomes by randomizing on their
strategy for accumulation of wealth. This randomization would mean assigning
some probability to activity levels that did not maximize expected payoffs.
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