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Abstract

This paper addresses the question of whether our evolutionary history suggests that hu-
mans are likely to be individually selected selfish maximizers or group selected altruists.
It surveys models from the literature of evolutionary biology in which groups are formed
and dissolved and where the reproductive success of individuals is determined by their
payoffs in a game played within groups. We show that if groups are formed “randomly”
and reproductive success of group founders is determined by a multi-person prisoners’
dilemma game, then selfish behavior will prevail over maximization of group payoffs.
However, interesting models can be found for which “group selection” sustains cooper-
ative behavior. Forces that support cooperative behavior include assortative matching in
groups, group longevity, and punishment-based group norms.

Keywords

group selection, altruism, selfishness, evolutionary games, cooperation, biology,
haystack model, punishment, reciprocity, linear public goods game, generalized
prisoners’ dilemma, assortative matching
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1. Selfishness and group selection

What can our evolutionary history tell us about human motivations and social behavior?
The genes that influence our own behavior are inherited from ancestors who themselves
managed to reproduce successfully. Could it be that there are evolutionary foundations
for the selfishness that economists assume is characteristic of homo economicus?

Richard Dawkins (1989), a leading expositor of evolutionary theory, believes this is
the case:

If we were told that a man lived a long and prosperous life in the world of Chicago
gangsters, we would be entitled to make some guesses as to the sort of man he was.
. . . Like successful Chicago gangsters, our genes have survived, in some cases
for millions of years, in a highly competitive world. . . . If you look at the way
natural selection works, it seems to follow that anything that has evolved by natural
selection should be selfish. (pp. 2–4)

Another well-known biologist, Michael Ghiselin (1974), states this view even more
emphatically:

Where it is in his own interest, every organism may reasonably be expected to aid
his fellows . . . Yet given a full chance to act in his own interest, nothing but expe-
diency will restrain him . . . Scratch an “altruist” and watch a “hypocrite” bleed.

But the view that evolution must lead to selfishness is not universally shared. Alexan-
der Carr-Saunders (1922), a sociologist and pioneer in the study of demography and
social evolution, observed that prehistoric humans were clustered into groups who in-
habited well-defined areas, and that migration between groups was infrequent. These
groups, he maintained, typically managed to avoid overpopulation and the attendant
scourges of war, famine, and disease. Carr-Saunders argued that ethnographic evidence
from existing primitive societies indicates that fertility is deliberately restrained by
means of abortion, infanticide, and long-term sexual abstinence. Thus, he claims, these
societies managed to maintain population at roughly constant levels close to those that
would maximize per capita food consumption. He argued that this outcome is inconsis-
tent with reproductive selfishness and must somehow be explained by “group selection”.

Carr-Saunders believed that group selection operates for humans “who have achieved
sufficient social organization”, but not for more primitive animals. He was an early
proponent of the view that “group selection” operates on the evolution of social norms
toward those that serve the group interest.

Now men and groups of men are naturally selected on account of the customs they
practise just as they are selected on account of their mental and physical characters.
Those groups practising the most advantageous customs will have an advantage in
the constant struggle between adjacent groups over those that practise less advanta-
geous customs. Few customs would be more advantageous than those which limit
the number of a group to the desirable number . . . There would grow up an idea
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that it was the right thing to bring up a certain limited number of children and the
limitation of the family would be enforced by convention. [Carr-Saunders (1922,
p. 223)]

V.C. Wynne-Edwards, a leading ecologist of a generation ago, proposed that group se-
lection has far more ancient roots, and applies to much of the animal kingdom. His book,
Animal Dispersion in Relation to Social Behavior [Wynne-Edwards (1962)] includes
an encyclopedic collection of data and descriptions of group behavior and territoriality
among a huge variety of species of insects, fish, birds, and mammals. Wynne-Edwards
maintained that the Darwinian tradition emphasized natural selection at either the level
of individuals or the level of species as a whole, while paying insufficient attention to
powerful selective forces that act at the level of the social group. Like Carr-Saunders,
he further suggests that not only genetic material, but social norms or conventions may
be subject to natural selection. Wynne-Edwards documents the importance of relatively
stable localized social groups for the evolution of animal behavior and suggests that for
many species, groups have evolved systems of hereditary property rights that strongly
shape individual behavior.

According to Wynne-Edwards:

It has become increasingly clear in recent years, not only that animal (and plant)
species tend to be grouped into more or less isolated populations . . . but that this
is a very important feature from an evolutionary standpoint . . . The local stock
of any given animal species, exploiting its resources, consequently tends to adopt
many conventions of a strictly localized or topographical character – for example
the traditional sites of breeding places. Other conventions rely equally strongly on
a procession of mutual relationships among the individual local inhabitants. Above
all the local stock conserves its resources and thereby safeguards the future survival
of its descendants; and no such conventional adaptation could have evolved if the
descendants did not naturally fall heirs to the same ground. Thrifty exploitation
today for the benefit of some randomly chosen and possibly prodigal generation of
strangers tomorrow would make slow headway under natural selection. . . . it is of
the greatest importance in the long-term exploitation of resources that local popu-
lations should be self-perpetuating. If confirmation were needed of this conclusion,
it could be found in the almost incredible facilities of precise navigation developed
in all long-distance two-way migrants whether they are birds, bats, fish, or insects,
to enjoy the advantages of two worlds, and still retain their life-long membership
in the same select local stock. Ideally, localisation does not entail complete repro-
ductive isolation however; we have to consider later the pioneering element also
– in most species relatively small – that looks after colonisation and disseminates
genes. [Wynne-Edwards (1962, pp. 19 and 20)]

Wynne-Edwards also believed that animals do not reproduce as rapidly as they would
if individuals were attempting to maximize their own fertility. He cited examples of
species in which large gatherings assemble just before breeding time. These gatherings,
he claimed, allow individuals to determine the existing population density and to adjust
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their reproductive decisions in such a way as to maintain a relatively constant popu-
lation. In Wynne-Edwards view, animal species are able to solve the “tragedy of the
commons” and to maintain population densities at an “optimal level for each habitat
that they occupy”. In Wynne-Edwards (1962), he asserts that:

Where we can still find nature undisturbed by human influence . . . there is gener-
ally no indication whatever that the habitat is run down or destructively overtaxed.
On the contrary the whole trend of ecological evolution seems to be in the very
opposite direction, leading towards the highest state of productivity that can pos-
sibly be built up within the limitations of the inorganic environment. Judging by
appearances, chronic over-exploitation and mass poverty intrude themselves only
as a kind of adventitious disease, almost certain to be swiftly suppressed by natural
selection. (p. 8)

In the opinion of many biologists, Wynne-Edwards’ conclusions represented a pro-
found misunderstanding of evolutionary theory. According to Richard Dawkins (1989),

being wrong in an unequivocal way, Wynne-Edwards is widely credited with hav-
ing provoked people into thinking more clearly about selection. (p. 297)

An eminent ornithologist, David Lack (1966) and a leading evolutionary biologist,
George C. Williams (1966) presented trenchant rebuttals of Wynne-Edwards group
selectionist views. Lack presented detailed explanations of how the observations that
Wynne-Edwards claimed as support for group-selection could be as well explained by
the theory that individuals maximize their own reproductive interests or those of close
relatives. Lack pointed out evidence from field studies and experiments that indicates
that “in the Starling, the Swift, and usually the Great Tit the most frequent clutch-
size is the same as that brood size from which, on average, most young are raised per
brood”. Lack disputed Wynne-Edwards’ claim that reproductive self-regulation elimi-
nates “over-exploitation and mass poverty”. He cites one of his own studies that finds
that “in many species of song-birds, nearly half of the adults and more of the juveniles
die each year, probably mainly from starvation”. Williams (1966) went on to list many
examples of animal behavior that contribute to individual survival at the expense of the
survival prospects of the group.

Williams and Lack both argued that in a fluctuating environment, reproductive re-
straint in times of abundance is likely to be in an individual’s long term reproductive
interest. Individuals who have fewer offspring and take better care of each are more
likely to have descendants strong enough to survive when hard times arrive. Similarly,
it may be in an individual’s reproductive self-interest to defend territory that is larger
than the minimum territory necessary for successful reproduction in good years because
this territory will be essential for success in bad years.

Wynne-Edwards did not present a coherent theory to support his view that social
groups rather than individuals might be the units of evolutionary selection. More re-
cently, evolutionary theorists have attempted to provide formal underpinnings for group
selection. Sober and Wilson (1999) offer a stimulating and detailed account of these
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efforts. John Maynard Smith (1976), the father of evolutionary game theory and a key
contributor to this effort, concludes that:

the argument is quantitative, not qualitative. Group selection will have evolutionary
consequences: the only question is how important these consequences have been.

2. Games and social interactions

2.1. What is the game and who is playing?

To understand the conflict between the individual and group selection views, it is useful
to model social interaction as a game in which the players and the payoffs are explicitly
specified. In the language of game theory, the two polar positions can be stated as:

• Individual selection theory: To predict social outcomes, we need to examine the
game in which the players are individual animals and the payoff to each animal is
its expected number of progeny. The outcomes that we expect to see are the Nash
equilibria for this game.

• Group selection theory: To predict social outcomes, we need to examine the game
in which the players are geographically semi-isolated communities of individuals
and the payoff is the community’s expected reproductive rate. The outcomes we
expect to see are Nash equilibria where the players are communities.

A third alternative game formulation is suggested by the work of William G. Hamil-
ton (1964) on kin selection theory. As Dawkins (1989) suggests, individuals can be
thought of as survival machines programmed to make copies of their programmers,
the genes. The organisms that we observe are machines that were built by those genes
that have in the past been most successful in getting themselves reproduced. Selfish or-
ganisms are not typically the best vehicle for genes to use in their own reproduction.
Machines that are designed to care for their offspring and to help their close relatives
(who are likely to carry the same genes as their own) will typically do better.

• Kin selection theory: To predict social outcomes, we need to examine the game
in which the players are genes that operate according to Mendelian rules of repli-
cation and that carry specific instructions to the organisms that carry them. The
payoffs to these genes are their replication rates.

We shall return to the discussion of kin selection theory later in this paper. In the next
sections, we examine the competing models of individual and group selection theory
and points between. Taken at face value, these theories have radically different implica-
tions for the evolutionary nature of men and beasts.

Individual selection theory suggests a world populated by resolutely selfish homo
economicus and his zoological (and botanical) counterparts. By contrast, in a world
shaped by group selection we would expect to see impeccable socialists with an instinc-
tive “Kantian” morality toward other members of their group. Of course the localism
that leads to group selection would also be likely to produce some unsavory impulses
towards xenophobia and intertribal warfare.
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When the game being played within communities is prisoners’ dilemma, the contrast-
ing predictions of the two theories are particularly stark and simple. Since the payoff
from playing defect is always higher than that of playing cooperate, individual selection
theory predicts a population of defectors. But since every member of a community of
cooperators gets a higher payoff than any member of a community of defectors, group
selection theory predicts a population of cooperators.

Using prisoners’ dilemma as a research vehicle, biologists, game theorists, and an-
thropologists have found much interesting territory between the two poles of individual
selection and group selection. Although neither of the polar theories would be supported
by modern research, the tension between the forces of individual and group selection
continues to be the focus of interesting research. The use of prisoners’ dilemma to ex-
plore this tension has been very instructive and will play an important part in this survey.
However, as we argue in later discussion, most of the really important (and problematic)
social interactions in the world are probably not games with unique Nash equilibria, let
alone dominant strategies, but games that have many distinct Nash equilibria among
which societies somehow select.

2.2. Prisoners’ dilemma games

2.2.1. Multi-player prisoners’ dilemma

A multi-player prisoners’ dilemma is a game in which individuals may take actions
that are, in the words of J.B.S. Haldane (1932), “socially valuable but individually dis-
advantageous”. Specifically, we consider a game that has two possible strategies for
each player, cooperate and defect, where the payoff to each player depends on her own
strategy and the number of other players who play cooperate. In a game with N play-
ers, where K of the other players cooperate, let ΠC(K,N) and ΠD(K,N) denote the
payoffs to a cooperator and a defector, respectively.

DEFINITION 1 (N -player Prisoners’ Dilemma Game). A game is an N -player prison-
ers’ dilemma game if the payoff functions satisfy the following:

• All players are better off if all play cooperate than if all play defect; that is,
ΠC(N − 1, N) > ΠD(0, N).

• Regardless of what other players do, an individual gets a higher payoff from play-
ing defect than from playing cooperate; that is, ΠD(K,N) > ΠC(K,N), for all K

between 0 and N − 1.

2.2.2. The linear public goods game

It is customary to credit game theorists, Merrill Flood and Melvin Dresher of the Rand
Corporation, with inventing the prisoners’ dilemma game in about 1950. But this game
has an earlier history. In 1932, J.B.S. Haldane, one of the founders of modern population
biology, introduced and analyzed an N person generalized prisoners’ dilemma game
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in which each player’s payoff depends linearly on the number of players in the game
who cooperate. Economists will recognize Haldane’s game as formally equivalent to
the linear “voluntary contribution to public goods” game, much studied in experimental
economics [see Ledyard (1995) for a good survey of this work]. Thus we will refer to
Haldane’s linear N -player prisoners’ dilemma as the linear public goods game.1

DEFINITION 2 (The Linear Public Goods Game). The linear public goods game is an
N player game in which each player can play either cooperate or defect. Where x is the
fraction of all players who cooperate, the payoff to each cooperator is bx − c and the
payoff to each defector is bx.

In a linear public goods game with N players, if K other players cooperate, a coop-
erator will get

(1)ΠC(K,N) = b
K + 1

N
− c = b

K

N
− c′

where c′ = c − b
N

and a defector will get

(2)ΠD(K,N) = b
K

N
.

The linear public goods game can be seen to be an N -player prisoners’ dilemma if
b > c > b

N
. If all players cooperate, each gets a payoff of b − c; if all defect, each gets

a payoff of 0. Therefore when b > c, all players are better off if all cooperate than if all
defect. For all K , ΠD(K,N) − ΠC(K,N) = c − b

N
= c′. Thus if c > b

N
, an individual

always gets a higher payoff by defecting rather than cooperating.
In a linear public goods game with N players, a cooperator confers a benefit of b

N

on every player, including himself, so that the net cost of cooperating is c − b
N

. Some
writers, such as David S. Wilson (1975), analyze a variant of this game in which a
cooperator confers expected benefits of b

N
on every player other than himself at a cost

of c to himself. Results for either of these two games translate easily into corresponding
results for the other, since Wilson’s formulation of the game with costs c is isomorphic
to a linear public goods game with costs c + b

N
.

2.3. Stag hunt games

In one-shot prisoners’ dilemma games, the socially optimal action is never a best re-
sponse for selfish individuals. But in many social interactions, the action that best serves
one’s self-interest depends on the actions taken by others. This suggests the usefulness
of a second exploratory vehicle, a simple two-person game, known as the stag hunt. This

1 Haldane (1932, pp. 207–210 of the Appendix) presents this model in an early discussion of group selection.
The notation used here is that of Cohen and Eshel (1976) rather than that of Haldane.
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Table 1
A stag hunt game

Cooperate Defect

Cooperate 4 0
Defect 3 3

game formalizes a story told by Jean Jacques Rousseau (1950, p. 428), of two hunters
who could cooperate by jointly hunting a stag or defect by individually hunting hare.2

Table 1 is a game matrix for a stag hunt game, where entries represent payoffs to the
row player.

The stag hunt has two equilibria, one where both players cooperate and one where
both defect. In later discussion, we consider the question of when one or the other
equilibrium is likely to be reached.

2.4. Evolutionary dynamics and altruism

2.4.1. Prisoners’ dilemma in a freely mingling population

Let us consider the evolutionary dynamics of a population in which all individuals
are “programmed” (perhaps genetically, perhaps by cultural experience) to play one
of two strategies, cooperate or defect in a symmetric multi-person prisoners’ dilemma
game played by the entire population. We will assume that the dynamics satisfy payoff-
monotonicity [Weibull (1995)], which means simply that the proportion of the popula-
tion that plays the strategy with the higher payoff will increase.3 If the game is prisoners’
dilemma, the payoff to cooperators will necessarily be lower than to defectors, so the
proportion of cooperators in the population must decline over time and eventually con-
verge to zero.4

Gorret Hardin, in The Limits of Altruism (1977) explained this result and suggested
that the replacement of tribalism and parochialism by a more cosmopolitan society is
not likely to enhance cooperation.

2 An engaging paper by Brian Skyrms (2001) makes a strong case that social thinkers should pay more
attention to the stag hunt game.
3 A much-studied special case of payoff monotone dynamics is replicator dynamics in which the growth

rate of the population share using a strategy is proportional to the difference between the average payoff to
that strategy and the average payoff in the entire population [Weibull (1995)]. The results found in this paper
do not require the special structure of replicator dynamics.
4 The result that the proportion of cooperators will decline monotonically is obvious. The result that it must

converge to zero is less obvious. A proof can be found in Weibull (1995). Weibull credits this result to John
Nachbar (1990).
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Competition is severe and total whenever members of the same species are brought
together in One World . . . Conceivably some conscientious members of the com-
munity might eat less than their share of the food, but the resources they thereby
released would soon be absorbed by others with less conscience. Some animals
might refrain from reproducing, but the space so freed would soon be occupied by
those who were less conscientious. . . . Adapting a phrase of the economist David
Ricardo, we can speak of the Iron Law of the Overwhelming Minority. It is silly to
dream dreams of a heaven on earth that presume a value of zero for the size of the
disruptive minority.

3. Haystack models

Two of the founders of modern population biology, J.B.S. Haldane (1932) and Sewall
Wright (1945), proposed that altruistic behavior is more likely to evolve in a population
where group interaction takes place within relatively small subpopulations, (sometimes
called demes) between which there is occasional, but relatively infrequent migration.

3.1. Maynard Smith’s mice

John Maynard Smith (1964) produced the first formal model of group selection in
which seemingly altruistic behavior prevails, even without assortative matching. May-
nard Smith motivates this model with a charming story of “a species of mouse who lives
in a hayfield”.

The setting for Maynard Smith’s haystack model is a meadow. In early summer,
a farmer builds several haystacks, each of which is colonized by exactly two mice.
These two mice and their descendants interact and reproduce asexually for the entire
season, until the haystacks are removed.5 When the haystacks are cleared, the dislodged
mice scramble out into the meadow, mingling freely with the mice displaced from other
haystacks. In the next year, when new haystacks are built, exactly two mice from the
population resident in the meadow are randomly selected to colonize each new haystack.
If the number of surviving mice is more than twice the number of haystacks, the extra
mice are consumed by predators.

There are two types of mice in the population at large, timid mice and aggressive
mice. Descendants of either type of mouse will be of the same type as their ancestors.
Timid mice play the role of “altruists” by pursuing a strategy that is socially valuable but
individually disadvantageous. Thus, within any haystack, the timid mice reproduce less
rapidly than the aggressive mice, but at the end of the season, haystacks that are made

5 Maynard Smith presented his model as one with sexual diploid reproduction. But he contrived special
assumptions that make his model mathematically equivalent to a model with asexual reproduction. To simplify
exposition and to make this model directly comparable with the later extensions by Cohen and Eshel, I present
an asexual haystack model that is formally equivalent model to his sexual diploid model.
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Table 2
The haystack game

Timid Aggressive

Timid r(1 + K)/2 0
Aggressive r r/2

up entirely of timid mice will have more inhabitants than those that include aggressive
mice.

In a haystack settled by two timid mice, all descendants are timid and in a haystack
settled by two aggressive mice, all descendants are aggressive. In a haystack settled by
one mouse of each type, the descendants of the aggressive mouse eliminate the descen-
dants of the timid mouse, and the number of its descendants at harvest time is the same
as the number in a haystack colonized by two aggressive mice.

Although timid mice do poorly when matched with aggressive mice, haystacks in-
habited entirely by timid mice produce more surviving offspring at harvest time than
haystacks inhabited by aggressive mice. Thus a haystack colonized by two timid mice
produces 1 + K times as many descendants as a haystack with aggressive mice.

Since the reproduction rate enjoyed by a founding mouse depends on its own type and
that of its co-founder, these rates can be represented as the payoffs in a game between the
two mice who colonize each haystack. If two aggressive mice colonize a haystack, they
will have a total of r descendants, half of whom are descended from each founder. Thus
each mouse has r/2 descendants. If an aggressive mouse and a timid mouse colonize
a haystack, the timid mouse will have no descendants and the aggressive mouse will
have r descendants. If two timid mice colonize a haystack, they will have a total of
r(1 + K) descendants and each will have r(1 + K)/2 descendants. In the game played
by cofounders, payoffs to the row player are shown in Table 2.

If 0 < K < 1, the haystack game is a prisoners’ dilemma, since regardless of its
cofounder’s type, an aggressive mouse will have more offspring than a timid mouse. If
K > 1, the haystack game is not a prisoners’ dilemma but a stag hunt. If matched with a
timid mouse, a mouse will have more offspring if it is timid than if it is aggressive. But if
matched with an aggressive mouse, a mouse will have more offspring if it is aggressive
than if it is timid.

For the prisoners’ dilemma case with K < 1, the only equilibrium is a population
made up entirely of defectors. For the stag hunt case, with K > 1, there are two distinct
stable equilibria, one in which all mice are timid and one in which all are aggressive.
We demonstrate this as follows. Let the proportion of timid mice in the population at
time t be xt . Since matching is random, any mouse is matched with a timid co-founder
with probability xt and with an aggressive co-founder with probability 1−xt . Given the
payoffs in Table 2, the expected reproduction rate of an aggressive mouse is xt r + (1 −
xt )r/2, and the expected reproduction rate of a timid mouse is xt r(1+K)/2. Subtracting
the latter expression from the former, we find that the difference between the expected
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Figure 1. Dynamics of the haystack model.

reproduction rates of timid mice and of aggressive mice is proportional to xtK − 1.
Therefore timid mice reproduce more rapidly than aggressive mice if xtK > 1 and
aggressive mice reproduce more rapidly if xtK < 1. These dynamics are illustrated by
Figure 1. The graph on the left shows that where K > 1, there are two stable equilibria,
one in which all mice are timid and one in which all are aggressive. (There is also an
unstable equilibrium where the fraction 1/K of mice are timid.) The graph on the right
shows that where K < 1, there is a unique equilibrium in which all mice are aggressive.

THEOREM 1 (Haystack Dynamics). In Maynard Smith’s haystack model with random
mating:

• If haystacks of timid mice produce more than twice as many mice as haystacks of
aggressive mice, there will be two stable monomorphic equilibria, one in which
x = 0 (all mice are aggressive) and one in which x = 1 (all mice are timid), as
well as one unstable polymorphic equilibrium where x = 1/K .

• If haystacks of timid mice produce fewer than twice as many mice as haystacks
of aggressive mice, the only stable equilibrium is a monomorphic population of
aggressive mice.

3.2. General haystack models and assortative matching

Let us define a generalized haystack model to be a model with a large population of
individuals, who are programmed for one of two strategies, altruist or selfish. At the
beginning of each time period, these individuals are randomly partitioned into groups
(possibly of different sizes). Each member produces (asexually) a number of offspring
equal to her payoff in a game that she plays with other members of her own group.
Offspring are programmed to use the same strategy as their parent. At the end of each
time period, all groups are disbanded and new groups are randomly selected from the
combined population of the disbanded groups.

Let pA(K,N) be the probability, conditional on being an altruist, that a player is
assigned to a group of size N in which K of the other group members are altruists. Let
pS(K,N) be the probability, conditional on being selfish, that one is assigned to a group
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of size N in which K of the other members are altruists. We define group formation to
be non-assortative with respect to strategy if when new groups are assigned from the
offspring of the previous groups, altruists and selfish individual offspring have equal
chances to be selected to join one of the new groups, and the probability distribution
of group size and the number of other group members who are altruists is the same
whether one is programmed to use the altruist strategy or the selfish strategy.

DEFINITION 3 (Non-assortative Matching Process). A matching process is non-
assortative between types if

• In each period, the number of individuals of each type who are selected to join the
new groups is proportional to the total number of offspring of that type who were
produced in the previous period.

• In each period, for all K and N , pA(K,N) = pS(K,N).

A simple example of a non-assortative matching process is an urn model in which
there is a fixed number of locations, each with a given capacity, and where each location
is populated by independent random draws from the total population.

If group formation is assortative, so that an altruist is more likely to have altruist
neighbors than a selfish individual, then it is easy to see that altruism can be maintained
in the population. For example, in the extreme case where group formation is perfectly
assortative so that groups consist either entirely of altruists or entirely of selfish, altruists
will always receive higher payoffs than selfish individuals and altruists would eventually
constitute the entire population.

But is it possible for altruism to be sustained in a haystack model if new groups
are formed at random from the population? When groups are formed by independent
random draws, the proportions in each group will not mirror the proportions in the pop-
ulation at large. Random selection results in some groups that have disproportionately
many altruists and some that have disproportionately many selfish individuals. Within
each group, the altruists get lower payoffs and hence reproduce less rapidly than the
selfish. But there is a countervailing effect. Groups that contain more altruists grow
more rapidly. Can this between-group effect overwhelm the within-group effect and
cause the proportion of altruists in the overall population to increase over time? Or does
Hardin’s “Iron Law” extend to populations randomly selected into groups? The next
sections offer a partial answer to this question.

3.3. Cohen and Eshel’s generalized haystack models

Dan Cohen and Ilan Eshel (1976) produced a series of interesting generalized haystack
models. In these models, there are two types of asexually reproducing individuals, “al-
truists” and “selfish”. As in the haystack model, individuals group into distinct colonies
where they live and breed. After some fixed length of time, all colonies are disbanded
and new colonies are formed by individuals randomly selected from the population at
large. In the Cohen–Eshel model, the number of individuals in the founding population
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is N . They assume that reproduction takes place continuously over time and that within
any haystack, the reproduction rate of both types of individuals is an increasing function
of the proportion who are altruists. However, the reproduction rate of altruists is lower
than that of the selfish.

Cohen and Eshel focus on determining the stability of each the two possible
monomorphic populations, all altruists and all selfish. This investigation is simplified
by the following observation. With random group formation, when invaders are rare,
almost all invaders will be selected into groups in which all other members are normal.
Thus a monomorphic population of either type can be invaded by an initially small in-
flux of the other type only if the reproduction rate of a single invader who joins N − 1
normal individuals in founding a colony is larger than that of a normal individual among
a group made up entirely of the normal type.

3.3.1. Linear public goods games in haystacks

One model that Cohen and Eshel analyze is Haldane’s linear public goods game. In the
Cohen–Eshel formulation, if x(t) is the fraction of a group that are altruists at time t ,
then the reproduction rate of selfish group members is a + bx(t), while that of altruists
in the same group is a +bx(t)− c. Cohen and Eshel find the ranges of parameter values
in the linear public goods game for which each kind of monomorphic equilibrium is
stable.6 The length of time T for which communities remain intact before dispersing is
of critical importance.

THEOREM 2 (Cohen–Eshel). In the Cohen–Eshel haystack model, where reproduction
rates are determined by the linear public goods game and where T is the length of time
for which groups remain intact:

• For small T , if b/N < c, the only stable equilibrium is a population of selfish indi-
viduals and if b/N > c, the only stable equilibrium is a monomorphic population
of cooperators.

• If T is sufficiently large, and b > c > 0, there exist two distinct stable monomor-
phic equilibria; one with selfish players only and one with altruists only.

The most surprising result is that if T is large enough, there exists a stable equilibrium
with a population made up of altruists, even though groups are formed by an indepen-
dent random matching process, and even though the game that determines instantaneous
reproductive rates is an N -player prisoners’ dilemma game. To see why this happens,
recall that a population of altruists will be stable if the expected number of descendants
of a single selfish individual who joins N − 1 altruists in founding a community is
higher than the expected number of descendants of an altruist who is among a found-
ing group consisting entirely of altruists. The number of altruists in a group consisting

6 They are able to find closed-form solutions for the reproduction rates of a mutant cooperator in a population
of defectors and of a mutant defector in a population of cooperators.
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entirely of altruists grows at the rate a + b − c > a. The descendants of the selfish
invader will reproduce more rapidly than the altruist members of the group which she
joins. But to invade the population, her descendants must reproduce more rapidly than
altruists who live exclusively among altruists. As T is large, the descendants of a selfish
invader will eventually comprise almost the entire group to which they belong. Hence
the growth rate of the invader population will approach a. Thus when T is large enough,
the growth rate of normal altruists is higher than that of the invading selfish. Moreover,
this difference in growth rates does not diminish over time. It follows that there exists
some survival period T such that if groups persist for longer than T , a monomorphic
population of altruists is a stable equilibrium.

3.3.2. Mutation in the haystacks

Cohen and Eshel’s Theorem 2 assumes the absence of mutation within haystacks. In-
deed, their conclusion that a population of altruists will be stable if the time between
haystack dispersals is sufficiently long is not in general true if there is a non-zero prob-
ability of mutation at each moment in time. Eshel and Cohen’s result depended on the
observation that a haystack that initially consists entirely of cooperators will remain
uninfected by defectors and will if the haystack remains intact long enough reproduce
faster than groups of defectors. But with mutation and very long-lasting haystacks, the
haystacks that start out with cooperators only are likely to be infected at some time
by mutant defectors. Once infected, their growth will slow as the defectors within the
group reproduce more rapidly than the cooperators.

A recent paper by Ben Cooper and Chris Wallace (2001) runs simulations of a
haystack model with mutations. In their simulations, altruism does not survive either
if haystacks are dispersed after a very short time or after a very long time. However in
their simulations, altruism can prevail if the number of generations from the formation
of haystack groups until their dispersal is of intermediate size.

3.3.3. Nonlinearity and polymorphic equilibria

The Haldane linear public goods model assumes that a community’s growth rate de-
pends linearly on its proportion of altruists. This implies constant returns to altruism
in the sense that an additional altruist makes the same contribution to growth regard-
less of the number of other altruists. Cohen and Eshel show that without this linearity,
monomorphic equilibrium do not always exist. They define a “generalized Haldane
model” in which the reproduction rate of selfish individuals is a + bψ(x) when x is
the proportion of altruists in their community; where ψ(·) is an increasing function
such that ψ(0) = 0 and ψ(1) = 1. They show that if there is diminishing returns to
the addition of altruists to the community, it can happen that the only equilibria are
polymorphic, with both types being present in equilibrium.
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3.3.4. Congested resources

Cohen and Eshel (1976) also study a version of the haystack model in which growth
within each community is constrained by the amount of resources available. There are
“selfish” individuals who reproduce more rapidly than “altruists”, but consume more
resources. At the end of a fixed period of time, T , the original communities are dis-
persed and new communities are founded by groups who are randomly selected from
the entire population. In this model, a community whose founders are mainly altruists
will produce more offspring because each uses less resources. On the other hand, the
selfish members of a community produce more offspring than an altruistic member.
For fixed growth rates and resource exhaustion parameters, if founding populations are
small enough, there will be a stable equilibrium with altruists only, if populations are
large enough, there will be a stable equilibrium with selfish only, and for intermediate
sizes of population, there will be two distinct stable equilibria; one with altruists only
and one with selfish only.

3.4. The iron rule of selfishness

David S. Wilson (1975), in a pioneering study of group selection, showed that for his
particular model, “random” formation of groups must result in the elimination of altru-
ism. In a survey article called “Natural, kin and group selection” (1984), Alan Grafen
states that “with random grouping there is no selection for altruism”. However, Maynard
Smith (1964, 1976), Eshel (1972), Cohen and Eshel (1976), and Matessi and Jayakar
(1976) seem to have contrary results. Although mating is random in Maynard Smith’s
haystack model, for some parameter values, there is a stable equilibrium in which the
entire population consists of altruists. Eshel (1972) asserts that “for any altruistic trait,
there is a critical level of demographic mobility under which selection would always
operate for the establishment of the altruist”. In Cohen and Eshel’s models (1976),
there is “random distribution of altruist and selfish in small founder groups” and it turns
out that if groups remain together long enough before being dispersed, there exists a
stable equilibrium consisting entirely of altruists (as well as another stable equilibrium
consisting entirely of selfish.)

To establish the circumstances under which Grafen’s claim of no-altruism-with-
random-sorting is correct, we need to specify the reproductive dynamics that we have
in mind, as well as what we mean by altruism, and by random mating. In this section
altruism is defined as playing altruist in an N -person prisoners’ dilemma game in which
a player’s payoff is her reproduction rate. As we will later discuss, this does not exhaust
the forms of behavior that might reasonably be called altruistic.

THEOREM 3 (Iron Rule of Selfishness). In a generalized haystack model, if groups are
formed by a matching process that is non-assortative and if the game that determines
reproduction rates is an N -player prisoners’ dilemma played with members of one’s
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own group,then the proportion of altruists (cooperators) in the population will approach
zero as the number of periods gets large.

PROOF. In each period at the time when new groups are formed, the expected num-
bers of offspring produced by each selfish individual and each altruist of the previous
generation are, respectively:

(3)
∑

N

N−1∑

K=1

pS(K,N)ΠS(K,N) and
∑

N

N−1∑

K=1

pA(K,N)ΠA(K,N).

The difference between the growth rate of the number of altruists and the growth rate
of the number of selfish individuals is proportional to the difference between these two
rates. Since matching is non-assortative, pA(K,N) = pS(K,N). Therefore the differ-
ence between the two reproduction rates in (3) is

(4)
∑

N

N−1∑

K=1

pS(K,N)
(
ΠS(K,N) − ΠA(K,N)

)
.

Since the game is an N -player prisoners’ dilemma game, it must be that ΠS(K,N) −
ΠA(K,N) > 0 for all K and N , and hence the expression in (4) must be positive. It
follows that the growth rate of the population of selfish individuals exceeds that of the
population of altruists at all times. Therefore, the limiting value of the proportion of
altruists in the population is zero. �

3.4.1. Where not to look

It is important to understand that this “Iron Rule” does not tell us that evolutionary
selection must eliminate altruistic behavior. The usefulness of Theorem 3 is that it tells
us where not to look for the evolutionary foundations of such behavior. If we are looking
for environments in which cooperative behavior is sustained by group selection, we
should expect that at least one of the following is NOT true.

• The game that determines long term reproduction rates is an N -person prisoners’
dilemma.

• The matching process that forms groups is “random”.

3.5. Haystacks and the iron rule

In the haystack models of Maynard Smith and of Cohen and Eshel, communities are
formed by independent random draws and the game played by individuals within each
community seems to be an N -person prisoners’ dilemma. Nevertheless, we have seen
that in these models a population of altruists can survive evolutionary selection. How
do these populations escape the reach of the “Iron Rule of Selfishness?”

The game that is specified in the Iron Rule is the game played between community
founders, in which the payoffs are measured by the number of descendants at the time
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when the community is dissolved. For Maynard Smith’s mice, the payoff matrix for this
game is given in Table 2 above. In the case where K < 1, this game is a prisoners’
dilemma and, as we have seen, cooperators will eventually disappear. If K > 1, then
the game is not a prisoners’ dilemma, but a stag hunt. Thus the conditions of the Iron
Rule are not satisfied, and indeed its conclusion does not follow.

The way in which Cohen and Eshel’s linear public goods model eludes the stric-
tures of the Iron Rule is especially instructive. In this model, group formation is non-
assortative. Furthermore, the number of offspring that any individual produces is the
payoff in a multi-player prisoners’ dilemma game played among contemporaries in the
same group. Nevertheless, cooperative behavior can be sustained if groups spend suffi-
cient time together before dispersal.

The reason that the Iron Rule is not violated is that if time to dispersal is long, the
relevant game is not a prisoners’ dilemma. In a group where all others are cooperators,
a single defecting founder’s defecting descendants would slow the growth of the group
so that it would eventually be overtaken by a group consisting only of cooperators.

But why can’t the Iron Rule be applied at times shortly before dispersal to individuals
within a group? If the time to dispersal is short, then the game in which payoffs are
descendants at dispersal time will be a prisoners’ dilemma. But this game is played
between individuals in the same group who are all descendants of the initial population.
Matching among these individuals is decidedly not non-assortative. Thus, for the players
who are matched non-assortatively, the game is not a prisoners’ dilemma, while for the
players for whom the game is a prisoners’ dilemma, matching is not non-assortative.

Another instructive way of looking at the Cohen–Eshel game is to note that if we
measure payoffs of each individual by the number of her own offspring, then the game
is a multi-person prisoners’ dilemma. But current rates of reproduction are not a proper
measure of reproductive success. One’s long run reproductive success depends not only
on the number of one’s own offspring, but on the rate at which these offspring, in turn,
will reproduce. In the Cohen–Eshel model, the long-term reproductive value of an ad-
ditional offspring depends on the proportion of altruists that are expected to be in one’s
group for the duration of survival of this group. In a population of altruists, an individ-
ual could increase her current reproduction by switching to the selfish strategy. But over
time, her selfish descendants will slow the rate of reproduction for each other and if
groups are sufficiently long-lived, the number of her descendants at the time her group
disperses will be lower than it would have been had she remained an altruist.

3.6. Migration and stochastic extinction

Haystack models are artificial in that they assume that groups persist in perfect isola-
tion until they are simultaneously disbanded. More realistic models would allow some
migration between groups and would have asynchronous extinctions and resettlement.
Such models have been studied, with results that are qualitatively similar to those of the
haystack models. Ilan Eshel (1972), R. Levins (1970), Bruce Levin and William Kilmer
(1974) and Scott Boorman and Paul Levitt (1980) consider stochastic dynamic models
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of group selection, in which selfish individuals reproduce more rapidly than altruists
within their own group, but where groups face a probability of extinction that increases
with the proportion of their members who are selfish. Locations in which extinction has
occurred are reoccupied by the descendants of a random selection from the population
at large. In the Levins and Boorman–Levitt models, monomorphic populations of al-
truists are not stable, but polymorphism is favored if the difference in extinction rates
between altruistic and selfish groups is large enough relative to the selective pressure
within groups. Eshel adds random migration between groups to his model and finds that
if the migration rate is sufficiently small, then with probability one, the population will
fix at a monomorphic population of altruists, and for larger migration rates the popula-
tion will fix at a monomorphic selfish population. Levin and Kilmer (1974) conducted
Monte Carlo simulations of a model similar to that proposed by Eshel7 and found that
altruism emerged when founding populations were no larger than 25 individuals and
migration rates no larger than 5% per generation.

3.7. Relative and absolute payoffs

Some confusion in the debate on group selection has resulted from the fact that there
exist games in which, paradoxically, cooperate is a dominant strategy, even though de-
fectors always receive higher payoffs than cooperators. For example, consider N -player
linear public goods game in which x is the fraction of cooperators in the population,
the payoffs are bx for each defector and bx − c for each cooperator. Thus defectors
always get higher payoffs than cooperators. But suppose that b > b

N
> c > 0. If this

is the case, then given the action of other players, any player will get a higher payoff if
she cooperates than if she defects. To see this, notice that if K other players cooperate,
a player will get ΠC(K,N) = bK+1

N
− c if she cooperates and ΠD(K,N) = bK

N
if she

defects. Thus we have ΠC(K,N) − ΠD(K,N) = b
N

− c > c and so cooperate is a
dominant strategy.

David S. Wilson (1979) noticed this interesting case and argues for its significance.
Wilson suggested that someone who cooperates when b > c > b

N
be called a strong

altruist and someone who cooperates b
N

> c but not when b
N

< c be called a weak
altruist.8 Thus, in Wilson’s terms, a strong altruist will cooperate even if doing so re-
duces both his absolute payoff and his relative payoff. A weak altruist will cooperate
if doing so increases his absolute payoff, even if doing so reduces his payoff relative
to that of other members of his group. Wilson maintains that “many, perhaps most,
group-advantageous traits such as population regulation, predation defense, and role
differentiation” may be explained by weak altruism. Wilson argues that individual se-
lection models will incorrectly predict that weak altruistic behavior will be selected

7 Eshel’s model has asexual reproduction. The Levin–Kilmer model, like those of Levins and of Boorman–
Levitt models has sexual diploid reproduction.
8 As remarked in Section 2.2.2, Wilson formulates the game slightly differently. The conditions stated here

are equivalent to his when Wilson’s game is recast as an equivalent linear public goods game.
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against, while properly constructed group selection models will predict selection for
such behavior.

Alan Grafen (1984) suggests that Wilson’s use of the term weak altruism for behavior
that is consistent with maximization of absolute payoffs is misleading. According to
Grafen,

Another source of misunderstanding arises from the use of the word ‘altruism’.
As we noted earlier, altruism will not evolve in simple one-generation groups that
are formed at random from the population . . . (Wilson, Cohen and Eshel and oth-
ers) . . . redefined altruism to refer to relative success within the group rather than
absolute success. . . . Under the ‘relative’ definition, ‘altruism’ can spread. Wilson
calls the acts that are altruistic under the relative definition, but not under the ‘ab-
solute’ definition, ‘weakly altruistic’. An alternative I prefer is ‘a self-interested
refusal to be spiteful’.

The question of what to call the pursuit of absolute benefit at the expense of relative
benefit is of some interest, but a more important question is whether such behavior will
prevail under evolutionary dynamics. Cohen and Eshel (1976) answered this question
for the case of haystack models. The answer is that in haystack models, where relative
and absolute benefit are in conflict, absolute benefit tends to prevail. A more careful
statement can be found as part of Cohen and Eshel’s Theorem 2 above. In a general-
ized haystack model in which the linear public goods game is played within localities,
if b

N
> c then if the length of time T between founding and dispersal groups is short,

there will be a unique stable equilibrium and it is a population of cooperators only. If,
however, T is sufficiently large, then there will be two distinct stable equilibria, one
populated by cooperators only and one by defectors only.9 Thus Cohen and Eshel’s
result as applied to “one generation groups formed at random from the population” is
in full agreement with Grafen’s statement. In equilibrium, individuals will “cooperate”
if and only if the direct benefits that they get for themselves exceed the cost. In Wil-
son’s language, strong altruism will be driven out, but weak altruism will prevail. In
Grafen’s language, altruism will not survive, but the surviving population will show a
self-interested refusal to be spiteful. Somewhat more surprisingly, Cohen and Eshel also
find that if groups have long persistence, there will exist two equilibria, one where all
cooperate and one where all defect, even where cooperation is a dominant strategy in
terms of absolute payoffs in the single-shot game.

3.8. “Too stringent to be realistic?”

There seems to be broad agreement with Maynard Smith’s (1976) statement that the
argument about the significance of group selection for altruism is “not quantitative, but

9 Wilson (1979) claims that theoreticians, including Cohen and Eshel, “tend to lump” the cases of weak
altruism and strong altruism since neither is selected for in standard population models. In the case of Cohen
and Eshel, I believe that Wilson is mistaken. As we see from Theorem 2, Cohen and Eshel find sharply
divergent results for the cases of “weak” and “strong” altruism.
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qualitative”. At least for some time, there also appeared to be agreement that conditions
under which group selection could work were not plausible.

David S. Wilson 1975 said that

recent models . . . make it plausible that (group selection) can occur – the main
question is to what extent the conditions for its operation (small group size, high
isolation, high extinction rates) are met in nature. The current consensus is that the
proper conditions are infrequent or at least limited to special circumstances . . .

In his survey of the theory of group selection and kin selection, Alan Grafen (1984)
asserted that

the final consensus on these models was that the conditions for (them) to be suc-
cessful were too stringent to be realistic.

Even the beleaguered V.C. Wynne-Edwards called it quits, at least temporarily.10 In
a 1978 article Wynne-Edwards reports that

in the last 15 years, many theoreticians have wrestled with it and in particular with
the specific problem of the evolution of altruism. The general consensus of the-
oretical biologists at present is that credible models cannot be devised by which
the slow march of group selection could overtake the much faster spread of self-
ish genes that bring gains in individual fitness. I therefore accept their opinion.
[Wynne-Edwards (1978)]

Levin and Kilmer (1974) seem to have been the first to explore the plausibility of
the parameter values under which models of group selection with random matching can
lead to altruism. They conducted Monte Carlo simulations of a model similar to Eshel’s
extinction model (1972) and report that

Interdemic selection favoring an allele was able to override the effects of
Mendelian selection operating against it and led to maintenance of this allele in
either fixed or polymorphic states. However, with potentially realistic deme sur-
vival functions and significant levels of Mendelian selection, restrictive conditions
were necessary for this result to be obtained. In our simulated population, geneti-
cally effective deme sizes of less than 25 and usually closer to 10 were required,
and the rate of gene exchange, through flow migration could not be much greater
than 5% per generation.

Wilson (1987) ran Monte Carlo simulations of a model similar to Maynard Smith’s
haystack model, with founding populations of two individuals, and with dispersal and
rematching of the population at the end of a fixed length of time. Wilson drops May-
nard Smith ’s assumption that in populations with some genes for aggressive behavior,

10 In a (1986) book, Wynne-Edwards attempts to reestablish his group-selectionist arguments on firmer the-
oretical ground.
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all carriers of the gene for timidity are eliminated before the haystack population is
dispersed. In Wilson’s simulation, in each generation, an altruist reduces its own repro-
duction rate by c and contributes b > c to the reproduction rate of a randomly selected
other member of the group. As in the Eshel–Cohen model, a group stays together for
a fixed, finite number of periods before dispersing and mating at random. But while
reproduction is asexual in the Eshel–Cohen model, Wilson has sexual diploid reproduc-
tion. Wilson points out that if communities disperse after a single period, then the model
is the same as Hamilton’s model of kin-selection (1964), and Hamilton’s rule applies;
there will be a unique stable equilibrium, which will be populated by altruists if b > 2c

and by selfish individuals if b < 2c. When the number of generations is 5, his simula-
tion results that indicate that with b/c = 2.2, there are two distinct equilibria, a stable
polymorphic equilibrium with a population of 80% altruists and a stable monomorphic
equilibrium where the entire population is selfish.

Theoretical considerations may help us to recognize circumstances under which
Maynard Smith’s haystack model and its generalizations would plausibly support a
population of altruists. In the Maynard Smith model where each haystack population
gets genetic material from just individuals, we find that a monomorphic population
of altruists will be a stable equilibrium if at season’s end, the number of mice pro-
duced in haystacks of altruists is more than twice the number of mice produced in
haystacks of selfish mice. In the Cohen–Eshel extension, with N co-founders, in order
for a monomorphic population of altruists to be a stable equilibrium, it must be that a
single selfish individual in a community of altruists will have fewer descendants within
that community at the time of dispersal than the per capita number of descendants of a
community consisting entirely of altruists. Thus, if at the time the group disperses, the
descendants of the selfish individual constitute the fraction s of its community, then it
must be that groups consisting entirely of altruists have more than sN times as many
inhabitants as groups that included a selfish individual among their founders. If, much
as in Maynard Smith’s model, descendants of a selfish individual dominate the pop-
ulation of their community quickly and thoroughly, then the purely altruistic groups
would have to produce more than N times as many descendants as groups that included
a selfish cofounder.

In haystack models, with durable groups, we have seen that when there is a stable
equilibrium of cooperators, there typically exists another equilibrium comprised entirely
of defectors. We need to be concerned about whether and how the system could move
into the basin of attraction of an equilibrium of cooperators. One possibility is that
payoffs to particular actions are likely to shift across time and space. As Wilson (1979)
suggested, actions that are “strongly altruistic” in the current environment may have
emerged as equilibrium actions in an environment where costs were smaller or benefits
were greater so that these actions were once individually rational in single shot games.
These equilibria might survive changes in costs or benefits such that self-interested play
in single shot games no longer supports cooperation.
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4. Assortative matching

In prisoners’ dilemma games, everyone gets a higher payoff from playing with a coop-
erator than with a defector, but in any encounter, playing defect yields a higher payoff
than playing cooperate. In a population where both types are equally likely to play with
cooperators, defectors will enjoy higher expected payoffs. But if matching is assorta-
tive, so that cooperators have better chances of meeting cooperators than do defectors,
the cost of cooperation may be repaid by a higher probability of playing a cooperative
opponent.

4.1. Measures of assortativity

Suppose that a population is made up of two types of individuals and each of these
individuals is matched with a partner. Let x = (x1, x2) where x1 is fraction of the popu-
lation that is of type 1 and x2 the fraction that is of type 2. Let pij (x) be the conditional
probability that an individual is matched with a type j , given that she, herself, is of
type i. Since an individual is matched either to its own type or to the other type, it must
be that p11(x) + p12(x) = 1 and p21(x) + p22(x) = 1. These equations imply that
p22(x) − p12(x) = p11(x) − p21(x). This equality allows us to define a useful measure
of assortativity.

DEFINITION 4 ((Pairwise) Index of Assortativity). Let there be two types of indi-
viduals i and j and let x = (x1, x2) where xi is the proportion of type i’s in the
population. If individuals are matched in pairs, the index of assortativity a(x) is the
difference between the probability that an individual of type i is matched with its own
type and the probability that an individual of type j is matched with a type i. That is,
a(x) = p11(x) − p21(x) = p22(x) − p12(x).

Sewall Wright (1921) defined assortativeness of mating with respect to a given trait
as “the coefficient of correlation m between the two mates with respect to their posses-
sion of the trait”. Cavalli-Sforza and Feldman (1981) interpret Wright’s correlation as
follows. “The population is conceived of as containing a fraction (1 − m) that mates at
random and a complementary fraction m which mates assortatively”. With this interpre-
tation, if the population frequency of a type is x, then the probability that an individual
of that type mates an individual of its own type is p(x) = m + x(1 − m). Wright’s
definition and that of Cavalli-Sforza and Feldman are seen to be equivalent where we
take Wright to mean that m is the coefficient of correlation between indicator random
variables for possession of the trait by mates.11 It turns out that the definition of assor-

11 Let Ii be an indicator variable that takes on value 1 if mate i has the trait and 0 otherwise. Wright’s
definition of the correlation coefficient between mates 1 and 2, is the correlation between the random variables
I1 and I2. Thus we have m = (E(I1I2)−E(I1)E(I2))/(σ1σ2) where σi is the standard deviation of Ii . Now
E(I1I2) = xp(x), and for i = 1, 2, E(Ii ) = x and σi = √

x(1 − x). Therefore m = (xp(x) − x2)/x(1 − x).
Rearranging terms, we find that this expression is equivalent to p(x) = m + x(1 − m).
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tativeness proposed by Wright and by Cavalli-Sforza and Feldman is equivalent to the
special case of our definition where a(x) is constant.

REMARK 1. Where there are two types of individuals and a(x) is the index of assorta-
tivity,

• pii(x) = a(x) + (1 − a(x)) xi for each i.
• pji = a(x)(1 − xi).

PROOF. The fraction of all partnerships in which a type i is matched to a j is xipij (x)

and the fraction of all partnerships in which a type j is matched to a type i is xjpji(x).
Since these are just two different ways of counting the same encounters it must be that
xipij (x) = xjpji(x). From the definition of a(x), we have pii(x) = a(x) + pji(x).
We also have pij (x) = 1 − pii(x) and x1 + x2 = 1. Simple manipulations of these
equations yields the claimed results. �

The simplest, and perhaps most useful, way to generalize the index of assortativity
from groups of two members to groups of arbitrary size is to simply restate the pairwise
definition in terms of expected proportions. Thus for an individual of type i, let pij to be
the expected proportion of other group members who are of type j . Where group size is
two, this expected proportion is simply the conditional probability that one’s partner is
a type j , given that one’s own type is i. It remains the case, as with pairwise matching
that p11(x) − p21(x) = p22(x) − p12(x).

DEFINITION 5 (‘Generalized’ Index of Assortativity). Where there are two types of
individuals and groups are of size N , for an individual of type i, let pij (x) be the ex-
pected proportion of the N − 1 other group members who are of type j . The index of
assortativity is defined as a(x) = p11(x) − p21(x) = p22(x) − p12(x).

Where there are more than two possible types, we could define an index of assortativ-
ity between any two types as previously. In general, the index of assortativity between
one pair of types need not be the same as that between another.

4.2. Hamilton’s kin selection theory

Families are among the most conspicuous examples of non-randomly formed groups.
William G. Hamilton (1964) developed a theory that predicts the strength of benevo-
lent interactions between relatives based on their degree of relatedness. Maynard Smith
(1964) conferred the name kin selection theory on this theory, while Dawkins (1989)
gave it the evocative name theory of the selfish gene.

Biologists define the coefficient of relatedness between two individuals to be the
probability that the alleles found in a randomly selected genetic locus in the two in-
dividuals are inherited from the same ancestor. In a population without inbreeding, the
coefficient of relatedness is one half for full siblings, one fourth for half siblings, and
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Table 3
Hamilton’s help game

Player 2

C D

Player 1
C b − c −c

D b 0

one eighth for first cousins. According to Hamilton’s theory, evolutionary dynamics se-
lects for individuals who are willing to help a genetic relative if (and only if) if the
increase in reproductive value, b gained by the beneficiary, multiplied by the coefficient
of relatedness r between the two relatives exceeds the cost in reproductive value c to
the helper. The following “maxim” has come to be known as Hamilton’s rule.

DEFINITION 6 (Hamilton’s Rule). Help someone whose coefficient of relatedness to
you is r if and only if br > c.

Hamilton’s work on kin selection came almost 10 years before Smith and Price (1973)
introduced formal game theory to biologists. Therefore he did not think of the interac-
tion between relatives as a game, but it is instructive to model Hamilton’s interactions
as a two-person game. In Hamilton’s model, each player can choose whether to “coop-
erate” by helping the other or to “defect” by not helping. A player who helps the other
player reduces her own reproductive success by an amount c > 0, but increases that
of the other player by b > c. The payoff matrix for this game is as in Table 3. When
b > c > 0, we see that Hamilton’s help game satisfies the conditions for a two-person
prisoner’s dilemma. Since b − c > 0, both players are better off when both cooperate
than when both defect. Given the other player’s action, a player is always better off de-
fecting than cooperating, since b > b − c and 0 > −c. As later discussion will show,
Hamilton’s help games are special cases of a prisoners’ dilemma. There is a large class
of prisoners’ dilemma games which have quite different evolutionary dynamics from
this special class.

A two-person linear public goods might appear to differ from a Hamilton’s help game.
In a linear public goods game a cooperator incurs a cost to produce “public benefits that
help the other player and also benefit herself ”, while in the Hamilton game the other
player is the only beneficiary of a helper’s efforts. But simple linear transformations
of payoffs allow one to express every Hamilton game as a linear public goods game
and vice versa. For example, consider a Hamilton game in which a helper can confer a
benefit b on the other player at cost c to herself. This game has the same payoff matrix as
a linear public goods game in which each the payoff to a defector is b′x and the payoff
to a cooperator is b′x − c′, where x is the fraction of contributors and where b′ = 2b

and c′ = b + c. Similarly a two-player linear public goods game, with parameters
b′ and c′ will be equivalent to a Hamilton help game with parameters b = b′/2 and
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c = c′ − (b′/2). This game is a prisoners’ dilemma if and only if b > c > 0, which is
equivalent to b′ > c′ > b′/2.

4.2.1. Index of assortativity for relatives

In later work, Hamilton (1975) recognized that his theory of kin selection could usefully
be understood as a special case of assortative matching of partners in social interactions.
It is helpful to see just how this is done by calculating the index of assortativity between
prisoners’ dilemma playing siblings who inherit their type by copying one of their par-
ents.

We follow Hamilton (1964) in considering a simplified version of genetics, known
to biologists as sexual haploidy. Most animals, including humans, are sexual diploids.
A sexual diploid carries two alleles in each genetic locus, one of which is inherited
from its mother and one from its father. These two alleles jointly determine those in-
dividual characteristics governed by this locus. A sexual haploid has only one allele at
each locus. This allele is a copy of the allele in the corresponding locus of one of its
parents, chosen at random. Sexual haploidy occurs as a genetic process among some
living organisms, but is of special interest in the theory of cultural transmission since
it is formally identical to a theory in which for a specified behavior, a child randomly
selects one of its parents to copy.12

Suppose that individuals can adopt one of two possible strategies, cooperate or defect,
in games played with their siblings. Each child is able to observe the type of its father
and of its mother and copies one or the other with probability 1/2; independently of
the choice made by its siblings. Suppose further that parents mate monogamously and
independently of their strategy in games with siblings.

Let x be the proportion of cooperators in the entire population. If a child is a cooper-
ator, then with probability 1/2 its sibling will have copied the same parent. In this case,
the sibling must be a cooperator. With probability 1/2, the sibling role will have copied
the other parent. Since parents are assumed to mate independently of their strategies,
the probability that the other parent is a cooperator is x. Therefore the probability that a
randomly chosen sibling of a cooperator is also a cooperator is

(5)pcc(x) = 1

2
+ 1

2
x.

If a child is a defector, then its sibling will be a cooperator only if the sibling’s role
model is different from the defector’s. With probability 1/2, the two siblings will have
different role models, and given that they have different role models, the probability that
the other parent is a cooperator is x. Therefore the probability that a randomly chosen

12 Similar techniques can be applied and similar results obtained in the study of monomorphic equilibria in
kin selection models with diploid sexual reproduction. For details, see Bergstrom (1995) or Boorman and
Levitt (1980).
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sibling of a defector is a cooperator is

(6)pdc(x) = 1

2
x.

Notice that in a family of N siblings, pcc(x) and pdc(x) are equal to the expected
proportion of an individual’s siblings who are cooperators, conditional on that individ-
ual being a cooperator or a defector, respectively. Therefore the index of assortativity
between full siblings is

(7)a(x) = pcc(x) − pdc(x) = 1

2
.

Thus we see find that with non-assortative monogamous mating, the index of assorta-
tivity between siblings is constant and equal to their coefficient of relatedness, r = 1/2.

Similar calculations show that the index of assortativity between other related indi-
viduals is equal to their degree of relatedness. For example, the index of assortativity
between half-siblings is 1/4 and the index of assortativity between first cousins is 1/8.
Bergstrom (2001) calculates the index of assortativity for siblings under a variety of
more general assumptions. For example, if parents mate assortatively, with an index
of assortativity of mating m, then the index of assortativity between full siblings is
(1+m)/2. If with some probability v a child copies neither of its parents, but a randomly
chosen stranger, the index of assortativity is v(1 + m)/2. That paper also calculates
indexes of assortativity for children of polygamous marriages, and for cases where chil-
dren preferentially copy the mother or the father.

4.3. Evolutionary dynamics with assortative mating

4.3.1. The linear public goods game

We can now investigate the evolutionary dynamics of populations of prisoners’ dilemma
players under assortative mating. The effect of assortative mating on expected payoffs
is particularly easy to calculate when payoffs depend linearly on the proportion of co-
operators in the group as in Haldane’s N -player linear public goods game. Let x be
the fraction of cooperators and 1 − x the fraction of defectors in the entire population.
Define pcc(x) as the expected proportion of cooperators that a cooperator finds among
other members of her group and pdc(x) as the expected proportion of cooperators that
a defector finds in her group. Recalling Equations (1) and (2), the expected payoff of a
cooperator is pcc(x)b − c′ and the expected payoff of a defector is pdc(x)b. Therefore
the difference between the expected payoff of cooperators and that of defectors is just

(8)pcc(x)b − c′ − pdc(x)b = a(x)b − c′

where a(x) is the index of assortativity.
Equation (8) generalizes Hamilton’s rule from linear pairwise interactions to the N

player linear public goods game with voluntary provision of public goods. In this gen-
eralization, the index of assortativity plays the same formal role that the coefficient of
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relatedness plays in kin selection theory. In the case of kin selection theory, the index
of assortativity a(x) is constant for all x and equal to the coefficient of relatedness r

between any two players.
If a(x) = a is constant, then except for the knife-edge case where ab = c, there

will be a unique stable equilibrium. If a > b/c, then so long as both types are present,
the proportion of cooperators will grow relative to that of defectors. If a < b/c, the
reverse is true. Thus the unique stable equilibrium is a population made up entirely of
cooperators if a > c/b and a population made up entirely of defectors if a < b/c.

If a(x) is variable, then it is possible that there may be more than one equilibrium,
or there may be a polymorphic equilibrium with some individuals of each type. In Sec-
tion 4.4 we analyze an interesting example in which a(x) is variable and where there is
a stable polymorphic equilibrium.

4.3.2. Dynamics with nonlinear payoff functions

Alan Grafen (1979) and Gordon Hines and Maynard Smith (1979) show that Hamilton’s
rule is not correct in general for the wider class of games in which the costs of helping
and the benefits of being helped may depend on the actions taken by both players.
Bergstrom (1995) classifies two-player non-linear games according to whether there is
complementarity or substitutability between actions and shows the way that equilibrium
is altered from the Hamilton’s rule predictions in each of these cases.

We follow Rappaport and Chammah (1965), in denoting the payoffs (Table 4) in a
general prisoners’ dilemma game by R (reward) for mutual cooperation, P (punish-
ment) for mutual defection, T (temptation) to a defector whose opponent cooperates,
and S (sucker’s payoff) to a cooperator whose opponent defects.

This game is a prisoners’ dilemma whenever T > R > P > S.13 In the case of
Hamilton’s help game, described by Table 2 in Section 4.2, we have T = b, R = b − c,
P = 0, S = −c. It follows that for Hamilton’s game, R + P = T + S = b − c. Not
every prisoners’ dilemma game has this property. There are prisoners’ dilemma games

Table 4
Payoff matrix

Player 2

C D

Player 1
C R S

D T P

13 Some writers use a definition that adds the additional restriction that 2R > T + P which ensures that
mutual cooperation yields a higher total payoff than the outcome where one player cooperates and the other
defects.
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Figure 2. Dynamics of prisoners’ dilemma.

in which R + P > T + S and some in which R + P < T + S. The evolutionary
dynamics of each of these prisoners’ dilemma games are qualitatively different from
those of Hamilton’s help game.

Let x be the fraction of cooperators in the population, pcc(x) the probability that a
cooperator is matched with a cooperator and pdc(x), the probability that a defector is
matched with a cooperator. Then the expected payoff to a cooperator is:

pcc(x)R + (
1 − pcc(x)

)
S = S + pcc(x)(R − S)

(9)= S + a(x)(R − S) + x
(
1 − a(x)

)
(R − S)

where the latter equation follows from Remark 1.
The expected payoff to a defector is:

pdc(x)T + (1 − pdc)P = P + pdc(T − P)

(10)= P + x
(
1 − a(x)

)
(T − P)

where again the latter equation follows from Remark 1. If we subtract the expression
in Equation (10) from that in Equation (9), we can express the difference between the
expected payoff to a cooperator and that to a defector as a function of x:

(11)δ(x) = S − P + a(x)(R − S) + x
(
1 − a(x)

)(
R + P − (S + T )

)
.

Equation (11) can be used to characterize the equilibria, under the assumption of
monotone dynamics (see Section 2.4.1), of any symmetric two-player, two-strategy
games with assortative matching.14

Where a(x) = a is constant, we see from Equation (11) that the difference
between the payoffs to the two strategies is linear in the proportion x of co-
operators in the population. In this case, we see that δ(0) = aR + (1 − a)S − P

and δ(1) = R − (aP + (1 − a)T ). A simple calculation shows that δ(1) − δ(0) =

14 Though most of our discussion focusses on prisoners’ dilemma, this formula applies as well to games
without a dominant strategy, such as chicken, and the stag hunt.
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(1 − a)(R + P − S − T ). Thus the graph of δ(x) slopes upward if R + P > S + T ,
downward if R + P < S + T , and is horizontal if R + P = S + T . It could happen
that δ(0) and δ(1) are both positive, in which case there is a unique stable equilibrium
populated entirely of cooperators or both negative, in which case there is a unique sta-
ble equilibrium populated entirely by defectors. But there are also two other interesting
cases. In Figure 2(a), where δ(0) < 0 and δ(1) > 0, there are two distinct “monomor-
phic” equilibria, one consisting of cooperators only and one consisting of defectors
only. In Figure 2(b) where δ(0) > 0 and δ(1) < 0, neither monomorphic population is
stable and there is a unique stable “polymorphic” equilibrium at the point E.

4.4. Assortative matching with partner choice

We can expect to see assortative matching if individuals have some evidence of each
others’ types and some choice about with whom they match. In a multiplayer prisoners’
dilemma game, everyone would rather be matched with cooperators than with defectors.
If players’ types were perfectly observable and if groups are able to restrict entry, then
groups of cooperators would not admit defectors, and so the two types would be strictly
segregated. But suppose that detection is less than perfectly accurate.

Bergstrom (2001) presents a model in which players are labeled with an imperfect
indicator of their type. The indicator might be a reputation based on partial information
or a set of behavioral cues, or perhaps the result of a psychological test. Assume that
with probability α > 1/2, a cooperator is correctly labeled as a cooperator and with
probability 1 − α is mislabeled as a defector. Assume that with probability β > 1/2,
a defector is correctly labeled and with probability 1 − β is mislabeled as a cooperator.

Everyone sees the same labels, so that at the time when players choose partners there
are only two distinguishable types: players who appear to be cooperators and play-
ers who appear to be defectors. Although everyone realizes that the indicators are not
entirely accurate, everyone prefers to match with an apparent cooperator rather than
an apparent defector. Therefore, with voluntary matching, there will be two kinds of
groups, those made up entirely of apparent cooperators and those made up entirely of
apparent defectors.

In this model, in contrast to the case of kin selection, the index of assortativity varies
with the proportion of cooperators in the population. If we graph a(·) as a function of x,
the graph looks qualitatively like Figure 3.15

There is a simple intuitive explanation for the fact that a(0) = a(1) = 0. In general,
a cooperator is more likely to be matched with a cooperator than is a defector because a
cooperator is more likely to be labeled a cooperator than is a defector. But if x is small,
so that actual cooperators are rare, the advantage of being matched with an apparent
cooperator is small because almost all apparent cooperators are actually defectors who

15 In Bergstrom (2001), I exhibit a closed form expression for a(x) and show that a(0) = a(1) = 0,
a′(0) > 0, a′(1) < 0 and a′′(x) < 0 for all x ∈ [0, 1].
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Figure 3. Graph of a(x) where α = β.

Figure 4. Graph of δ(x) for additive prisoner’s dilemma.

have been mislabeled. Similarly, when x is close to one, defectors are rare, so that
most apparent defectors are actually cooperators who have been mislabeled. In the latter
case, even if a defector is labeled a defector, his chance of getting matched with a
cooperator are good. Thus in the two extreme cases, where x approaches zero and where
x approaches one, the chances of being matched with a cooperator are nearly the same
for a defector as for a cooperator.

Recall from Equation (8), that in the Haldane linear multiperson prisoners’ dilemma
game, the difference between the expected payoff of cooperators and that of defectors
is simply δ(x) = a(x)b − c where x is the fraction of cooperators in the population and
a(x) is the index of assortativity. Figure 4 shows the graph of δ(x) for a case in which
δ(x) takes some positive values. As we see from the graph, under monotone dynamics
there are two locally stable equilibria. One of these equilibria occurs where x = 0 and
the other is at the point marked A. For any level of x to the left of the point B or to the
right of the point A, δ(x) < 0 and so x, the proportion of cooperators in the population,
would decline. For any level of x between the points A and B, δ(x) > 0 and so in this
region x would increase.

For Prisoners’ Dilemma games with additive payoffs, δ(x) = a(x)b − c. We have
shown that a(0) = a(1) = 0, a′(0) > 0, a′(1) < 0, and a′′(x) < 0 for all x between
0 and 1. It follows that δ(0) = δ(1) < 0, δ′(0) > 0, and δ′(1) < 0, and δ′′(x) < 0 for
all x between 0 and 1. The fact that δ′′(x) < 0 on the interval [0, 1] implies that the
graph of δ(x) is “single-peaked” as in Figure 4. Where this is the case, and if δ(x) > 0
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for some x, there must be exactly one stable polymorphic equilibrium and one stable
monomorphic equilibrium with defectors only.

An earlier model by Robert Frank (1987) also explores the evolutionary dynamics in a
population of cooperators and defectors.16 In Frank’s model, each member of each type
projects a “signal of trustworthiness” that is a random draw from a continuous signal
distribution. The two types draw from different distributions, whose supports overlap,
but where the higher one’s signal is the more likely it is that one is a cooperator. Each
individual has the option of matching with a partner or of having no partner. Partners
play a game of prisoners’ dilemma. Those who choose to have no partner are assumed to
receive the same payoff as that received by a defector matched with a defector. Players
understand the game, including the payoff values and statistical distributions of payoffs
and can rationally calculate their own optimal responses. Since each player prefers those
who project higher signals, every individual will be matched with someone who projects
approximately the same signal. In equilibrium, cooperators who project a signal lower
than some critical value realize that the partners that they can attract are so likely to be
defectors that it is better to stay unmatched. Frank shows that for this model there is
a unique stable equilibrium and it occurs with a polymorphic population that includes
both cooperators and defectors.

Skyrms and Pemantle (2000) explicitly model the dynamic formation of group struc-
ture by reinforcement learning. Individuals begin to interact at random to play a game.
The game payoffs determine which interactions are reinforced and a social network
emerges. They report that social interaction groups that tend to form in their model con-
sist of small interaction groups within which there is partial coordination of strategies.

4.5. Assortative matching induced by spatial structure

The reason that evolution selects for individuals who value their siblings’ well-being is
that two siblings have a high probability of carrying the same genetic program. Hence
an individual who is programmed to be kind to his brother is likely to be the beneficiary
of a kind brother. Similarly, if neighbors have a significant probability of sharing the
same role model, those who cooperate with neighbors may enjoy a higher likelihood of
benefiting from neighborly cooperation than those who act selfishly.

Evolutionary biologists have stressed the importance of spatial structure on the spread
of mutations, genetic variation and the formation of species. Wright (1943) studied the
degree of inbreeding in a model in which a population is distributed uniformly over a
large area, but individuals are more likely to find mates who live nearby. Kimura and
Weiss (1964) studied genetic correlations in a one dimensional “stepping stone model”
in which there is an array of colonies along a line and where “in each generation an
individual can migrate at most ‘one step’ in either direction” and extended this model
to colonies located on two and three dimensional lattices.

16 Frank calls them “honest” and “dishonest” types.
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More recent authors have explored the dynamics of a population of agents located
on a spatial grid, who repeatedly play a game with their neighbors and who may switch
their strategies either deterministically or stochastically in response to their observations
of the payoffs realized by themselves and their neighbors. Nowak and May (1993) ran
computer simulations with a deterministic model of prisoners’ dilemma playing agents
located on a two-dimensional grid. The grid is initially populated with some assortment
of cooperators and defectors. In each round, each individual uses its preassigned strategy
in a game of prisoners’ dilemma with each of its immediate neighbors. After this round,
each site is occupied by its original owner or by one of its neighbors, depending on who
had the highest score in the previous round. Their simulations show that this process can
generate chaotically changing spatial patterns in which the proportions of cooperators
and defectors fluctuate about long-term averages.

Bergstrom and Oded Stark (1993) model a population of farmers located on a road
that loops around a lake. Each farmer plays prisoners’ dilemma with his two adjacent
neighbors, using one of the two strategies cooperate or defect. The farmers’ sons observe
the strategies and payoffs of their fathers and their immediate neighbors and imitate the
most successful of these individuals. For this setup, it turns out that any arrangement
of cooperators and defectors will be stable if cooperators appear in clusters of three or
more and defectors in clusters of two or more. Bergstrom and Stark show that if the
sons do not pay attention to their fathers, but copy the more successful of their father’s
neighbors, then some patterns of behavior will “move in a circle” around the lake. For
example, if there are at least eight farmers on the road, a pattern of the form CDCCC
would move clockwise around the lake, moving by one farm in each generation. Thus a
long-lived chronicler, who observed behavior at a single farm would see “cyclic behav-
ior” in which spells of cooperation are interrupted by defection according to a regular
temporal pattern.

Eshel, Larry Samuelson and Avner Shaked (1998) present a thorough analysis of
the circular setup considered by Bergstrom and Stark. For the nonstochastic case, they
show that in addition to an equilibrium with defectors only, there are stable equilibria
in which some cooperators and some defectors survive and that in all such equilibria, at
least 60 per cent of the population must be cooperators. They also show that if the initial
distribution of cooperators and defectors is determined by independent random draws,
then as the size of the population gets large, the probability that the initial distribution
is in the basin of attraction of one of the equilibria that includes cooperators approaches
unity.

Surprisingly, Eshel et al. were able to show that when there is a positive probability
of mutations, in the limit as the mutation rate becomes small, the only stationary states
that have positive probability are the ones in which at least 60 percent of the population
are cooperators. As the authors explain:

One’s initial impression might be that mutation should be inimical to Altruists be-
cause a mutant Egoist will thrive and grow when introduced into a collection of
Altruists, while a lone Altruist will whither and die when introduced into a collec-
tion of Egoists. . . . Altruists can thus invade a world of Egoists with only a local
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burst of mutation that creates a small string of Altruists, which will then subse-
quently grow to a large number of Altruists. Mutations can create small pockets of
egoism, but these pockets destroy one another if they are placed too close together,
placing an upper bound on the number of Egoists that can appear.

Although the structure of equilibrium sets in the Bergstrom–Stark model and in
the Eshel–Samuelson–Shaked model seem too complicated and diverse for a simple
measure of assortativity to be of any use, Eshel, Emilia Sansone and Shaked (1999)
constructed a model of prisoners’ dilemma players on a line in which, quite remarkably,
the dynamics depend on the index of assortativity for a specific critical configuration of
cooperators and defectors. The model starts with an initial configuration of cooperators
and defectors. In each period, each individual plays a prisoners’ dilemma game with
each of her k nearest neighbors. A player will not change strategies from one period
to the next if her two nearest neighbors use the same strategy that she uses. But one of
these neighbors uses a different strategy, she will observe the average realized payoffs
of cooperators and of defectors who are within n positions of herself. She will randomly
adopt a strategy for the next period, where the probability that a strategy is adopted is
proportional to the average payoff of those whom she observes using that strategy. The
authors show that the long run fate of this system depends entirely on what happens
at a frontier between long strings of individuals of each type. From this configuration,
one can calculate the probability that a defector situated at the boundary will switch to
cooperation and the probability that a cooperator situated at the boundary will switch
to defection. These two probabilities depend on comparisons of the average payoffs of
cooperators and of defectors who are located within n positions of the boundary be-
tween a long strong of cooperators and a long string of defectors. The dynamics is a
simple random walk in which the limiting outcome is a population of cooperators or of
defectors, depending on whether defectors are more likely to switch than cooperators or
vice versa.

In the Eshel, Shaked, Sansone model the critical observers on the frontier see their
own payoffs and the payoffs to their n neighbors. Each observed individual plays pris-
oners’ dilemma with her k nearest neighbors. Since the observed defectors are located
somewhere in a string of defectors and the observed cooperators are located somewhere
in a string of cooperators, the cooperators enjoy the advantage of a larger proportion of
encounters with cooperators than that experienced by defectors. If k, the number of op-
ponents played in each direction is large and if n the distance over which the boundary
individuals observe payoffs, this advantage will be slight since both the cooperators and
defectors that are observed will be near the boundary and will play nearly equal num-
bers of cooperators and defectors. On the other hand, if n is large relative to k, then the
average payoff of the observed cooperators will be close to the payoff in a community
of cooperators only and the average payoff of the observed defectors will be close to the
payoff in a community of defectors only.

The defectors would of course get higher payoffs if they played against the same
number of cooperators as did the cooperators, but in this spatial setup, the defectors
will be matched with more defectors than the cooperators and individuals living further
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from the frontier will have larger proportions of their neighbors being of their own
type. The larger n is relative to k, the greater the proportion of observed neighbors who
play their own type. The authors find expressions for the proportions of cooperators
and of defectors encountered by those members of each type who can be observed by
the frontier individual. From these calculations they produce an explicit function r(k, n)

that corresponds exactly to the index of assortativity as we have defined it. In the special
case where the prisoners’ dilemma game has the linear payoffs that we have earlier
described as the linear public goods game, they observe that the outcome is exactly as
would be predicted by Hamilton’s rule where the coefficient of relatedness is r(k, n).
That is to say, cooperation will prevail if r(k, n)b > c and defection will prevail if
r(k, n)b < c.

5. Repeated games and group selection

5.1. Group selection from multiple Nash equilibria

“Punishment allows the evolution of cooperation (or anything else) in sizeable groups”
by Robert Boyd and Peter Richerson (1992) is one of those rare scholarly titles that
nudges readers’ minds toward a productive line of thought.17 In an earlier paper, Boyd
and Richerson (1990) noticed that group selection is a highly plausible evolutionary
mechanism where games with more than one Nash equilibrium are played within rel-
atively distinct subpopulations. They suggested that group selection is likely to be
effective “if processes increasing the frequency of successful strategies within groups
are strong compared to rate of migration among groups” and if “individuals drawn from
a single group make up a sufficiently large fraction of newly formed groups”. In (1990),
Boyd and Richerson succinctly explain the essence of group selection among alter-
native local Nash equilibria in the following words. “Viewed from the within-group
perspective, behavior will seem egoistic, but the egoistically enforced equilibria with
the greatest group benefit will prevail”. In (1992), they strengthen the case for group
selection by noting that within stable groups where individuals encounter each other
repeatedly and can punish defections from a group norm, an extremely diverse range of
results can be sustained as Nash equilibria.

Ken Binmore (1994b) observed that “If our Game of Life were the one-shot Prison-
ers’ Dilemma, we should never have evolved as social animals”. Binmore argues that
the “Game of Life” is best modeled as an indefinitely repeated game in which reciprocal
rewards and punishments can be practiced. As Binmore reminds us, this idea is not new.
In the seventh century before Christ, Hesiod stated [Waugh (1929)] the maxim “Give
to him who gives, and do not give to him who does not”. David Hume (1978) says in
language that is suggestive of modern game theory:

17 Dawkins’ The Selfish Gene is another member of this class.
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I learn to do service to another, without bearing him any real kindness, because I
foresee, that he will return my service in expectation of another of the same kind,
and in order to maintain the same correspondence of good offices with me and
others. And accordingly, after I have serv’d him . . . he is induc’d to do his part, as
foreseeing the consequences of his refusal. (p. 521)

Several game theorists in the 1950’s nearly simultaneously discovered the folk theo-
rem, which informs us that in indefinitely repeated games, almost all possible patterns
of individual behavior can be sustained as Nash equilibria. For example, in the sim-
ple case of repeated prisoners’ dilemma between two players, almost any intertemporal
pattern of cooperation and defection on the part of each players can be maintained as a
Nash equilibrium. The logic of the folk theorem is that in repeated games, almost any
behavior can be induced as a Nash equilibrium by the threat of punishment for deviant
actions. Individuals can be coordinated on a configuration of strategies by a stable, self-
policing norm. Such a norm prescribes a course of action to each player conditional on
the actions of the others and it includes instructions on how to punish any deviant player
who violates his prescribed course of action. The punishments for each deviation must
be sufficient to ensure that each individual takes the prescribed action.

Where the game is single-shot prisoners’ dilemma, the theory of individual selection
almost inevitably predicts universal defection, but in repeated games, even repeated
prisoners’ dilemma, individual selection theory leaves us an embarrassment of Nash
equilibria and essentially no predictive power. As Boyd and Richerson (1992, 2001),
Binmore (1992, 1994a, 1994b), and Sober and Wilson (1999) suggest, the stage is set
for group selection to play a mighty role. Consider a population in which individuals are
clustered into semi-isolated groups within which most of their social interactions occur.
Within groups, these individuals play a repeated game that has many equilibria, some
of which are better for all members than others. Binmore (1994b) suggests that we can
expect groups using Pareto-superior equilibria to grow in size and number relative to the
rest of the population and that eventually the groups that coordinate on Pareto-inferior
equilibria will disappear. The transmission process may be speeded either by migrants
who move to more successful groups and adopt local ways or by imitation. Boyd and
Richerson (2001) propose that in geographically structured populations, imitation of
behavior in successful neighboring groups is likely to greatly speed the spread of Pareto-
superior equilibria.

5.2. How can costly punishment survive?

While the folk theorem goes a long way toward explaining the power of norms and pun-
ishment threats for maintaining a great variety of possible outcomes as Nash equilibria
within communities, there remain some troubling details to be resolved in determining
whether plausible evolutionary processes will sustain the punishment strategies needed
to support all of the outcomes that folk theorem postulates. As Henrich and Boyd (2001)
put it
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Many students of human behavior believe that large-scale human cooperation is
maintained by threat of punishment. . . . However, explaining cooperation in this
way leads to a new problem: why do people punish noncooperators? . . . Individuals
who punish defectors provide a public good, and thus can be exploited by non-
punishing cooperators if punishment is costly.

The standard game theoretic answer to this conundrum is that equilibrium strategies
include instructions to punish others if they are “supposed to punish” and fail to do so.
These instructions include a requirement to punish those who won’t punish others when
they are supposed to do so. In equilibrium, if you fail to perform your obligation to
punish someone who doesn’t do his task, you will be punished by someone else who
in turn would be punished if he did not punish you, and so on ad infinitum. From an
evolutionary point of view, this resolution seems unsatisfactory. Can we really expect
that people or animals will keep track of their obligations to do nth order punishment for
n greater than one or two? Moreover if the society is really in an equilibrium, deviations
that require punishment will be rare and usually the result of a “mistake”. Selection is
likely to be very weak in such circumstances.

As Rajiv Sethi and R. Somanathan (to appear), point out in their survey paper “Under-
standing Reciprocity”, “(The) problem of reciprocity being undermined by the gradual
encroachment of unconditional cooperation is pervasive in the literature”. Not only is
it likely that punishment is costly in terms of direct payoffs. A strategy that involves
unused punishments is, by any reasonable measure, more complex than a strategy that
dictates the same actions in a world of cooperators but omits the punishment branch.
Binmore and Samuelson (1992) present a model in which strategies are modeled as
finite-state automata and complexity is measured by the number of states. They postu-
late that a mutant that gets the same payoff as the incumbents but is less complex will
invade a population. This assumption eliminates the possibility that ‘nice’ strategies,
such as tit-for-tat will be stable monomorphic equilibria.

Nowak and May (1998) introduce an evolutionary model in which individuals ac-
cumulate reputations. In each generation, a large number of pairs of individuals are
selected randomly. One member of each pair is given a chance to play donor and the
other is the potential recipient. Those who choose to donate reduce their wealth by c,
while the recipient’s wealth increases by b > c. Each player has an image score that
starts out at 0 at the beginning of life and is incremented by one unit every time that she
makes a donation. A strategy for any individual i takes the form of a threshold ki , such
that if given a chance to donate to a recipient with image score s, i will do so if and only
if s � ki . After the interactions for the current generation have taken place, members of
this generation are replaced by their offspring, who inherit the strategies of their parents
(but not their image scores). The number of offspring that a parent has is proportional to
the wealth that she accumulates during the course of her life. Nowak and Sigmund run
computer simulations of this model. They find that when the model is run for about 150
generations, almost all population members adopt a strategy of donating to everyone
with an image score of 0 or higher. When these strategies are played out, this means
that almost everyone donates at every opportunity. When Nowak and Sigmund add a
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very small rate of mutation to new strategies, the results are very different. According
to Nowak and Sigmund,

with mutation the population, long term simulations with mutation . . . show end-
less cycles. . . . defectors are invaded by discriminators, who only help players
whose score exceeds some threshold. Next discriminators are undermined by un-
conditional cooperators. The prevalence of these indiscriminate altruists subse-
quently allows the return of defectors.

The Nowak–Sigmund model does not follow the course suggested by game theo-
retic constructions of punishment strategies. In their model, one’s reputation improves
whenever one makes a donation, regardless of whether the potential recipient has been
generous or not. The kind of punishment strategy that the folk theorem suggests would
be more like the following. Initially, everyone is in good standing. After each play, a per-
son is in good standing if and only if she donated whenever she had a chance to donate
to a person in good standing and she refused to donate whenever she had a chance to
donate to a person not in good standing.

Bowles and Gintis (2000) build an evolutionary model of a population that includes
some shirkers and some reciprocators who don’t shirk and who, despite the fact that it
is costly, will punish shirkers when they catch them shirking. Equilibrium in their model
has a mixed population of workers and shirkers. However, they evade the problem of the
evolutionary stability by not allowing the possibility of an invader who neither shirks
nor punishes.

In “The viability of vengeance”, Dan Friedman and Nirvikar Singh (1999) present a
good discussion of the evolutionary stability of costly punishment. Friedman and Singh
distinguish between punishment of group members and of outsiders. They suggest that
within groups, one’s actions are observed and remembered. A reputation for being will-
ing to avenge actions harmful to oneself may be sufficient compensation for the costs
of retribution. They propose that in dealing with outsiders, one is remembered not as an
individual but as a representative of one’s group. Accordingly, a willingness to avenge
harm done by outsiders is a public good for one’s own group since it deters outsiders
from uncooperative behavior to group members. They propose that a failure to avenge
wrongs from outsiders is punished (costlessly) by one’s own group, through loss of
status.

In their paper “Why punish defectors: Weak conformist transmission can stabilize
costly enforcement of norms in cooperative dilemmas”,18 Henrich and Boyd (2001)
present an ingenious theory of the viability of expensive vengeance. The authors sug-
gest that “the evolution of cooperation and punishment are plausibly a side-effect of a
tendency to adopt common behaviors during enculturation”. They argue that since it is
not possible to analyze and “solve” the complex social games that we play, imitation

18 This paper is a contender with the earlier cited Boyd–Richerson paper for an “informative title award”.
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plays a large role in decision-making. Since observation of the realized payoffs of oth-
ers is not always possible, much of this imitation takes the form of ‘copy-the-majority’
rather than ‘copy-the-most-successful’.

Henrich and Boyd test this idea on a multi-stage game. The first stage of this game is
a “Haldane” game in which each individual can choose whether to make a contribution
to the group at a cost of c to himself and with a total benefit of b divided equally among
all group members. Those who don’t contribute share the benefits but don’t pay the cost.
With a small probability, individuals who intend to contribute mistakenly do not. The
game has a second stage in which each individual decides whether or not to punish those
who defected in the first stage. Punishing costs φ to the punisher and ρ to the punished,
where φ < ρ < c. There is a second punishing stage in which individuals decide, with
the same cost structure, whether to punish those who have not punished the malefactors
of the first stage. And a finite number of additional stages is constructed recursively. At
each stage the authors suppose that there is some small probability of mistakes.

At each stage of the game, there are two possible strategies, cooperate or defect. In
the first stage, cooperate means to contribute. In later stages, cooperate means to punish
those who defected in the previous stage. The population evolves according to “repli-
cator dynamics” applied separately to the strategy used in each stage. In particular the
difference between the growth rate of cooperators and the growth rate of defectors for
this stage is a weighted average of two differences: the difference between the average
payoffs of cooperators and defectors in that stage and the difference between the frac-
tion of the population who are cooperators and the fraction who are defectors. The latter
difference reflects the force of conformism.

If the weight placed on conformism is sufficiently large, then of course any strategy,
including cooperate and don’t punish can be maintained, simply because an invader’s
payoff advantage would be overwhelmed by the conformist advantage of the incumbent
strategy. But while placing some weight on copying the majority is plausibly adaptive,
placing such a large weight does not seem likely to be so. The authors stress that

. . . stabilization of punishment is from the gene’s point of view a maladaptive side-
effect of conformist transmission. If there were genetic variability in the strength of
conformist transmission and cooperative dilemmas were the only problem humans
faced, then conformist transmission might never evolve.

The key to Henrich and Boyd’s result is that it takes only a very small weight on con-
formity to maintain an equilibrium that supports punishment strategies. To see why, let
us look at a version of the Henrich–Boyd model with only one punishment stage. Sup-
pose that the population is initially one in which everyone tries to cooperate at the first
stage and also in the punishment stage. Then the only defections observed will be mis-
takes (or possibly actions of a few mutants). Individuals who defect in the first stage will
get lower payoffs than those who cooperate in the first stage because almost everyone
is cooperating in the punishment stage by punishing first-stage defectors. Individuals
who defect in the punishment stage by not punishing first stage defectors will get higher
payoffs than those who cooperate by punishing first stage defectors, but only slightly
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higher since there are very few defections in the first stage. Since almost everyone is
observed to cooperate in the second stage, even a very small coefficient on conformism
will be sufficient to overcome this small payoff difference. Henrich and Boyd show
that when higher levels of punishment are accounted for, an even smaller coefficient on
conformism is sufficient to maintain cooperation at all stages.

The Henrich–Boyd argument leaves some room for skepticism. If defections on the
first round are rare, isn’t it likely that in realistic models few individuals would observe
a defection? But if that is the case, then conformists who observe a defection might not
be able to determine that first-order punishment is the social norm. Perhaps a polymor-
phic equilibrium that has just enough defectors to make the prevalence of punishment
observable to conformists could be obtained in this setting.

There is room to question whether the visceral, seemingly irrational anger that people
feel when they are cheated or otherwise violated can really be explained as a result of
cultural transmission rather than as genetically hard-wired.

A recent paper by Florian Herold (2003) proposes another interesting explanation for
the survival. Herold studies a “haystack model” in which individuals are randomly as-
sembled into groups where they interact and reproduce. The number of offspring that
a player has will be her payoff in an n-player prisoners’ dilemma game in her group.
Players can observe the play of others and are able to inflict punishment, but at a cost
to themselves. Individuals have a hard-wired inclination either to punish defectors or
not, but make a calculated choice of whether to cooperate or defect. All in the group
will cooperate if and only if the number of punishers exceeds some threshold. Other-
wise they will all defect. Herold shows that with monotone selection dynamics, there is
an evolutionarily stable equilibrium in which all players are programmed to engage in
costly punishment and where everyone therefore cooperates. In Herold’s model, if al-
most everybody in the population at large is a punisher, then in almost all groups, there
is a preponderance of punishers and so everybody chooses to cooperate. In this case,
punishers don’t have to bear the costs of punishing. The only way that a non-punisher
could have a different payoff from a punisher would be if the random matching process
selects a number of punishers that is below the cooperation-inducing threshold. Herold
noticed the important fact that if non-punishers are rare, then conditional on the event
that a group does not achieve the threshold number of punishers, the probability is very
high that the number of punishers in the group is just one below threshold, so that each
non-punisher in the group is “pivotal” to whether the group exhibits cooperation or de-
fection. This implies that when they are rare, non-punishers will get lower expected
payoffs than punishers.

5.3. Evidence from psychology and anthropology

Leda Cosmides, a psychologist and John Tooby, an anthropologist, offer [Cosmides
(1989), Cosmides and Tooby (1989)] experimental evidence indicating that people are
much better at solving logical problems that are framed as “cheater-detection” problems
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than at solving equivalent problems in other frameworks. In their view, this is evidence
that individuals have evolved special modules in their brains for solving such problems.

There is interesting experimental evidence that cultural transmission plays an impor-
tant role in determining when people get angry. Richard Nisbett and Dov Cohen (1996)
conducted experiments in which male college students are subjected to rude and insult-
ing behavior in the laboratory. Using questionnaires, behavioral responses, and checks
of testosterone levels, they find that students who were raised in the American South
become much angrier and more ready to fight than those who were raised in the North.
The authors attribute this difference to the existence of a “culture of honor” in the South
that is not present in the North.

Economists and anthropologists have recently conducted a remarkable series of ex-
perimental studies of how people in different cultures play the ultimatum game. In an
ultimatum game, two players are matched and there is a fixed sum of money to be allo-
cated. The first player, “the proposer” offers a portion of the total to the second player,
“the responder”. The responder can either accept or reject the offer. If the responder
accepts, the division is that proposed. If the responder rejects, both players receive noth-
ing. If this game is played by rational players who care only about their money payoff,
then equilibrium in this behavior is for the proposer to offer the responder a very small
share, which the responder will accept. In actual experiments with laboratory subjects
in the United States, it was discovered that typically proposers offered a share of nearly
one half, and this was accepted. When proposers attempted to capture a significantly
larger share, responders would usually reject the proposal, thus acting as if they were
willing to forego the small share that they were offered in order to “punish” a greedy
proposer. In 1991, Alvin Roth and his coworkers (1991) did a “cross-cultural” con-
ducted in which they compared the results from running the experiment in the U.S., and
in Israel, Japan, and in Slovenia. They found very similar results in all four countries. In
2000, Joe Henrich (2000), published a study of an ultimatum game performed with the
Machiguenga of Peru. The Machiguenga live in mobile, single-family units and small
extended-family hamlets scattered throughout the tropical forests of the Amazon, where
they practice hunting, fishing, gathering, and some horticulture. According to Henrich,
among the Machiguenga, “cooperation above the family level is almost unknown”. Hen-
rich found that in sharp contrast to the results in the Western countries, where the modal
offer was usual fifty percent, the modal share offered by the Machiguenga was only
fifteen percent. Moreover, although the Machiguenga responders were offered a much
smaller share than their counterparts in the developed world, they accepted these offer
about 95 percent of the time – a higher acceptance rate than the average in the devel-
oped world. A recent study [Henrich et al. (2001)] reports on game experiments that
have been conducted in a total of 15 “small-scale societies”, including hunter–gathers,
pastoralists, and farmers, and villagers. The studies found a great deal of divergence
among these societies. In some of them results strongly suggested an equal-split norm
and in others most proposers made offers much less generous than equal splitting and
were not punished for doing so.
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6. Conclusion

6.1. Further reading

The literature on social evolution is large, diverse, and multi-disciplinary. There is a
great deal of good work that I have failed to discuss. Some of the omissions are simply
due to my ignorance. Some work that I admire and intended to include, didn’t find its
way into the survey because I had to narrow my focus to limit its length. Fortunately,
the seriousness of these omissions is diminished by the fact that much of the omitted
work is beautifully presented in other sources.

For a survey article that partially overlaps this material, but also examines a lot of
good work not covered here, I recommend Rajiv Sethi and R. Somanathan’s (to appear)
lucid and insightful article, “Understanding reciprocity”.

There are several books that I strongly recommend to anyone interested in the subject
of social evolution. These books tell their stories better than I could, so I confine my
remarks to brief descriptions and hope that readers will find and enjoy them in undiluted
form.

Cavalli-Sforza and Feldman’s book, Cultural Transmission and Evolution (1981) pi-
oneered formal modeling of this subject. Their introductory chapter is richly endowed
with examples and presents a clearheaded formulation of the way that the implications
of mutation, transmission, and natural selection can be extended from the study of genet-
ically transmitted characteristics to that of culturally transmitted characteristics. Their
formulation of the contrasting effects of vertical transmission, (from parent to child)
and of oblique and horizontal transmission is insightful and provocative. They illustrate
this formulation with fascinating examples such as he spread of linguistic patterns, the
introduction of birth control methods, the spread of the kuru virus, which is contracted
by ceremonial ingestion of dead relatives, in the Fore tribe of New Guinea. There is also
a very interesting empirical study of the transmission from parents to children of such
cultural behavior as religious beliefs, political affiliation, listening to classical music,
reading horoscopes, and high salt usage.

Robert Trivers’ book, Social Evolution (1985) is a stimulating and attractive treatise
on the evolution of social behavior of animals (including humans) and plants. It is full
of interesting examples from the natural world, thought-provoking bits of theory, and
delightful photographs and drawings.

Brian Skyrms’ short book, Evolution of the Social Contract (1996), is a beautifully
written and highly accessible application of the methods of evolutionary dynamics to
behavior in bargaining games and the evolution of notions of fairness and “the social
contract”.

My own thinking about matters related to the evolutionary foundations of social be-
havior has been strongly influenced by Ken Binmore’s two volume work, Game Theory
and the Social Contract (1994a, 1994b). This book combines social philosophy, politi-
cal theory, evolutionary theory, anthropology, and modern game theory with great depth
and subtlety.
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Sober and Wilson’s book Unto Others is written in advocacy of a modern version of
the group selectionist view. It contains an extensive and interesting history of theoretical
controversies between group selectionists and individual selectionists. There are also
reports on interesting empirical work with group selection as well as a useful survey of
group norms in a sample of twenty-five cultures that they selected randomly from the
anthropological literature.

H. Peyton Young’s Individual Strategy and Social Structure: An Evolutionary The-
ory of Social Institutions (1998) contains a remarkably accessible introduction to the
mathematical theory of stochastic dynamics and to its applications in the study of the
evolution of social institutions. Almost all of the work discussed in the present review
uses deterministic dynamics to approximate the outcomes in a stochastic model. Heuris-
tically, the justification for doing so is that if an equilibrium that is locally stable under
deterministic dynamics receives a small, one-time stochastic shock, then as the shock
wears off, equilibrium will be restored.19 Young observes that the difficulty with this
argument is that occasionally, albeit extremely rarely, the system may receive a suffi-
ciently large number of shocks to knock it out of the basin of attraction of any locally
stable equilibrium that is not globally stable. Thus, Young argues, a proper treatment of
the very long run must directly incorporate the stochastic process into the laws of mo-
tion. He shows that in models with multiple equilibria, “long run average behavior can
be predicted much more sharply than that of the corresponding determinate dynamics”.

Those seeking clear, mathematical presentations of the major technical issues in evo-
lutionary game theory will do well to look at Jörgen Weibull’s Evolutionary Game
Theory (1995) and Larry Samuelson’s Evolutionary Games and Equilibrium Selec-
tion (1997).

Uncited references

[Bergstrom (2002)]

References

Benaim, M., Weibull, J. (September 2000). “Deterministic approximation of stochastic evolution in games”.
Technical Report 534, IUI Working Paper Series. Stockholm.

Bergstrom, T.C. (1995). “On the evolution of altruistic ethical rules for siblings”. American Economic Re-
view 85 (1), 58–81.

Bergstrom, T.C. (2001). “The algebra of assortative encounters and the evolution of cooperation”. Interna-
tional Game Theory Review. (To appear).

Bergstrom, T.C. (2002). “Evolution of social behavior: Individual and group selection”. Journal of Economic
Perspectives 16 (2), 67–88.

19 Michel Benaim and Jörgen Weibull (2000) have developed a careful formal treatment of the circumstances
in which deterministic approximation of stochastic dynamic evolutionary processes is justified.



hesgiv v.2006/03/03 Prn:14/03/2006; 10:20 F:hesgiv1011.tex; VTEX/GIT p. 45
aid: 1011 pii: S1574-0714(06)01011-6 docsubty: REV

Ch. 11: Natural Kantian or Zoo Economicus? 45

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Bergstrom, T., Stark, O. (1993). “How altruism can prevail in an evolutionary environment”. American Eco-
nomic Review 83 (2), 149–155.

Binmore, K. (1992). Fun and Games. D.C. Heath, Lexington, MA.
Binmore, K. (1994a). Game Theory and the Social Contract I: Playing Fair. MIT Press, Cambridge, MA.
Binmore, K. (1994b). Game Theory and the Social Contract II: Just Playing. MIT Press, Cambridge, MA.
Binmore, K., Samuelson, L. (1992). “Evolutionary stability in repeated games played by finite automata”.

Journal of Economic Theory 57, 278–305.
Boorman, S.A., Levitt, P.R. (1980). The Genetics of Altruism. Academic Press, New York.
Bowles, S., Gintis, H. (2000). “The evolution of reciprocal preferences”. Technical Report. Santa Fe Institute,

Santa Fe, NM.
Boyd, R., Richerson, P. (1990). “Group selection among alternative evolutionarily stable strategies”. Journal

of Theoretical Biology 145, 331–342.
Boyd, R., Richerson, P. (1992). “Punishment allows the evolution of cooperation (or anything else) in sizeable

groups”. Ethology and Sociobiology 113, 171–195.
Boyd, R., Richerson, P. (April 2001). “Group beneficial norms can spread rapidly in structured populations”.

Technical Report. UCLA anthropology department. Los Angeles, CA.
Carr-Saunders, A.M. (1922). The Population Problem: A Study in Human Evolution. Clarendon Press, Ox-

ford.
Cavalli-Sforza, L.L., Feldman, M.W. (1981). Cultural Transmission and Evolution: A Quantitative Approach.

Princeton University Press, Princeton, NJ.
Cohen, D., Eshel, E. (1976). “On the founder effect and the evolution of altruistic traits”. Theoretical Popula-

tion Biology 10, 276–302.
Cooper, B., Wallace, C. (2001). “Group selection and the evolution of altruism”. Technical Report. Economics

Department, Oxford University.
Cosmides, L. (1989). “The logic of social exchange: Has natural selection shaped how humans reason”.

Cognition 31, 187–276.
Cosmides, L., Tooby, J. (1989). “Evolutionary psychology and the generation of culture ii: A computational

theory of exchange”. Ethology and Sociobiology 10, 51–97.
Dawkins, R. (1989). The Selfish Gene. (New edition.) Oxford University Press, Oxford.
Eshel, I. (1972). “On the neighbor effect and the evolution of altruistic traits”. Theoretical Population Biol-

ogy 3, 258–277.
Eshel, I., Samuelson, L., Shaked, A. (1998). “Altruists, egoists, and hooligans in a local interaction structure”.

American Economic Review 88, 157–179.
Eshel, I., Sansone, E., Shaked, A. (1999). “The emergence of kinship behavior in structured populations of

unrelated individuals”. International Journal of Game Theory 28, 447–463.
Frank, R.H. (1987). “If homo economicus could choose his own utility function, would he want one with a

conscience”. American Economic Review 77 (4), 593–604.
Friedman, D., Singh, N. (1999). “The viability of vengeance”. Technical Report. U.C. Santa Cruz, Santa Cruz,

CA.
Ghiselin, M. (1974). The Economy of Nature and the Evolution of Sex. University of California Press, Berke-

ley, CA.
Grafen, A. (1979). “The hawk–dove game played between relatives”. Animal Behaviour 27 (3), 905–907.
Grafen, A. (1984). “Natural selection, group selection, and kin selection”. In: Kreb, J.R., Davies, N.B. (Eds.),

Behavioural Ecology, Chapter 3, 2nd edn. Blackwell, London, pp. 62–80.
Haldane, J.B.S. (1932). The Causes of Evolution. Harper & Brothers, New York and London.
Hamilton, W.D. (1964). “The genetical evolution of social behavior, Parts i and ii”. Journal of Theoretical

Biology 7, 1–52.
Hamilton, W.D. (1975). “Innate social aptitudes in man: An approach from evolutionary genetics”. In: Fox, R.

(Ed.), Biosocial Anthropology. Malaby Press, London.
Hardin, G. (1977). The Limits of Altruism. Indiana University Press, Bloomington, IN.
Henrich, J. (2000). “Does culture matter in economic behavior? Ultimatum game bargaining among the

Machiguenga of the Peruvian Amazon”. American Economic Review 90 (4), 9730979.



hesgiv v.2006/03/03 Prn:14/03/2006; 10:20 F:hesgiv1011.tex; VTEX/GIT p. 46
aid: 1011 pii: S1574-0714(06)01011-6 docsubty: REV

46 T.C. Bergstrom

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Henrich, J., Boyd, R. (2001). “Why people punish defectors”. Journal of Theoretical Biology 208, 79–89.
Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., McElreath, R. (2001). “In search of homoeconomi-

cus: Behavioral experiments in 15 small-scale societies”. American Economic Review 91 (2), 73–78.
Herold, F. (2003). “Carrot or stick: Group selection and the evolution of reciprocal preferences”. Technical

Report. Munich University.
Hines, W.G.S., Smith, J.M. (1979). “Games between relatives”. Journal of Theoretical Biology 79, 19–30.
Hume, D. (1978). A Treatise of Human Nature, 2nd edn. Clarendon Press, Oxford. (Edited by Selby-Bigge,

L.A., revised by Nidditch, P.; first published 1739.)
Kimura, M., Weiss, G.H. (1964). “The stepping stone model of population structure and the decrease of

genetic correlation with distance”. Genetics 49, 561–576.
Lack, D. (1966). Population Studies of Birds. Clarendon Press, Oxford.
Ledyard, J.O. (1995). “Public goods: A survey of experimental research”. In: Kagel, J., Roth, A. (Eds.), The

Handbook of Experimental Economics, Chapter 2. Princeton University Press, Princeton, NJ, pp. 111–
181.

Levin, B.R., Kilmer, W.L. (1974). “Interdemic selection and the evolution of altruism”. Evolution 28 (4),
527–545.

Levins, R. (1970). “Extinction”. In: Gerstenhaber, M. (Ed.), Some Mathematical Problems in Biology. Amer-
ican Mathematical Society, Providence, pp. 77–107.

Matessi, C., Jayakar, S.D. (1976). “Conditions for the evolution of altruism under Darwinian selection”.
Theoretical Population Biology 9.

Nachbar, J. (1990). “Evolutionary selection dynamics in games: Convergence and limit properties”. Interna-
tional Journal of Game Theory 19, 59–89.

Nisbett, R.E., Cohen, D. (1996). Culture of Honor: The Psychology of Violence in the South. Westview Press,
Boulder, CO.

Nowak, M.A., May, R.M. (1993). “Evolutionary games and spatial chaos”. Nature 359, 826–829.
Nowak, M.A., May, R.M. (1998). “Evolution of indirect reciprocity by image scoring”. Nature 393, 573–577.
Rappaport, A., Chammah, A.M. (1965). Prisoner’s Dilemma. University of Michigan Press, Ann Arbor, MI.
Roth, A.E., Prasnikar, V., Okuno-Fujiwara, M., Zamir, S. (1991). “Bargaining and market behavior in

Jerusalem, Ljubljana, Pittsburgh, and Tokyo, an experimental study”. American Economic Review 81
(5), 1068–1095.

Rousseau, J.J. (1950). Discourses on the Origins and Foundation of Inequality Among Men (Second Dis-
course). Everyman’s Library, Dutton, NY. (First publication 1755).

Samuelson, L. (1997). Evolutionary Games and Equilibrium Selection. MIT Press, Cambridge, MA.
Sethi, R., Somanathan, E. (to appear). “Understanding reciprocity”. Journal of Economic Behavior and Orga-

nization.
Skyrms, B. (1996). Evolution of the Social Contract. Cambridge University Press, Cambridge.
Skyrms, B. (2001). “The stag hunt”. Proceedings and Addresses of the American Philosophical Association 75

(2), 31–41.
Skyrms, B., Pemantle, R. (2000). “A dynamic model of social network formation”. Proceedings of the Na-

tional Academy of Science 97 (16), 9340–9346.
Smith, J.M. (1964). “Group selection and kin selection”. Nature 201, 1145–1147.
Smith, J.M. (1976). “Group selection”. Quarterly Review of Biology 51, 277–283.
Smith, J.M., Price, G.R. (1973). “The logic of animal conflict”. Nature 246, 15–18.
Sober, E., Wilson, D.S. (1999). Unto Others. Harvard University Press, Cambridge, MA.
Trivers, R. (1985). Social Evolution. Benjamin Cummings, Menlo Park, CA.
Waugh, H.E. (Ed.) (1929). Hesiod: The Homeric Hymns and Homerica. Heineman, London.
Weibull, J. (1995). Evolutionary Game Theory. MIT Press, Cambridge, MA.
Williams, G.C. (1966). Adaptation and Natural Selection. A Critique of Some Current Evolutionary Thought.

Princeton University Press, Princeton, NJ.
Wilson, D.S. (1975). “A theory of group selection”. Proceedings of the National Academy of Sciences 72 (1),

143–146.



hesgiv v.2006/03/03 Prn:14/03/2006; 10:20 F:hesgiv1011.tex; VTEX/GIT p. 47
aid: 1011 pii: S1574-0714(06)01011-6 docsubty: REV

Ch. 11: Natural Kantian or Zoo Economicus? 47

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Wilson, D.S. (1979). “Structured demes and trait-group variation”. American Naturalist 113, 157–185.
Wilson, D.S. (1987). “Altruism in Mendelian populations derived from sibling groups”. Evolution 41 (5),

1059–1070.
Wright, S. (1921). “Systems of mating”. Genetics 6 (2), 111–178.
Wright, S. (1943). “Isolation by distance”. Genetics 28, 114–138.
Wright, S. (1945). “Tempo and modes in evolution: A critical review”. Ecology 26, 415–419.
Wynne-Edwards, V.C. (1962). Animal Dispersion in Relation to Social Behaviour. Oliver and Boyd, Edin-

burgh and London.
Wynne-Edwards, V.C. (1978). “Intrinsic population control: An introduction”. In: Ebling, F.J., Stoddart, D.M.

(Eds.), Population Control by Social Behaviour. Institute of Biology, London, pp. 1–22. (Volume Popula-
tion Control by Social Behaviour.)

Wynne-Edwards, V.C. (1986). Evolution through Group Selection. Alden Press, Oxford.
Young, H.P. (1998). Individual Strategy and Social Structure. Princeton University Press, Princeton, NJ.



hesgiv v.2006/03/03 Prn:14/03/2006; 10:20 F:hesgiv1011.tex; VTEX/GIT p. 48
aid: 1011 pii: S1574-0714(06)01011-6 docsubty: REV

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Proof of Raw Subject Index

Page: 4
selfishness
group selection

Page: 6
tragedy of the common

Page: 7
individual selection theory
group selection theory
kin selection theory

Page: 8
prisoners’ dilemma
defect
cooperate
multi-player prisoners’ dilemma
linear public goods game

Page: 9
stag hunt games

Page: 10
evolutionary dynamics
altruism
payoff-monotonicity

Page: 11
haystack models

Page: 14
non-assortative matching process

Page: 16
polymorphic equilibria

Page: 17
iron rule of selfishness

Page: 19
migration
stochastic extinction

Page: 20
strong altruist
weak altruist

Page: 24
assortative matching
index of assortativity

Page: 26
Hamilton’s help game
Hamilton’s rule

Page: 27
sexual haploidy

Page: 33
spatial structure

Page: 36
repeated games

Page: 37
folk theorem

Page: 38
image score

Page: 42
culture of honor
ultimatum game


	Natural Kantian or ZOO ECONOMICUS? Evolutionary theories of selfishness and altruism among men and beasts
	Abstract
	Keywords
	Selfishness and group selection
	Games and social interactions
	What is the game and who is playing?
	Prisoners' dilemma games
	Multi-player prisoners' dilemma
	The linear public goods game

	Stag hunt games
	Evolutionary dynamics and altruism
	Prisoners' dilemma in a freely mingling population


	Haystack models
	Maynard Smith's mice
	General haystack models and assortative matching
	Cohen and Eshel's generalized haystack models
	Linear public goods games in haystacks
	Mutation in the haystacks
	Nonlinearity and polymorphic equilibria
	Congested resources

	The iron rule of selfishness
	Where not to look

	Haystacks and the iron rule
	Migration and stochastic extinction
	Relative and absolute payoffs
	``Too stringent to be realistic?''

	Assortative matching
	Measures of assortativity
	Hamilton's kin selection theory
	Index of assortativity for relatives

	Evolutionary dynamics with assortative mating
	The linear public goods game
	Dynamics with nonlinear payoff functions

	Assortative matching with partner choice
	Assortative matching induced by spatial structure

	Repeated games and group selection
	Group selection from multiple Nash equilibria
	How can costly punishment survive?
	Evidence from psychology and anthropology

	Conclusion
	Further reading

	Uncited references
	References


