The Winner’s Curse: Conditional Reasoning & Belief Formation*

Christian Koch† and Stefan P. Penczynski‡

March 1, 2015

Abstract

We investigate the relevance of conditional reasoning and belief formation for the occurrence of the winner’s curse with the help of two experimental manipulations. First, we compare results from a very simple common-value auction game with results from a transformed version of this game that does not require any conditioning on future events. In human opponent settings, we observe significant differences in behavior across the two games. Second, we investigate subjects’ behavior in interaction with naïve computerized opponents and with human opponents after they have faced the computers. We find that both such strong and weak assistance in belief formation changes subjects’ play significantly. Overall, the results suggest that the difficulty of conditioning on future events is at least as important in explaining frequent occurrences of the winner’s curse as is the challenge to form beliefs. It is probably the combination of the two interdependent challenges that leads to the robust phenomenon of the winner’s curse.

JEL classification: D44, D81, D82

Keywords: Auctions, Winner’s curse, Conditional Reasoning, Beliefs

*We would like to thank Madhav Aney, Ayala Arad, Vincent Crawford, Dirk Engelmann, Ariel Rubinstein, and Thomas Tröger as well as seminar participants in NYU Abu Dhabi, Heidelberg, Karlsruhe, Mannheim, Tel Aviv, SABE Meeting 2014, ESA European Meeting 2014 (Prague), ESA North-American Meeting 2014 (Fort Lauderdale) for helpful comments.

†New York University Abu Dhabi (NYUAD), A5 - 1131, PO Box 129188, Abu Dhabi, UAE. Email: christian.koch@nyu.edu.

‡University of Mannheim, L7, 3-5, 68131 Mannheim, Germany. Email: stefan.penczynski@uni-mannheim.de.
1 Introduction

The “winner’s curse” (WC) in common-value auctions (CVA) refers to systematic overbidding relative to Bayesian Nash equilibrium that leads to massive losses for winners in field settings and laboratory experiments.\footnote{See Capen, Clapp and Campbell (1971) and Roll (1986) for evidence from the oil industry and corporate takeovers, respectively, and Bazerman and Samuelson (1983), Kagel and Levin (1986), Avery and Kagel (1997), Goeree and Offerman (2002), Lind and Plott (1991), Grosskopf, Bereby-Meyer and Bazerman (2007), and the literature discussed in Kagel and Levin (2002) for experimental evidence.} This phenomenon is one of the most important and robust findings in empirical auction analysis and has proven difficult to be explained with an empirically valid theory.

Two main departures from the Bayesian Nash equilibrium have been modeled. First, the assumption of correct conditioning on winning the auction is relaxed in equilibrium models like cursed equilibrium (CE, Eyster and Rabin, 2005), behavioral equilibrium (Esponda, 2008), and the application of analogy-based expectation equilibrium to auctions (ABEE, Jehiel, 2005; Jehiel and Koessler, 2008). In these models, beliefs are modelled to be consistent with players’ action distribution but do not take into account any information revealed about underlying signals. Second, the level-k-model of iterated beliefs (Nagel, 1995; Stahl and Wilson, 1995), has been applied to private information games like auctions and zero-sum betting (Crawford and Iriberri, 2007; Brocas, Carrillo, Wang and Camerer, 2014). Since the operation of conditioning requires beliefs, in some settings level-1 beliefs of random level-0 play are able to capture “inferential naïveté”.

Doubts have been cast on the sufficiency of these efforts to explain auction behavior. Charness and Levin (2009) use computerized sellers in an acquiring a company game and document the subjects’ extreme difficulty to condition on information from hypothetical events. With an innovative semi-computerized version of the maximal game, Ivanov, Levin and Niederle (2010) argue that many observed bids cannot be explained by inconsistent beliefs of any sort and thus provide evidence against the collection of models mentioned above. Costa-Gomes and Shimoji (2015) in turn criticize their use of game theoretical concepts when the interaction with a known computer program is a single-person decision problem. Camerer, Nunnari and Palfrey (2012) suggest on the basis of Quantal Response Equilibrium (QRE, McKelvey and Palfrey, 1995) that imprecise best responses combined with non-equilibrium beliefs could explain observed behavior.

This discussion shows that a major challenge in the experimental investigation of the WC is to disentangle the impact of conditional reasoning and belief formation on best response behavior, ideally in a standard CVA conducted among human subjects. In this paper, we propose a new method to illuminate these mechanisms behind the WC, jointly analyzing the role of conditional reasoning and belief formation. Our starting point is a simple first-price CVA adapted from Kagel and Levin (1986). At the core of our investigation, we propose a transformation of this game that maintains the strategic
nature of the original auction game in terms of best response functions and equilibria but removes the need to engage in conditional reasoning. In a standard human subject setting, this allows us to cleanly identify and quantify the effect that this cognitive activity has on bidding behavior and the WC. Independently of this variation, we further manipulate the formation of beliefs in two ways: Strongly – by implementing naïve computer opponents that play a known strategy, and weakly – by analyzing play against human subjects subsequent to play against the naïve computer. We thus observe behavior in three kinds of belief formation environments, two of which feature human interaction.

We obtain two main results. First, in the transformed game – without the need to condition on winning – subjects avoid the WC to a larger extent than in the original auction. In particular, the transformation reduces the number of subjects facing losses when winning the auction by 47%. Hence, conditional reasoning plays a significant role for the WC in standard CVA settings with human opponents. Second, under both the strong and the weak manipulation of beliefs, participants bid significantly lower than in the standard setting with human opponents, reducing the number of subjects facing losses by 36% and 15% respectively. When comparing the magnitude of the two individual effects by different measures (mean payoffs, mean bids, rationality of play), no generally significant differences emerge but it is safe to say that the conditioning is at least as important an obstacle for avoiding the WC as belief formation is. Finally, combining the transformation and the strong belief manipulation makes the behavior match the theoretical predictions fairly well and reduces the number of winner’s facing losses by 79% compared to our original auction game.

Overall, our results suggest that auction behavior is subject to the WC and often very erratic because this setting combines the need to engage in two difficult cognitive processes that are intertwined. On the one hand, conditioning on winning is only necessary and informative with a concrete belief about others’ strategies. On the other hand, the necessity to condition makes belief formation and iteration more difficult. The two processes thus form a nexus of interdependencies that is difficult for subjects to think about. In line with this idea, we also find that the combined effect of both problems, conditional reasoning and belief formation, on subjects’ bids seems to be larger than the sum of the individual effects. For this reason, in CVAs as opposed to other settings, very few subjects reach decisions that are informed by a concrete belief. The main implication for the modeling of auction behavior is therefore the apparent need to relax the assumptions of both consistent beliefs and correct conditioning.

A number of papers are closely related to our work. Levin, Peck and Ivanov (2014) analyze the conditioning problem in the WC in more detail by separating the involved Bayesian updating from non-computational reasoning. In particular, the authors compare results from a first-price auction with a strategically equivalent Dutch-CVA that makes the conditioning problem more salient. With our transformation, we propose a complementary
way of studying the conditioning hurdle and at the same time compare the extent of this obstacle to the problem of belief formation, whereas Levin et al. (2014) analyze the conditioning problem more fundamentally. Moreover, Charness, Levin and Schmeidler (2014) observe the WC in a generalized information environment in which bidders hold identical and public information. Their innovative design allows them to disentangle on the one side the influence of heterogeneity in estimation of the common value and on the other side the influence of non-optimal bidding behavior. They show that both are relevant for the winner’s curse. By focusing on the bidding behavior and disentangling the role of conditional reasoning and belief formation, our study complements their results. Finally, Levin and Reiss (2012) construct a behavioral auction design in which the payment rule incorporates the adverse selection problem that is at the origin of the WC. They observe that the WC is still present in their data. The authors adjust the payment rule but do not transform the auction game as we do.

Due to our method of transformation, our paper also relates to the broad set of studies that investigate behavior using very similar games. The largest fraction of those studies considers framing effects that influence subjects’ behavior but do not result from the structural nature of the situation (for example Tversky and Kahneman, 1986; Osborne and Rubinstein, 1994). Another methodologically interesting instance is the experimental, so-called “strategy method” in which participants make contingent decisions for all decision nodes they will possibly encounter in a game (Brandts and Charness, 2011). In a different manner, strategically equivalent versions of a game can facilitate the investigation of particular aspects of behavior. For example, Nagel and Tang (1998) use a repeated, normal-form centipede game to investigate learning behavior without aspects of sequential reciprocity. In our study, we craft two similar games that differ in the required cognitive process under investigation: conditional reasoning. To the best of our knowledge, our experiment is the first that uses such a transformation as a means to investigate the impact of this particular cognitive activity in strategic reasoning.

By this virtue, our approach opens further avenues for investigation in settings with similar cognitive processes. In the strategic voting literature, players are conditioning on being pivotal in a jury decision (Feddersen and Pesendorfer, 1998; Guarnaschelli, McKelvey and Palfrey, 2000). Using a computer experiment, Esponda and Vespa (2014) find that the cognitive difficulty of this operation might stand in the way of strategic voting. An experiment based on a transformation of the kind presented here can verify these results in the original voting situation with human opponents.

The rest of this paper is organized as follows: Section 2 describes our games, the experimental design, and our hypotheses. Section 3 provides the experimental results and Section 4 concludes.

4
2 Experimental Design and Hypotheses

In our experimental design, we will use two different games: a simplified standard auction game and a transformed auction game that does not require subjects to condition on the hypothetical event of winning the auction. The starting point for both games is a standard first-price CVA setting as in Kagel and Levin (1986). There are \(n \) bidders and a common value of the auctioned item \(W^* \in [\underline{W}, \overline{W}] \) that is the same for each bidder. Each bidder receives a private signal \(x_i \in [W^* - \delta, W^* + \delta] \), with \(\delta > 0 \). Bidders make bids in a sealed-bid first-price auction in which the highest bidder wins the auction and pays his bid. The available actions are \(a_i \in [W, W] \). The payoff of the highest-bidding player who wins the auction is \(u_i = W^* - a_i \). In case a bidder does not make the highest bid, his payoff is \(u_i = 0 \).

2.1 The Games

Simplified Auction Game

We simplify this general setting mainly by allowing only for two signals and by restricting the number of subjects who bid for the commodity to two. Bidders receive a private binary signal \(x_i \in \{W^* - 3, W^* + 3\} \) and this signal is drawn without replacement. Hence, bidders know that the other bidder receives the opposite signal but do not know which one it is.

The state of the signal is denoted by \(\omega = \{h, l\} \), indicating whether \(W^* \) is high or low relative to \(i \)’s signal so that \(x_i|h = W^* - 3 \) and \(x_i|l = W^* + 3 \). The common value \(W^* \) is randomly drawn from the interval \([25, 225]\). To ensure an equilibrium in pure strategies, we only allow absolute bids \(a_i \in [x_i - 8, x_i + 8] \). As a tie-breaker in case of identical bids, the lower-signal player wins the auction.

In order to analyze the structure of this simplified auction game and to easily relate it to the transformed game we express strategies in relative bids \(b_i = a_i - x_i \). We will call these relative bids just “bids” in the remainder and always specify when we talk about absolute bids. Relative to the other player’s bid \(b_j \), three general options of play emerge for player \(i \) as illustrated in the bottom part of figure 1. First, if male player \(i \) overbids female player \(j \) by at least 6 units – bridging the distance between signals – he always wins the auction, in both \(l \) and \(h \). Second, conversely, if player \(i \) underbids \(j \) by at least 6 units, he never wins the auction. Finally, if player \(i \) bids less than 6 units away from player \(j \)’s bid, he only wins the auction in \(l \), not in \(h \). Within this range, bidding \(b_i = b_j - 6 + \epsilon \), with a small \(\epsilon > 0 \), is optimal because it assures winning in \(l \) at the lowest price. The top part of figure 1 shows how the three constellations arise by player \(i \) not knowing \(\omega \).
Figure 1: Three areas of relative bids \(b_i \) induced by the relative position of signals \(x_i \) and \(x_j \).

Transformed Auction Game

The transformed game is a common-value auction without private signals in which the rules of winning mimic the structure of the auction game described above. It therefore results in the exact same situation as depicted in the bottom of figure 1.

Two players are informed of the two possible values an item can have, \(W^*_l \) or \(W^*_h = W^*_l + 6 \). In analogy to the auction game, the ranges of the values are \(W^*_l \in [25, 219] \) and \(W^*_h \in [31, 225] \). Subjects are allowed to absolutely underbid \(W^*_l \) by 5 units and absolutely overbid \(W^*_h \) by 5 units, \(a_i \in [W^*_l - 5, W^*_h + 5] \). To see the parallels to the auction game, note that the values \(W^*_l \) and \(W^*_h \) correspond to the possible values of the item from the point of view of a signal \(\frac{W^*_l + W^*_h}{2} \). Relating the relative bids \(b_i \) to the average of both common values, \(b_i = a_i - \frac{W^*_l + W^*_h}{2} \), we again have \(b_i \in [-8, 8] \), as in the auction setting.

The special auction rules determine the winner of the auction and the value of the won item as a function of chance and of the bids of the two players, exactly following the structure of the auction game and figure 1. First, if player \(i \) overbids player \(j \) by at least 6 units, he wins the auction for sure and for him both values realize with probability of 0.5 (win in \(\{l, h\} \)). Conversely, if player \(i \) underbids player \(j \) by at least 6 units, he does not win the auction and his payoff is 0 for sure (never win). Lastly, if the difference between both players’ bids is smaller than 6 units, with 0.5 probability each, player \(i \) or player \(j \) wins the auction, and the smaller value \(W^*_l \) realizes (win in \(l \)). The loser obtains a payoff of 0.

Note that these rules already incorporate the conditioning on the event of winning in the “win in \(l \)” rule because the lower value of the item, \(W^*_l \), realizes. Overall, the general design and the rules of the transformed game simply make explicit what in the auction game has to be understood by the subjects.

\(^2\)We choose the intervals such that the lowest and highest realizations are the same across the two games. Other ways of drawing this analogy are conceivable, however, this way is the most straightforward one.
Nash Equilibrium

By construction, the equilibrium bid functions for risk-neutral players in the two games are almost identical.

Proposition 1. The unique Nash equilibrium relative bid function in the Transformed Auction Game and in the Simplified Auction Game for signals $x \in [46, 228]$ is

$$B = -8.$$ \hspace{1cm} (1)

Proof. See appendix A.3. \square

In the Simplified Auction Game, signals close to the end-point value of 25 reveal the value of the item fully, providing incentives not to bid according to equation 1. For signal values up to 46, subjects’ optimal bid function is influenced through higher-order beliefs by those incentives as detailed in appendix A.3. In our data analysis, we disregard observations in this range. This difference between the games is due the differing information structure. In the Simplified Auction Game, the private signals prevent common knowledge of the possible item values. The bidders in the Transformed Auction Game have common knowledge that the value of the item is either W^*_l or W^*_h.

Outside this small range, our transformation fully maintains the strategic structure of the auction game. Therefore, concepts that rely on best response functions, the dominance of strategies or rationalizability do not lead to different predictions between the two games. The level-k approach might predict substantial differences between the two games when the removal of the need to condition in the transformed game is assumed to let subjects reach higher levels of reasoning. Furthermore, one might argue that differences in framing require different level-0 assumptions. However, these differences alone are unable to predict the differences we observe between the two games.3 Finally, any equilibrium concept that relaxes the assumption of correct conditioning naturally predicts a difference between our two games. In the transformed game, we do not have any private information and hence subjects are predicted to avoid the WC.

3For the auction game, random level-0 players would bid uniformly, $b_i \in [-8, 8]$, and truthful level-0 players would bid their signal. Other levels would then best respond to these strategies. In the transformed game, random level-0 play would be unchanged, but it is less clear what truthful level-0 play means when no private signal is received. Level-0 subjects could bid the mean value of the two commodity’s values, but they could also follow a more cautious strategy by bidding W^*_l. Importantly, we will identify bidding $b_i \leq -5$ as an upper bound of plausible behavior. Note, that for both truthful level-0 player (bidding W^*_l vs. the mean value of the commodity’s value/ signal), the respective level-1 player should bid below -5. Hence, if we observe more people bidding below -5 in the transformed game, this cannot be explained by differences in the level-0 bids.
2.2 Experimental Design

The games implemented in the experiment differ along 2 dimensions. The first dimension is spanned by the two games to the effect that differences in behavior between the transformed game and the simplified auction game relate to conditional reasoning.

The second dimension relates to 3 different kinds of belief formation. Apart from simply facing fellow human opponents, the strong belief manipulation confronts subjects with naïve computerized opponents. The subjects are informed that the computer follows the strategy $b^C = 0$, implying that she absolutely bids according to her signal or the expected value of the item, respectively. This situation removes the subjects’ need to form beliefs as well as strategic uncertainty and only requires the ability to find the best response. In the experiment, subjects have to round their bids to one cent of a unit. The best response is thus $BR(b^C) = -5.99$ (win in l). The weak belief manipulation is the interaction with human opponents subsequent to facing the computer. This encounter can help to craft a belief about the human opponents.

Our experiment consists of four treatments that differ in the sequence of the specific games played (see figure 2). The treatment name is derived from the first game in each treatment. Each treatment is divided in parts I and II. The AH (AuctionHuman) treatment starts with the auction game in part I and has the transformed game in part II. In the TH (TransformedHuman) treatment, this sequence is reversed. Within each part of these two treatments, the opponents switch from human to computer opponents. Subjects are informed about the computer opponent only after they have finished the initial game. In the other two treatments, AC (AuctionComputer) and TC (TransformedComputer), the switch is reversed from computer to human opponents. In the main text, we will focus on analyzing subject’s behavior in part I of the four treatments.

In all treatments, the general instructions and the instructions for the games are read aloud. Subjects play each specific game for three consecutive periods against randomly chosen subjects or the computer. Subjects are informed that they will first make all 12 decisions in the experiment before receiving any feedback.

We deliberately rule out that subjects get any payoff information after each game to illuminate the mechanism behind the WC, undisturbed from learning through feedback.

4 We deliberately do not implement a more complex or realistic strategy for the computerized opponents since subjects do not have to be able to best respond to complex belief distributions in the human opponent games either. When subjects realize in a first step that underbidding by $BR(b^C) = -5.99$ is the best response to naïve play, they might recognize the equilibrium strategy in a second step.

5 Appendix A.4, however, provides an analysis of the data of part II. There, we derive hypotheses about learning patterns across treatments depending on the relevance of conditional reasoning and belief formation.

6 Because subjects do not receive any feedback after playing one period, in principle, it would have been possible to just implement one period per game. However, implementing three periods allows us to see whether subjects consistently play the same strategy across three periods for different values of the signal.
2.3 Hypotheses

Our first hypothesis focuses on the role of conditional reasoning. If the operation of conditioning on the hypothetical event of winning is a major obstacle to forming beliefs and best responding – as suggested by Charness and Levin (2009) – we should observe that subjects in the transformed game (TH) are to a larger extent able to avoid the WC due to lower bids than in the auction game (AH). If this influence does not only work through the belief formation, this difference will also arise when the two games are played with a known computer opponent.

Hypothesis 1 (Conditional reasoning): Due to the cognitive ease, subjects make lower bids and avoid the WC more often in the transformed game compared to the auction game, both with human and computerized opponents.
Hypothesis 2 relates to the possibility that with human opponents both belief formation and strategic uncertainty present independent obstacles to avoiding the WC. Part 2a considers the strong belief manipulation with a computer opponent in which neither strategic uncertainty nor belief formation can prevent correct best responding. Therefore, analyzing how subjects’ behavior is different when facing a computer opponent compared to facing a human opponent reveals the relevance of these characteristics.

Hypothesis 2a (Belief formation, strong manipulation): In each game, subjects make lower bids and avoid the WC more often when playing against computerized opponents than when playing against human opponents.

The comparison in hypothesis 2a delivers an upper bound on the relevance of belief formation since both strategic uncertainty and belief formation do not play a role in the computerized setting. We can test this hypothesis both within-subject in AH and TH and between-subject thanks to AC and TC.

Hypothesis 2b deals with the weak belief manipulation which gives subjects a hint about how to start thinking about their opponents but which does not alter strategic uncertainty. In particular, in the AC and TC treatment, subjects face human opponents after they played against computerized opponents. The comparison with the standard human opponent setting provides a lower bound on the relevance of belief formation since far from all aspects of belief formation are removed. Importantly, in the AC treatment, subjects might not only improve their behavior because a starting point for their beliefs improves their belief formation process, but they might also learn how to condition on the event of winning by playing against human opponents first. Treatment TC allows us to tell these two possibilities apart.

Hypothesis 2b (Belief formation, weak manipulation): Subjects make lower bids and avoid the WC more often in the auction or transformed game with human opponents if this game is played after the setting with computerized opponents compared to when it is played first.

The experiments were conducted at the University of Mannheim in Spring and Autumn 2014. Overall, 12 sessions with 10 to 22 subjects in each session were run. In total, 182 subjects participated. Participants received a show-up fee of 4€. We used Taler as an experimental currency where each Taler was worth 0.50€. Subjects received an initial endowment of 8 Taler in Part I and II of the experiment from which losses were subtracted and to which gains were added. Even if participants made losses in both parts, they kept their initial show-up fee. Sessions lasted on average 60-75 minutes and subjects earned on average 14.40€.

7 The experimental software was developed in z-Tree (Fischbacher, 2007). For recruitment, ORSEE was used (Greiner, 2004).
Table 1: Summary Statistics - AH & TH Treatments.

<table>
<thead>
<tr>
<th></th>
<th>AH</th>
<th>TH</th>
<th>Wilcoxon rank sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Std. deviation)</td>
<td>Auction game</td>
<td>Transf. game</td>
</tr>
<tr>
<td>Human opponents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bids</td>
<td>−1.80</td>
<td>−4.00</td>
<td>0.000</td>
</tr>
<tr>
<td>Payoffs</td>
<td>−0.56</td>
<td>0.55</td>
<td>0.001</td>
</tr>
<tr>
<td>Comp. opponents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bids</td>
<td>−3.37</td>
<td>−5.00</td>
<td>0.007</td>
</tr>
<tr>
<td>Payoffs</td>
<td>0.17</td>
<td>0.81</td>
<td>0.004</td>
</tr>
<tr>
<td>Wilcoxon signed rank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(within treatment)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bids</td>
<td>0.000</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>Payoffs</td>
<td>0.001</td>
<td>0.184</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The last column reports two-sided p-values of Wilcoxon rank sum tests that evaluates whether the distribution of bids and payoffs is different between treatments. The last row reports two-sided p-values of Wilcoxon signed rank tests that evaluate whether the distribution of bids and payoffs is different within-subject between the human and the computerized setting.

3 Results

The following summary statistics and tests use the average bids and payoffs over the three periods of each specific game. Only the percentage of incidences of winners incurring losses is calculated using the per period information.

In addition to their mere magnitude, we distinguish bids in four categories by whether they can be a valid best response. In the human subject games, the important thresholds are at $b_i = -8, -5, -3$. The first category is playing the equilibrium, bidding $b_i = -8$. The next threshold is the best response to a naïve strategy, $b_j = 0$, which we round up from the precise value $b_i = -5.99$ to $b_i = -5$ because some subjects only bid integer values. Finally, bidding $b_i > -3$ is a weakly dominated strategy. The intuition is the following: Whenever j bids very high values ($b_j \geq 3$), no positive payoffs can be obtained, and any bid $b_i \leq b_j - 6$ is a best response. Whenever positive payoffs can be achieved for lower bids of j, there is always a strategy $b_i < -3$ that leads to higher expected payoffs than bidding above -3. Overall, we think that bids $b_i \in [-8, -5]$ represent plausible behavior. Bids $b_i \in (-5, -3]$ might still be a best response but only to some forms of fairly implausible beliefs, while bids above are weakly dominated.

For the games against computer opponents, a similar picture emerges in which we distinguish precise and approximate best response behavior, $b_i = 5.99$ and $b_i \in (5.99, 5]$, respectively, from non-best response behavior $b_i < -5.99$ and $b_i > -5$.

8Actually, given the empirical distribution of subjects’ behavior in each treatment, equilibrium play is not a best response, but it is close. In the auction game, bidding $b_i = -7.97$ is the best response. In the transformed game, bidding $b_i = -7.99$ is the best response.
3.1 Conditional reasoning (Hypothesis 1)

In the auction game with human opponents (AH), 61% of all subjects who win the auction incur a loss whereas only 32% of subjects in the transformed game do so (AH). In line with these observations, in the auction game with computerized opponents, 45% of those subjects who win the auction game face a loss whereas only 13% of those subjects do so in the transformed game. These outcomes follow from bidding behavior illustrated in table 1. Both against human and computerized opponents, average bids are significantly lower and thus closer to the equilibrium or best-response behavior in the transformed game compared to the auction game. The differences in payoffs are significantly different irrespective of the opponents. Against human opponents, subjects on average lose money in the auction game while they win money in the transformed game.\(^9\)

![Figure 3: AH Treatment - Bids (Part I), N = 50.](image)

Figures 3 and 4 report subjects’ bid distributions in Part I of the AH and TH treatments. The histograms in figure 3(a) and 4(a) reflect that subjects play lower bids more often in the transformed game than they do in the auction game. Actually, the bidding behavior in the auction game gives the impression of normally distributed bids that do not reflect the equilibrium of \(b_i = -8\) at all, whereas bidding behavior in the transformed game at least partially reflects that the equilibrium is the lowest possible bid. For computerized opponents, higher order beliefs in the auction game, however, do not matter, because the computer follows a known and fixed strategy in both games. Second, although the magnitude of the difference between the two games is slightly larger in the version with human opponents compared to computerized opponents (2.2 vs. 1.6) it is still roughly of the same size, suggesting that the main difference between the two games is with respect to conditioning and not the informational structure.

\(^9\)The figures of table 1 provide evidence against the idea that differences in the informational structure of the auction and the transformed game lead to behavioral differences in these games. First, there is a significant difference between the auction and the transformed game in the version with computerized opponents. With computerized opponents, higher order beliefs in the auction game, however, do not matter, because the computer follows a known and fixed strategy in both games. Second, although the magnitude of the difference between the two games is slightly larger in the version with human opponents compared to computerized opponents (2.2 vs. 1.6) it is still roughly of the same size, suggesting that the main difference between the two games is with respect to conditioning and not the informational structure.
opponents, figures 3(b) and 4(b) show that a larger number of subjects is able to find the best response when strategic interaction with human opponents is absent.

For the games with human opponents, the “Total” columns and rows of table 2 reveal that 39% of subjects (6+12=18 of 46) bid plausibly \(b_i \in [-8, -5] \) in the transformed game while only 12% (0+6=6 of 50) do so in the auction game (Fisher’s exact test, \(p = 0.001 \)). A similar picture arises for the games with computerized opponents in which either the precise or the approximate best response is played by 54% of subjects (9+18=27 of 50) in the auction game and 80% (13+24=37 of 46) in the transformed game (Fisher’s exact test, \(p = 0.012 \)). Hence, even if subjects exactly know how their opponents react, conditioning on the event of winning still seems to be a problem at least for some subjects. All the reported results are in general robust when using the AC and TC data for a between-subject instead of this within-subject analysis although the results for the computerized setting are slightly less significant. Note that in the computerized version of the auction game subjects already bid not too far away from the equilibrium, making it more difficult to improve subject’s behavior.

The inside of table 2 illustrates the within-subject bid transition between human and computerized setting. Figures A.3 and A.5 on page 31 graphically illustrate the data.

10 All reported tests in this paper are two-sided.
11 Comparing the games with human opponents, in the transformed game compared to the auction game (part I: AC vs. TC), subjects’ bids are lower (Wilcoxon rank sum, \(p = 0.027 \)), subjects’ payoffs are higher (Wilcoxon rank sum, \(p = 0.004 \)), and more subjects play plausibly, \(b_i \in [-8, -5] \) (Fisher’s exact test, \(p = 0.130 \)), although the last result is not significant. Comparing the games with computerized opponents, in the transformed game compared to the auction game, subjects’ bids are lower (Wilcoxon rank sum, \(p = 0.079 \)), subjects’ payoffs are significantly higher (Wilcoxon rank sum, \(p = 0.099 \)), and more subjects play plausibly, \(b_i \in [-5.99, -5] \) (Fisher’s exact test, \(p = 0.090 \)). Tables 3, 4, 5, and 6 summarize subjects’ behavior in the AC and the TC treatment.
Two important features are noteworthy. First, 19 subjects in the auction game play bids in the top-right cell, that is, higher than -3 against human opponents and higher than -5 against computerized opponents. This kind of bidding is less common in the transformed game where only 5 do this. Second, in the auction game, of those $27=9+18$ playing a reasonable response to the computer ($b_i \in [-5.99, -5]$), $17=8+9$ (63%) subjects previously bid above -3 and thus a weakly dominated strategy. Only $11=4+7$ out of $37=13+24$ (30%) do this in the transformed game. This suggests that beyond the ability to best respond, the conditional reasoning increases the difficulty of belief formation. In the auction setting, relatively more subjects who are in principle able to best respond seem to fail to form adequate beliefs with human opponents and best respond to them, compared to the transformed setting.12

Result 1: For both human and computerized opponents, we find that, without conditioning, subjects bid lower and are better in avoiding the WC. Hence, we find evidence in a CVA setting with human opponents that the difficulty of conditioning on hypothetical events is one reason behind the WC.

We found another consequence of the need to condition when we analyzed subjects’ behavior over the three periods of each game. When we test the equality of the distribution

12Table 2 also reveals that overall 36 out of 50 subjects (72%) play a weekly dominated strategy in the auction game. This provides evidence against the idea that differences in the informational structure lead to differences in behavior. It seems highly unlikely that subjects are able to understand the potential implications of higher order beliefs in the auction game but are at the same time unable to avoid a weekly dominated strategy.
of bids for the first and the last period of each game, only 2 out of the 16 games (four games in four treatments) show significant differences. Subjects bid significantly closer to the equilibrium in the third compared to the first period only when the transformed game is played as first game (\(TH, p=0.001\), and \(TC, p=0.067\)). Therefore, only without conditioning subjects are able to improve their behavior even though they do not receive feedback.

3.2 Belief formation (Hypothesis 2)

In the auction game of \(AH\), 61% of the winning subjects face losses with human opponents whereas only 45% do so with computerized opponents. In the transformed game of \(TH\), 32% of the winning subjects face losses with human opponents whereas this is only the case for 13% of subjects with computerized opponents. Table 1 shows that in both treatments these outcomes are due to significantly lower bids when facing computerized opponents. Note that we observe differences in subjects’ bidding behavior even though the best response requires a higher bid in the setting with computerized opponents than the equilibrium bid in the human opponent setting.

Judging by the categories of table 2, in the auction setting, 6 out of 50 subjects (12%) behave plausibly with human opponents and 27 out of 50 (54%) do so with computerized opponents (McNemar’s test, \(p = 0.000\)). In the transformed game setting, 18 out of 46 subjects (39%) behave plausibly with human opponents while 37 out of 46 (80%) do so with computerized opponents (McNemar’s test, \(p = 0.000\)).

With help of the \(AC\) and \(TC\) treatments, we can corroborate the observed differences between human and computerized opponents between-subject and without preceding games. Table 3 provides summary statistics for the \(AC\) treatment and shows – on the diagonal – that participants bid significantly lower values and make significantly higher profits with computerized opponents (Bid averages: \(-1.80\) vs. \(-2.83\), payoff averages: \(-0.56\) vs. \(-0.12\)). The Wilcoxon rank sum tests yield significant differences (Bids, \(p = 0.022\); payoffs, \(p = 0.033\)). Additionally, a Fisher’s exact test on the categories supports this finding (\(p = 0.001\)).

Table 5 provides the respective summary statistics for the \(TC\) treatment. Subjects bid lower values but do not make higher profits with computerized opponents (Bid averages: \(-4.00\) vs. \(-4.18\), payoff averages: \(0.55\) vs. \(0.37\)). Additionally, unlike in the auction setting, differences are not significant (Bids, \(p = 0.323\); payoffs, \(p = 0.434\)). As outlined before,

13Because realizations of the commodity value are different between periods, this is also evidence in favor that subjects in general follow strategies of constant relative bidding.

14Our central results regarding conditional reasoning and belief formation remain in general robust to considering first or third period bids instead of mean bids, although differences are less pronounced as single period data is naturally more noisy. Appendix A.4 provides further details.

15The McNemar’s test performs a similar test for binary categories as the Fisher’s exact test does and is additionally appropriate for matched data.
<table>
<thead>
<tr>
<th>Means</th>
<th>AH Auction game</th>
<th>AC Auction game</th>
<th>Wilcoxon rank sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human opp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bids</td>
<td>−1.80</td>
<td>−2.62</td>
<td>0.166</td>
</tr>
<tr>
<td></td>
<td>(2.63)</td>
<td>(4.15)</td>
<td></td>
</tr>
<tr>
<td>Payoffs</td>
<td>−0.56</td>
<td>−0.57</td>
<td>0.303</td>
</tr>
<tr>
<td></td>
<td>(1.55)</td>
<td>(2.46)</td>
<td></td>
</tr>
<tr>
<td>Comp. opp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bids</td>
<td>−3.37</td>
<td>−2.83</td>
<td>0.524</td>
</tr>
<tr>
<td></td>
<td>(3.30)</td>
<td>(3.65)</td>
<td></td>
</tr>
<tr>
<td>Payoffs</td>
<td>0.17</td>
<td>−0.12</td>
<td>0.825</td>
</tr>
<tr>
<td></td>
<td>(1.53)</td>
<td>(1.99)</td>
<td></td>
</tr>
<tr>
<td>Wilcoxon test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(within treatment)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bids</td>
<td>0.000</td>
<td>0.670</td>
<td></td>
</tr>
<tr>
<td>Payoffs</td>
<td>0.001</td>
<td>0.061</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The last column reports two-sided p-values of Wilcoxon rank sum tests that evaluates whether the distribution of bids and payoffs is different between treatments. The last rows report two-sided p-values of Wilcoxon signed rank tests that evaluate whether the distribution of bids and payoffs is different within-subject between the human and the computerized setting.

the difference in the equilibrium predictions between the human and the computerized setting biases, however, against finding a difference between treatments. Hence, it is more appropriate to analyze whether plausible play increases in the computerized setting. This is clearly the case: 18 out of 46 subjects (table 2) play plausible in the human setting, whereas 27 out of 42 subjects (table 6) do so in the computerized setting (Fisher’s exact test, \(p = 0.001 \)).

The strong impact of the removed strategic uncertainty and the removed need to form beliefs in the computerized setting on bidding behavior may not be surprising. However, within-subject analyses of the AH and TH treatments in table 2 (figures A.3 and A.5) suggest that strategic uncertainty alone is unable to explain the differences between settings. In both cases, out of those subjects that approximately best respond computerized setting, 27 and 37, respectively, still a substantial fraction of 17 and 11 players, respectively, plays a weakly dominated strategy against humans. Beyond strategic uncertainty, subjects in both games have difficulties developing beliefs to which they could apply their best response abilities. Without these beliefs, they end up bidding dominated strategies.\(^{16}\)

\(^{16}\)An alternative explanation would be that subjects actually develop beliefs that are, however, too complex for them to best respond. We think that this explanation is, however, fairly unlikely for two main reasons. First, even if players are unable to exactly best respond to their complex beliefs, they should at least nearly best respond to these beliefs in case they are able to best respond against the computer. Instead of best responding directly to their complex beliefs, they could respond to a degenerated belief as if all opponents make a certain bid (e.g. the opponents bid the salient signal) and at least avoid bidding above −3 (see footnote 4). Second, more generally, it seems questionable that subjects have complex beliefs even though they do not understand the game sufficiently to best respond. Then it is unclear how they should have come to these beliefs in the first place.
Table 4: Bid transition by categories (Part I).

<table>
<thead>
<tr>
<th></th>
<th>b_i (Human)</th>
<th>(-8)</th>
<th>([-8, -5])</th>
<th>([-5, -3])</th>
<th>((-3, 8])</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_i (Comp.)</td>
<td>(-5, 8)</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>((-5.99, -5])</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>([-5.99])</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>((-8, -6])</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>6</td>
<td>8</td>
<td>36</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>b_i (Human)</th>
<th>(-8)</th>
<th>([-8, -5])</th>
<th>([-5, -3])</th>
<th>((-3, 8])</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_i (Comp.)</td>
<td>(-5, 8)</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>((-5.99, -5])</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>([-5.99])</td>
<td>0</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>((-8, -6])</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>16</td>
<td>6</td>
<td>21</td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>

Result 2a (strong manipulation): We find that belief formation and strategic uncertainty provide additional obstacles for avoiding the WC both in the auction and in the transformed game. However, strategic uncertainty alone is not able to explain our results, a more general problem of belief formation seems to be present in the data.

Under the weak belief manipulation, 52% of subjects winning the auction game with human opponents face losses in the AC treatment while 61% of subjects do so in the AH treatment. Table 3 shows that bids and payoffs differ in the expected direction in the auction game with human opponents between these treatments, but this difference is not significant ($p = 0.166$).

Judging the bids by categories as illustrated in the “Total” rows of table 4, plausible bids below -5 are significantly more likely when the auction game with human opponents is played after the setting with computerized opponents (Fisher’s exact test, $p = 0.014$).

The within-subject analysis gives a particularly illuminating illustration of these differences. Table 4 (figure A.4) shows that – just like in the AH treatment – numerous subjects place bids in the top-right cell in AC as well. More interestingly, of the $19=7+12$ subjects approximately best responding against the computer, only 2 bid higher than -3 when facing human opponents. As mentioned, in AH, out of 27 that play a best response against computer opponents, 17 bid higher than -3 when facing human opponents. Therefore, pairing the general ability to best respond with a little help in the belief formation has a strong influence on the expected payoff of the bids placed against human opponents.
Table 5: Summary Statistics - TH & TC Treatments

<table>
<thead>
<tr>
<th></th>
<th>TH Transf. game</th>
<th>TC Transf. game</th>
<th>Wilcoxon rank sum p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Means (Std. deviation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human opp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bids</td>
<td>−4.00 (2.61)</td>
<td>−4.64 (2.88)</td>
<td>0.173</td>
</tr>
<tr>
<td>Payoffs</td>
<td>0.55 (1.37)</td>
<td>0.82 (1.56)</td>
<td>0.116</td>
</tr>
<tr>
<td>Comp. opp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bids</td>
<td>−5.00 (2.53)</td>
<td>−4.18 (2.90)</td>
<td>0.135</td>
</tr>
<tr>
<td>Payoffs</td>
<td>0.81 (1.56)</td>
<td>0.37 (2.11)</td>
<td>0.301</td>
</tr>
<tr>
<td>Wilcoxon test p-value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(within treatment)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bids</td>
<td>0.020</td>
<td>0.308</td>
<td></td>
</tr>
<tr>
<td>Payoffs</td>
<td>0.184</td>
<td>0.082</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The last column reports two-sided p-values of Wilcoxon rank sum tests that evaluates whether the distribution of bids and payoffs is different between treatments. The last rows report two-sided p-values of Wilcoxon signed rank tests that evaluate whether the distribution of bids and payoffs is different within-subject between the human and the computerized setting.

The fourth treatment TC helps showing that this effect is not due to the learning of conditioning during the preceding play against the computer. Table 5 shows that the absolute difference in bids between the TH and the TC treatment is 0.64 with a p-value of 0.173, very similar to the Auction treatments. The changes in the transition between computer and human opponents (figure A.6 and table 6) are analogue to the Auction treatments.

Result 2b: Although the observed difference in average bids is not significant, playing first against computerized opponents leads to significantly more plausible play against human opponents.

3.3 Conditioning vs. Belief Formation

To conclude our analysis, we investigate which of the two manipulations, the removal of the need to condition or the help with belief formation, has a stronger impact on subjects’ behavior. Starting out with the results from the regular auction game against human opponents (AH) in which 12% of all subjects play plausible, we can illustrate the effect of each manipulation individually (TH, AC) as well as the combined effect (TC). Figures 5

17Due to the overall lower bidding in the Transformed treatments, there is no significant difference between categories as depicted in table 6 (Fisher’s exact test, p = 0.212). If we, however, only consider those subjects who at least approximately best respond, \(b_i \in [-5.99, -5] \), in the computerized setting, more subjects play plausible against human opponents in the TC than in the TH treatment (Fisher’s exact test, p = 0.052).
Table 6: Bid transition by categories (Part I).

<table>
<thead>
<tr>
<th>b_i (Comp.)</th>
<th>[-8]</th>
<th>(-8, -5]</th>
<th>(-5, -3]</th>
<th>(-3, 8]</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_i (Human)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-5, 8]</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>(-5.99, -5]</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>[-5.99]</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>(-8, -6]</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>12</td>
<td>12</td>
<td>16</td>
<td>46</td>
</tr>
<tr>
<td>TC treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-5, 8]</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>(-5.99, -5]</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>[-5.99]</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>(-8, -6]</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>20</td>
<td>9</td>
<td>9</td>
<td>42</td>
</tr>
</tbody>
</table>

and 6 provide a summary of our results by presenting the empirical cumulative distribution functions of bids in different games.

Figure 5 shows among others the results under the weak belief manipulation that is due to previous play against a naive computer opponent. Comparing AH and TH reflects our first result that the transformation leads to significantly lower bids. The comparison of AH and AC captures the effect of the help in belief formation from result 2b and makes a comparatively smaller difference. The difference between the two individual manipulations is, however, not generally significant: There is no difference in plausible behavior, $b_i \leq 5$ ($TH: 39\%$ vs. $AC: 34\%$, Fisher’s exact test: $p = 0.830$) and in bids (-4.00 vs. -2.60, Wilcoxon rank sum: $p = 0.147$) and only a marginally significant difference in payoffs (0.55 vs. -0.55, Wilcoxon rank sum: $p = 0.051$). Finally, combining both manipulations (TC) leads to the lowest bid distribution and the highest percentage of plausible play (57%) although the difference to only switching off the conditioning is not significant.

With respect to the question of how many subjects fall prey to the WC, the following picture emerges for treatments shown in figure 5: 61% of winners face losses in the auction game with human opponents (AH), 32% without the conditioning problem (TH), 52% without the belief formation problem (AC), 28% without both problems, where the difference between TH and AC is significant according to a proportion test ($p = 0.021$). Overall, switching the conditioning problem off reduces the WC by 47%, whereas

18 As noted earlier, having subjects play first against computerized opponents seems to help those that are able to best respond, but it does not help those who have a more fundamental problem understanding the game. For this reason, the cdf of the auction game played after the computerized setting is very similar to the cdf of the behavior in the transformed game in the interval $[-8, -5]$. Afterwards, however, the former cdf approaches again the cdf of the original auction game.
disburdening subjects from the belief-formation problem reduces the WC only by 15%, and both manipulations lead to a reduction of 54%. Hence, although the weak belief-formation manipulation seems to have an impact on plausible play and bids, its impact on payoffs is fairly limited. The reason is that this manipulation only improves the bids of those who already understand a lot about the general structure of the game but not of others, as outlined before (see table A.4).

Figure 6 reflects very similar results under the stronger belief manipulation of playing against naïve computer opponents. Here, the belief manipulation actually leads to a higher level of plausible play, \(b_i \in [-8, -5] \) or \(b_i \in [-5.99, -5] \), than the conditioning manipulation. Overall, however, neither plausible play (\(TH: 39\% \) vs. \(AC: 43\% \), Fisher’s exact test: \(p = 0.831 \)), nor bids (\(-4.00 \) vs. \(-2.83\), Wilcoxon rank sum: \(p = 0.336 \)), nor payoffs (0.55 vs. \(-0.12\), Wilcoxon rank sum: \(p = 0.289 \)) are significantly different.\(^{19}\) Again, combining both manipulations leads to the highest percentage of plausible play (62%).

With respect to how many subjects fall prey to the winner’s curse in figure 6: Again, 61% of winners face losses in the auction game with human opponents (\(AH \)) and 32% without the conditioning problem (\(TH \)). This time, 39% face losses without the belief formation problem (\(AC \)), and 13% without both problems, where the difference between \(TH \) and \(AC \) is not significant according to a proportion test (\(p = 0.399 \)). Hence, the strong manipulation leads to reduction of the WC by 36% compared to 47% by the transformation, whereas both effect reduce the WC by 79%.\(^{20}\)

The stronger manipulation also seems not to have an effect on subjects with more fundamental problems of understanding of the game: the cdf of \(AC \) and \(AH \) intersect again at \(b_i = 0 \).

For both figures similar calculations can be made with respect to how large the difference in average
Finally, we quantify the effects of the two manipulations with the help of the regression analysis in table 7. This table shows random-effects panel regressions in which the dependent variable is the bids. All regressions include dummies that indicate the presence of the conditioning problem in auction games or the presence of the belief formation problem in human opponents settings. Further, we add the interaction term of the two dummies and control for whether subjects play against human opponents after playing against computerized opponents. While regressions 1 and 3 only use Part I data, regressions 2 and 4 also include Part II data and additionally control for learning by including a Part II-dummy, an interaction with the transformed treatments (TC/TH) and the last game in the treatment. Regressions 3 and 4 adjust the bids for the fact that the optimal bid against the computer is different from the equilibrium bid against humans, an effect which dampens the effect of the belief formation in 1 and 2.\footnote{This adjustment is done in the following way: Equilibrium bids against the computer, -5.99, are set to -8, the equilibrium bid against humans. Additionally, near equilibrium bids, $(-5.99, -5]$ are linearly transformed into the interval of plausible play against humans, $(-8, -5]$. Importantly, qualitatively similar results emerge when only adjusting exact equilibrium behavior, $b_i = -5.99$, when additionally adjusting non-equilibrium behavior against computerized opponents, $b_i < -5.99$, or when reversely adjusting bids against humans to the equilibrium metric of computerized opponents.}

With respect to our main manipulations, table 7 confirms that both obstacles, conditioning and belief formation, individually lead to higher bids and worse play, significantly so when we control for the difference of equilibrium bids between human and computerized opponents (regressions 3 and 4). Differences between the two coefficients are not signifi-

Figure 6: CDFs of subjects’ bids: conditioning and belief formation (strong manipulation)
Table 7: Panel regression on bids

<table>
<thead>
<tr>
<th></th>
<th>Bids Adjusted bids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Part I</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Conditioning</td>
<td>1.4859***</td>
</tr>
<tr>
<td></td>
<td>(0.4618)</td>
</tr>
<tr>
<td>Belief formation</td>
<td>0.8503***</td>
</tr>
<tr>
<td></td>
<td>(0.3302)</td>
</tr>
<tr>
<td>Human after comp. subjects</td>
<td>-1.1771***</td>
</tr>
<tr>
<td></td>
<td>(0.3520)</td>
</tr>
<tr>
<td>Transf. x comp. sub.</td>
<td>0.6306</td>
</tr>
<tr>
<td></td>
<td>(0.3861)</td>
</tr>
<tr>
<td>Part II</td>
<td>0.8742*</td>
</tr>
<tr>
<td></td>
<td>(0.4695)</td>
</tr>
<tr>
<td>Part II × TH/TC</td>
<td>-2.5561***</td>
</tr>
<tr>
<td></td>
<td>(0.7938)</td>
</tr>
<tr>
<td>Lastgame</td>
<td>0.5667**</td>
</tr>
<tr>
<td></td>
<td>(0.2402)</td>
</tr>
<tr>
<td>Constant</td>
<td>-4.6067***</td>
</tr>
<tr>
<td></td>
<td>(0.2919)</td>
</tr>
</tbody>
</table>

Panel random-effects regressions. The dependent variable is bids. For specifications (3)-(4) bids have been adjusted for settings with computerized opponents to assure consistency of equilibrium bids. Cluster-robust standard errors (subject level) are provided in parentheses. ***,** and * indicate significance at the 1%, 5% and 10% level.

Significant in regressions 1, 3, and 4 (Z-Test, $p > 0.2$). Additionally, the interaction between both obstacles is always positive and at least marginally significant in three out of four cases. The presence of both problems seems to deteriorate subjects’ play beyond the two individual effects which is in line with the idea that belief formation and conditioning form a nexus of interdependencies that reinforces the individual problems.

The results further show that letting subjects play against computerized opponents first helps them to make lower bids against human opponents. Regressions 2 and 4 support the idea that subjects bid lower in Part II in case they have played the transformed game in Part I (TH/TC). Subjects performance deteriorates in the last of the four games of the experiment, potentially due to exhaustion or loosened self-restraint. Part II results are in line with the results of appendix A.4.

Overall, the evidence of this section shows that conditional reasoning is as high an obstacle to rational play in an auction context as is belief formation. The overall difference between AH and TC suggests that any effort of theoretically explaining behavior in auctions should relax both the assumption of consistent belief formation and correct conditioning.
Table 8: Estimated level-\(k\) distribution.

\[
\begin{array}{cccccc}
\text{Level-} & \text{in} & \text{AH} & \text{TH} & \text{AC} & \text{TC} \\
\text{k} & \text{ } & \text{N} & \text{p}^k & \text{N} & \text{p}^k & \text{N} & \text{p}^k & \text{N} & \text{p}^k \\
0 & (-3, 8] & 36 & 0.72 & 16 & 0.35 & 21 & 0.48 & 9 & 0.21 \\
1 & (-7, -3] & 12 & 0.24 & 22 & 0.48 & 15 & 0.34 & 23 & 0.55 \\
\geq 2 & [-8, -7] & 2 & 0.04 & 8 & 0.17 & 8 & 0.18 & 10 & 0.24 \\
\text{Total} & & 50 & 46 & 44 & 42
\end{array}
\]

3.4 Discussion

The results of our study illuminate the influence of particular cognitive activities on behavior in CVAs. For various reasons, we have not yet discussed concrete models and their predictions and shall be relatively brief on them. First, we believe that the results point strongly to the kinds of relevant processes to be modelled in order to yield fitting predictions. They are thus more suited to investigate the space spanned by models such as ABEE, CE, and level-\(k\) on the one side and the suggested non-belief-based explanation advocated by Ivanov et al. (2010) on the other.

Second, the type-dependence of the action space in the Simplified Auction Game limits the possible specifications of CE and ABEE because average behavior needs to be well defined. Further, this type-dependence limits the interpretation of a level-\(k\) model with a uniform random level-0 belief as reflecting informational naïveté (Crawford et al., 2013, p. 28). By the definition of a best response, a level-1 player engages in conditional reasoning since the type determines the limits of the uniform distribution and is predicted to play \(b^1 = -8\). A model with truthful level-0 suffers from the same interpretative limitation, it might, however, serve as an interesting brief exercise to span the space of models mentioned previously. Basically, in this model, level-0 reflects any non-strategic as well as any naïve behavior while higher levels only differ in their beliefs, not in their inferential naïveté.

In particular, such a model predicts \(b^0 = 0, b^1 = -5.99\) and for any \(k \geq 2, b^k = -8\). If we take into account noisy behavior in the simplest way and draw the line between types in the middle of their predicted bids, we get to predicted intervals as shown in table 8. By treatment, the table further shows the number and fraction \(l^k\) of subjects falling into these categories for the games played against human opponents in Part I.

In the presence of both conditioning and belief formation (\(AH\)), it can be seen that the fraction of level-0 players is very high, unlike many level-\(k\) distributions previously estimated. Removing the need to condition and to form beliefs step by step leads to a normalization of the level-\(k\) distribution to a point where is has a standard hump-shape and an average level of at least 1.02 (\(TC\)). This shows on the one hand that the behavior in a standard auction is indeed very particular and possible well-described by a non-belief-based model like level-0. On the other hand, once the two cognitive obstacles are removed, the
familiar belief-based model works well. Presumably, we are facing an extreme case of
game-dependent sophistication as discussed in Arad and Rubinstein (2012) or Penczynski
(2014).

Much of our analysis is possible thanks to the transformation of the auction game
that removes the need to condition. However, this transformation also alters the nature
of the game and changes the information sets of the players. While, from a theoretical
perspective, this is not a conditioning manipulation that leaves everything else the same,
there are various empirical arguments that comfort us and convince us that it actually is
one. Note that information structure in the auction results in higher order beliefs which
possibly consider subjects with very different signals values.

First, the equilibrium consists of strategies of constant relative bidding, irrespective
of the absolute realization of the signal. Indeed, subjects bid in accordance to this
particular feature of equilibrium irrespective of the concrete signal realization. There is
therefore no reason and no incentive to differentiate beliefs with respect to the signal value.

Second, we saw that a large majority of subjects does not form beliefs at all. Hence,
these subjects surely did not get to the point where they differentiate between opponents
with different signals. From a pilot study, we have evidence that the few subjects who indeed
form beliefs and deliberate about their opponent’s behavior do so without differentiating
by the possible value of the signal. Furthermore, in the computer treatments the games
only differ in the need to condition and yield similar differences as in the human opponent
setting.

Third, while it is in principle possible to implement the transformed game as a fully
strategically equivalent game, this would be very complicated to implement experimentally.
Such a game would use the standard signal structure but replace the auction rule with
rules set in terms of relative bids like in the transformed game. It follows that the
description of the game setting would be in absolute bids, whereas the rules would use a
relative perspective. Finally, profit calculations would again have to rely on absolute bids.
Implementing and describing these changes of perspective would be very cumbersome and
also constitute a major difference to the intuitive standard auction. A change of behavior
would not be unambiguously attributable to the need of conditioning or to this change.
Introducing common knowledge about the commodity’s values allows us, however, to avoid
a change between relative and absolute bids in the instructions. Hence, our transformation
is as intuitive as the original auction game, despite the slightly peculiar rules. Furthermore,

22We disregard in the experiment a small range of signal values close to the boundaries for which the
equilibrium strategies do not feature this property.

23In a trial session, we implemented the auction game with a communication design similar to Burchardi
and Penczynski (2014). In this setting, groups of two communicate about the bidding decision in a way
that subjects have an incentive to share their reasoning about the game. The minority of subjects that
form beliefs about how others potentially bid does not allude to the possible absolute values of the signal.
Furthermore, no subject is concerned with boundary signals and their implication for their own bidding
strategy.

24
it would not be certain that the subjects indeed approach a fully equivalent game in terms of the described rules and not according to the equivalent, standard rules they may know intuitively. It is an advantage of our transformation that it generates a distinct setting that is not perceived as a standard auction, also because it lacks the standard signal structure.

Finally, one could manipulate instructions such that they explicitly explain the conditioning problem without manipulating the actual auction game. It is, however, difficult to provide an explanation that achieves two central goals: Most participants understand the explanation, but at the same time, the explanation does not suggest that high bids are problematic. Our transformation is more precise in abstracting from the conditioning problem in the sense that if subjects only understand the three rules of the transformed game, they will not face a conditioning problem. From that point, subjects have to infer by themselves that low-bidding is optimal.

4 Conclusion

In this paper, we transform a common-value first price auction in a way that subjects do not need to condition on winning. The experimental implementation of the standard auction and the transformed auction allows us to investigate the consequences that the cognitive activity of conditioning on hypothetical events has for the bidding behavior. We find that subjects are significantly more able to avoid the winner’s curse in the transformed game.

In contrast to the previous literature, the transformation allows us to manipulate and investigate conditioning in the context of human subject interaction. Using naïve, computerized opponents, we are able to additionally study the role of belief-formation. We find that subjects are significantly more able to avoid the winner’s curse when playing against a computerized opponent whose bidding strategy is known or when playing against humans after such an interaction with computerized opponents.

Overall, we find that both cognitive activities are to a similar extent important obstacles on subjects’ way to avoid the winner’s curse. Together they form a nexus of interdependencies that is difficult to think about. Although we simplify our auction game, we believe that this result is also valid for a more complex and more standard CVA. Having only two opponents and two signals, reduces the complexity of our modified auction game and makes it more likely to recognize the need of conditioning already in this game without any transformation, which in turn also facilitates forming beliefs. Hence, in a standard CVA, conditioning and belief formation may even provide a greater obstacle to reach a plausible bidding decision. Most importantly, however, that belief formation and conditioning form a nexus of the interdependences seems not to change between our setting and a standard CVA. For this reason, in CVAs, as opposed to other settings, very
few subjects reach a belief-based decision. Our results therefore call for a theoretical model of auction behavior that acknowledges both non-equilibrium beliefs as well as naïve conditioning.

Applications of the kind of transformation we are investigating can be found in other games. In the strategic voting literature, players are conditioning on being pivotal in a jury decision (Feddersen and Pesendorfer, 1998; Guarnaschelli, McKelvey and Palfrey, 2000). Using a computer experiment, Esponda and Vespa (2014) find that the cognitive difficulty of this operation might stand in the way of strategic voting. An experiment based on a transformation of the kind presented here could verify these results in the original voting situation with human opponents.
References

Levin, Dan and J. Philipp Reiss, “Could we overcome the Winner’s Curse by (behavioral) auction design?,” *Mimeo*, 2012.

A Appendix

In this appendix, we first provide additional figures. Afterwards, some considerations regarding equilibrium play at the boundaries of the signal space are made. Then, different learning patterns across treatments are discussed. Finally, we present the translated instructions for the \(AH \) treatment. In general, instructions were based on those of Kagel and Levin (1986), although large modifications had to be made to capture our specific experimental design. Additionally, Frequently Asked Questions that were orally presented to subjects after explaining the auction game (Part I) and after explaining the transformed game (Part II) are outlined after the Instructions.

A.1 Figures: Histograms - \(AC \) and \(TC \)

Figure A.1: \(AC \) Treatment - Bids (Part I)

Figure A.2: \(TC \) Treatment - Bids (Part I)
A.2 Figures: Bid transitions

Figure A.3: AH Treatment - Bid transition (Part I), $N = 50$.

Figure A.4: AC Treatment - Bid transition (Part I), $N = 44$.
Figure A.5: *TH* Treatment - Bid transition (Part I), \(N = 46 \)

Figure A.6: *TC* Treatment - Bid transition (Part I), \(N = 42 \).
A.3 Proof of Proposition 1

Proof. To find the equilibria of the auction game, consider the best response function to the opponent’s bid b_j. If player j bids high values, $b_j \in [3, 8]$, it is optimal for player i to never win the auction. The reason is that in this case, winning the auction would result in (weak) losses for sure because the opponent is already bidding at least the commodity’s value, even when she has received the lower signal. Hence, the best response is to bid anything that is relatively below the opponent’s bid by at least 6 units, $BR(b_j) \in [-8, b_j - 6]$.

If player j bids values $b_j \in [-8, 3]$, it is optimal for player i to relatively underbid the opponent by slightly less than 6 points, making sure that he only wins the auction when he has received the higher signal. Hence, the best response function is $BR(b_j) = b_j - 6 + \epsilon$. By construction, player j cannot bid low enough to cause a best response of overbidding by at least 6 points and thus surely winning the auction. Only if $b_j \leq -15$ was possible, the best response would be $BR(b_j) = b_j + 6$ since it would be more profitable to surely win than to only win with the high signal.

With the best responses being either to underbid by at least 6 or by nearly 6, the unique equilibrium for both players is to bid $b_i = b_j = -8$. Players then only win the auction when they receive the higher signal, leading to an expected payoff of $Eu_i = \frac{1}{2}(-3 - b_i) = 2.5$. If player i, however, deviated to “sure win”, bidding $b_i = b_j + 6 = -2$, he would only receive an expected payoff of $Eu_i = \frac{1}{2}(-3 - b_i) + \frac{1}{2}(+3 - b_i) = \frac{1}{2}(-1 + 5) = 2$, showing that bidding -8 is an equilibrium.

Additionally, subjects always have incentives to deviate from any pair of strategies in which not both subjects bid $b_i = b_j = -8$, showing the uniqueness of the equilibrium. When both players bid higher values than -8, at least one player has an incentive to underbid the other player because, as outlined before, best responses are either underbidding by at least 6 or nearly 6 (if such an underbidding is possible). These underbidding incentives only vanish when no underbidding is possible any more and subjects bid -8. If only one player bids more than -8, this player has an incentive to also bid -8 because of the outlined best response functions. Importantly, by construction of the transformed game, the equilibrium is the same as in the auction game: underbidding by $b_i = -8$ corresponds to an absolute bid of $a_i = W_i^* - 5$.

In the main text, equilibrium considerations regarding the auction game do not take into account that subjects receiving a signal close to 25 or 225 can infer the commodity’s
real value. This might not only influence those subjects’ strategies that receive signals close to 25 or 225, but it could in principle also influence those subjects’ strategies that receive signals well within the interval. In the following, we will, however, outline why this influence vanishes very quickly and why $b_i = -8$ remains the equilibrium strategy for all realizations of the commodity’s value that occur in the experiment. We start with the lower boundary: In order to analyze how subjects’ strategy at the boundary influence subjects’ strategy for central-value signals, we consider five player types. Player 5 receives a signal $x^5 \in [46, 54)$. His strategy might be influenced by his potential opponent with the lower signal: player 4, who receives the signal $x^4 = x^5 - 6, x^4 \in [40, 46)$. But player 4’s strategy might of course be influenced by player 3 ($x^3 = x^4 - 6, x^3 \in [34, 40)$) whose strategy might be influenced by player 2 ($x^2 = x^3 - 6, x^2 \in [28, 34)$) and finally also by player 1 ($x^1 = x^2 - 6, x^1 \in [22, 28)$).

Player 1 receives a signal $x^1 \in [22, 28)$ from which he can infer that the commodity’s real value is above his own signal. For this reason, player 1 cannot make any profits from bidding -8. Instead player 1 tries to overbid player 2. But importantly, player 1 bids at most $b_1 = +3$ because otherwise he would lose money because of overbidding the commodity’s value $x^1 + 3$. Hence, in equilibrium, player 2 will bid $b_2 \geq -3.01$ because any bid below would provide player 1 with an overbidding incentive that would lead player 2 to adjust his bid upwards. Additionally, player 2 cannot bid more than $b_2 = 0$ because higher bids would lead to negative expected payoffs. Because of these incentives of player 2, in equilibrium, player 3 can ensure himself an expected payoff of at least $E u_i = 1.495$ by bidding $b_3 = -5.99$. If player 3 follows this strategy, player 2 cannot gain money by winning the auction, and, hence, player 2 will not overbid the player 3 and bids $b_2 = -3$ to avoid losses. This, however, provides an incentive for player 3 to bid less than -5.99, which in turn provides an incentive for player 2 to overbid the third player and these overbidding incentives only fully vanish when player 3 bids -5.99 again. Because of this circular incentive structure, in equilibrium, player 2 and player 3 will mix strategies. We do not fully characterize the exact mixed strategy equilibrium here, because it is sufficient for our purpose to show that players will not bid in certain intervals.\(^{25}\)

As outlined before, for player 2, strategies above 0 cannot be part of an equilibrium.\(^{24}\)

\(^{24}\)More precisely, due to the rule we implement concerning equal bids, overbidding in this context means that player 1 only has to bid exactly player 2’s absolute bid in order win the auction.

\(^{25}\)The strategy space in our experiment is finite because participants have to round their bids to the cent-level. But for finite strategy spaces we know that there always exists an equilibrium.
Hence player 3 can ensure himself a payoff of at least $E u_i = 1.495$ by bidding -5.99. Importantly, strategies that are part of a mixed strategy equilibrium must lead to a higher payoff than strategies that are not part of this equilibrium. Hence, bidding $b^3 \in (-5.99, -2)$ cannot be part of a mixed strategy equilibrium because it leads to lower payoffs than bidding -5.99, independent of how player 2 exactly mixes pure strategies below $b^2 = 0$. Bidding $b^3 \in [-8, -5.99)$ could in principle lead to the same payoff (or even a higher payoff) as bidding -5.99 because the commodity’s real value is underbid by a larger amount. The same is true for bidding $b^3 \in [-2, -1.50]$ because player 3 might overbid player 4 with these bids. By bidding above -1.5, player 3 might still overbid player 4, but the (maximal) payoff ($E u_i = 1.49$) resulting from these bids is lower than the payoff of bidding -5.99. Bearing these considerations in mind, player 4 could always avoid to be overbid by player 3 by bidding $b^4 = -7.49$ and ensuring himself a payoff of $E u^4 = 2.245$. Because player 3, however, does not bid -5.99 as a pure strategy but possibly also mixes strategies over $[-8, -5.99]$ and $[-2, -1.50]$, player 4 potentially mixes strategies over $-8 \leq b^4 \leq -7.49$. Importantly, bidding above -7.49 cannot be part of an equilibrium because then payoffs are lower than $E u^4 = 2.245$. Especially overbidding player 5 even when this player is bidding $b^5 = -8$ would only lead to an expected payoff of $E u^4 = 2.0$. For this reason, the influence on strategies of boundary-signals ends at player 5: This player and all players with higher signals than player 5 will play -8 as a pure strategy in equilibrium because their lower-signal opponents do not have an incentive to overbid them. Or in other words, for signals above 46, bidding -8 remains the equilibrium.

Additionally, at the higher boundary of the commodity’s value space, no problems occur: A player receiving the signal $x^{high} \in (222, 228]$ knows that the commodity’s real value is below his own signal. Hence, he has to underbid his opponent who has a lower signal in order to earn money. But this do not lead to a change in equilibrium because if the opponent bids -8, the player with x^{high} also just bids -8 and has no incentive to deviate.
A.4 Learning

In this section, we first provide evidence that our central results regarding conditioning and belief formation remain robust when considering single periods and not the average of the three periods per game, as done in the main text. Afterwards, we additionally analyze the data from Part II of the AH and the TH treatment, as the main text only analyzes data from Part I of our treatments.

In general, we believe that using the mean values for the three periods each game is played is the appropriate strategy to compare behavior in different games because average values are less noisy than single values. Additionally, that subjects learn in some games but not in others should be interpreted as an additional result and not as weakness of our design. Nonetheless, we can explicitly incorporate in our comparisons that subjects learn in some games. As outlined in the main text, subjects only improve their behavior in the transformed game either with human or computerized opponents when played first in the TH and the TC treatment.

Regarding our results that refer to the conditioning problem, we might want to analyze whether we even observe a difference between the auction and the transformed game when we control for learning in the later game. When we compare bidding behavior and payoffs in the human-opponents setting (AH vs. TH) and this time base this comparison only on the first period, subjects still bid significantly less (and earn significantly more) in the transformed game (Wilcoxon rank sum, bids - $p = 0.018$, payoffs - $p = 0.050$). Additionally, plausible behavior is more likely in the transformed game (Fisher’s exact test, $p = 0.011$) than in the auction game. When comparing behavior between the auction and the transformed games against computerized opponents (AC vs. TC) and considering only the first period, results still have the expected direction but are not generally significant (Wilcoxon rank sum, bids - $p = 0.146$, payoffs - $p = 0.388$; Fisher’s exact test, $p = 0.057$).

Regarding our results that refer to the belief formation problem, we might want to analyze whether subjects still improve their behavior in the setting with computerized opponents compared to human opponents even if we incorporate that subjects learn in the three rounds of the transformed game with human opponents. When we compare the human and the computerized version of the transformed games in the TH treatment and focus on third periods (to incorporate learning in the setting with human opponents), the differences between the two settings naturally diminish and bids and payoffs are not significantly different any more (Wilcoxon rank sum, bids - $p = 0.143$, payoffs - $p = 0.871$). Importantly, we have different equilibria in both settings which biases against observing a difference in bids or payoffs. Hence, the more reliable measure is to consider whether the percentage of subjects playing plausible in both both settings change. Indeed, more subjects play plausible in the setting with computerized opponents compared to human opponents and this difference remains highly significant (McNemar’s Test, $p = 0.001$).
We obtain a similar result when we do the same analysis not within but between-subject (TH vs. TC), and again consider only the third period (Wilcoxon rank sum, bids - \(p = 0.621 \), payoffs - \(p = 0.442 \); Fisher’s exact test, \(p = 0.000 \)). Hence, as expected, results become slightly weaker when incorporating that subjects learn in the transformed games, but the overall pattern of the results seems to remain intact. Finally, we observe that learning in the transformed game when played first in the TH treatment leads to a similar effect on subjects bids than playing this game after the computerized version in the TC treatment (TH -third period bid: -4.68 vs. TC - mean bid: -4.64). A possible explanation for this effect is that in the transformed game subjects might use their first period bid as a starting point for their belief formation for the consecutive periods in similar fashion as the play against computerized opponents provides a starting points for beliefs.

In the main text, our analysis was focused on Part I of the three treatments. In this section, we will additionally analyze Part II of the AH and the TH treatment. Following Charness and Levin (2009) that problems with contingent reasoning are at the origin of the WC suggests that we should observe a different learning pattern from Part I to Part II between the two treatments. If conditional reasoning is an obstacle for understanding the auction game, playing this game before the transformed game should not per se improve behavior in the transformed game. Subjects should not gain a better understanding of the transformed game via the auction game simply because most participants do not understand the auction game because of the problems with conditional reasoning. Additionally, those subjects who manage to avoid the WC in the auction game would most likely already play rationally in the transformed game if this is game played first. Playing the transformed game first, however, might very well facilitate playing the auction game. By understanding the structure of the transformed game, a better understanding of the setting in which conditional reasoning on future events is necessary might arise. Hence, different patterns of learning behavior between the two treatments should be observed:

Hypothesis 3: In the AH treatment, no learning effect should be observed. Playing the transformed game after playing the auction leads to similar results than first playing the transformed game. In the TH treatment, however, a learning effect should be observed: Playing the auction game after the transformed game leads to more rational behavior than playing the auction game first.26

We focus on the AH and the TH treatments because both treatments potentially provide a better comparison for the predicted learning effect than the AC and the TC.

26Our design can, however, not distinguish whether such a learning effect is driven by the fact that subjects really understand the necessity to condition on the event of winning in the WC because they played the transformed game first, or whether alternatively, subjects only learn that bidding low is a good strategy in the transformed game which they then also apply in the auction game. It is, however, noteworthy, that subjects at least do not receive any feedback about the results before the end of the experiment. Hence, they do not get any feedback on whether bidding low in the transformed game is a good strategy.
Table A.1: Summary Statistics - AH & TH Treatments (Part II)

<table>
<thead>
<tr>
<th></th>
<th>AH Transf. game</th>
<th>TH Auction game</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human opponents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bids</td>
<td>-3.66 (4.05)</td>
<td>-3.77 (2.88)</td>
</tr>
<tr>
<td>Payoffs</td>
<td>0.05 (2.29)</td>
<td>0.29 (1.90)</td>
</tr>
<tr>
<td>Comp. opponents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bids</td>
<td>-3.04 (3.74)</td>
<td>-4.48 (2.66)</td>
</tr>
<tr>
<td>Payoffs</td>
<td>-0.16 (2.09)</td>
<td>0.68 (1.53)</td>
</tr>
</tbody>
</table>

In the later treatments, subjects also first play against the computer in the second part which in principle could have an influence on playing against human opponents at very end of each treatment. In general, results for the AC and the TC treatment are comparable to those in the AH and TH treatment to the extent, that playing the auction games first does not help playing the transformed games, whereas playing the transformed games first helps playing the auction games afterwards. This effect is significant for human opponents, whereas for computerized opponents the effect has the right sign but is insignificant. Hence, results in the AC and the TC treatment are in general in line with our learning hypothesis. It might however, not be so clear, to what extent playing against the computer first still influences these results.

For the TH treatment, we hypothesized that we might observe a learning effect. We will look at the setting with human opponents first: When the auction game is played after the transformed game (TH treatment), only 28% of those subjects who win the game face losses, whereas 61% of those subjects face losses when the auction is played first (AH treatment). In line with this observation, bids in auction game are lower in TH treatment (Figure A.8(a)) than in the AH treatment (Figure 3(a)), whereas payoffs are higher (Mean values - bids: −3.79 vs. −1.80; payoffs +0.29 vs. −0.56). Hence, there is clear evidence that playing the transformed game in the TH treatment before the auction game helps

<table>
<thead>
<tr>
<th></th>
<th>bids: p = 0.000</th>
<th>payoffs: p = 0.002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilcoxon rank sum test - bids: p = 0.000; payoffs: p = 0.002. Fisher’s exact test based on plausible play - p-value = 0.025.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
subjects to avoid the WC in the auction game. Because of learning, we also do not observe the treatment effect between the two games within-subject in the TH treatment: Bids and payoffs are roughly the same between the transformed and the auction game in this treatment (Mean values - bids: -4.00 vs. -3.79; payoffs: 0.55 vs. 0.29).\footnote{Wilcoxon signed rank test - bids: $p = 0.814$; payoffs: $p = 0.833$. Additionally, a McNemar’s test ($p = 0.6072$) based on plausible play reveals no significant difference.}

Do we also observe this learning effect for the setting with computerized opponents? When the auction game is played after both transformed games (TH treatment), only
22% of those subjects who win the game face losses, whereas 45% of those subjects face losses when the auction game is played in Part I (of the AH treatment). In line with this observation, bids in the auction game (with computerized opponents) are lower in TH treatment (Figure A.8(b)) than in the AH treatment (Figure 3(b)), whereas payoffs are higher (Mean values - bids: -4.48 vs. -3.37; payoffs $+0.68$ vs. $+0.17$). Hence, it again looks like that subjects behave slightly more rationally when they play the transformed game first compared with the situation when this is not the case. Statistical support, however, provides only partial support for this this impression.31 Additionally, unlike in the case of human opponents, the learning effect seems not to be strong enough to totally prevent a treatment effect also within-subject.32 Hence, there is some evidence for a learning effect also in the TH treatment, but this learning effect seems to be weaker than in the setting with human opponents. In the TH treatment, the auction game with computerized opponents was played as the last game. Potentially, exhaustion or confusion because of all the different games played before might have been highest at the end of the experiment, diminishing the learning effect. At least, subjects behave less rational than expected in the very last game of the TH treatment.

For the AH treatment, we hypothesized above that subjects should not benefit from playing the auction game first in playing the transformed game second. We will first analyze the setting with human opponents: When the transformed game is played after the auction game (AH treatment), 47% of those subjects who win the game face losses, whereas 32% of those subjects face losses when the transformed game is played first (TH treatment). Additionally, bids in the transformed game are even slightly higher in AH treatment (Figure A.7(a)) than in the TH treatment (Figure 4(a)), whereas payoffs are lower (mean values - bids: -3.66 vs. -4.00; payoffs $+0.05$ vs. $+0.55$). Differences, however, are small and not statistical significant.33 In any case, subjects do not seem to learn how

31Wilcoxon rank sum test - bids: $p = 0.076$; payoffs: $p = 0.054$. But: Fisher’s exact test based on plausible play: $p = 0.301$.

32Again, the statistical analysis is fairly inconclusive. A Wilcoxon signed rank test just reveals no significant difference (bids: $p = 0.101$; payoffs: $p = 0.371$) within-subject between the transformed and the auction game (with computerized opponents), but a McNemar’s test based on plausible play reveals such a difference with marginal significance (p-value = 0.065).

33Wilcoxon rank sum test: Bids - $p = 0.848$; payoffs - $p = 0.293$. Additionally, a Fisher’s exact test based on plausible play supports this finding ($p = 0.834$).

34Difference additionally remain statistically insignificant (with the exception of payoffs) when comparing bids and payoffs for the last of the three periods (and not mean values for all three periods) and hence controlling for the learning which takes place in the transformed game when played first in the TH treatment: Wilcoxon rank sum test: bids (last period) - $p = 0.306$; payoffs (last period) - $p = 0.061$. Additionally, a Fisher’s exact test using (last period) bids smaller or equal -5 as a classification criterion for plausible behavior supports this finding ($p = 0.209$). In the AH treatment, one might argue that there is a different kind of learning effect in the sense that subjects do not perform better in the transformed game than subjects in the TH treatment, but at least these subjects do not have to learn over the three periods of the game (as in the TH treatment) because the auction game was played before. Importantly, however, differences between treatments in the transformed game are also not significant when comparing first round behavior which potentially speaks against this different kind of learning: Wilcoxon rank sum test: bids (first period) - $p = 0.274$; payoffs (first period) - $p = 0.652$. Additionally, a Fisher’s exact test
to avoid the WC in the transformed game from playing the auction game first. Because subjects do not learn in the \textit{AH} treatment, we also observe the treatment effect between the two games within-subject in this treatment: Bids are higher in the auction game compared to the transformed game, whereas payoffs are lower (mean values - bids: -1.80 vs. -3.66; payoffs: -0.56 vs. $+0.05$).

How does the behavior in the games with computerized opponents evolve in the \textit{AH} treatment? When the transformed game is played after both auction games (\textit{AH} treatment), 43\% of those subjects who win the game face losses, whereas only 13\% of those subjects face losses in the transformed game in Part I of the \textit{TH} treatment. In line with this observation, bids in transformed game (with computerized opponents) are higher in \textit{AH} treatment (Figure A.7(b)) than in the \textit{TH} treatment (Figure 4(b)), whereas payoffs are lower (Mean values - bids: -3.04 vs. -5.00; payoffs -0.16 vs. $+0.81$). Hence, in the setting with computerized opponents, we do not only not observe a learning effect, but subjects in the \textit{AH} treatment even perform slightly worse than in the \textit{TH} treatment. For this reason, we also do not observe the treatment effect between the two games within-subject in the \textit{AH} treatment: Bids and payoffs are fairly similar in the auction game compared to the transformed game (mean values - bids: -3.37 vs. -3.04; payoffs: $+0.17$ vs. -0.16).

As in the \textit{TH} treatment, learning behavior seems to be slightly different between the setting with human opponents and computerized opponents also in the \textit{AH} treatment. Our - admittedly - speculative explanation why this is the case is the following: As in the \textit{AH} treatment, the transformed game with computerized opponents was played as the last game. First of all, subjects might already be slightly exhausted at this point of the experiment. In addition, when solving this game they might at least consider two other games as a reference: the transformed game with human opponents and the auction game with computerized opponents. Considering both games might have lead to some confusion of at least some subjects, leading e.g. to the very high frequency of zero bids in the transformed game with computerized opponents (imitating the computer’s strategy - figure A.7(b)). At least, as in the \textit{TH} treatment, we also observe in \textit{AH} treatment that subjects behave less rational than expected in the very last game of the experiment. Overall:

Result 3: In the setting with human opponents, we observe a learning effect as hypothesized: Playing the transformed game first facilitates playing the
auction game, whereas the reverse is not true. With computerized opponents, a similar but weaker learning effect is observed in the TH treatment. Overall, however, rationality levels in the last game of both treatments are lower than expected. Exhaustion or increased confusion might be responsible for this result.
A.5 Figures: Individual Data

For completeness, figures A.9, A.10, A.11, and A.12 provide individual bids for all 12 periods of the experiment for all subjects of the four treatments. These figures support the evidence presented so far that subjects only improve their behavior in the transformed game when this game is played in Part I of the experiment.
Figure A.9: Each Subjects’ Behavior in the AH treatment (3 periods per game)
Figure A.10: Each Subjects’ Behavior in the TH treatment (3 periods per game)
Figure A.11: Each Subject's Behavior in the AC treatment (3 periods per game)
Figure A.12: Each Subjects’ Behavior in the TC treatment (3 periods per game)
A.6 Instructions: AH treatment

Welcome to the experiment!

Introduction

I welcome you to today’s experiment. The experiment is funded by the University of Mannheim. Please follow the instructions carefully.

For participating, you first of all receive a participation fee of €4. Additionally, you may earn a considerable amount of money. Your decisions and the decisions of other participants determine this additional amount. You will be instructed in detail how your earnings depend on your decisions and on the decisions of other participants. All that you earn is yours to keep, and will be paid to you in private, in cash, after today’s session.

It is important to us that you remain silent and do not look at other people’s screens. If you have any questions or need assistance of any kind, please raise your hand, and an experimenter will come to you. If you talk, shout out loud, etc., you will be asked to leave.

The experiment consists of three parts. For all three parts, you will receive separate instructions. You will first make your decisions for all three parts and only afterwards at the very end of the experiment get to know which payments resulted from your decisions. The currency used in all three parts of the experiment is called Taler. Naturally, however, you will be paid in Euro at the end of the experiment. Two Taler will then convert to one Euro.

If you have any questions at this point, please raise your hand.

Part I

The first part of the experiment consists of 2×3 trading periods (thus trading periods 1-3 and trading periods 4-6). These instructions describe the decision problem as it is present in trading periods 1-3. This decision problem will be slightly modified in the trading periods 4-6. You will be informed about the details of this modification at the end of trading periods 1-3.

In this part of the experiment, you will act as a buyer of a fictitious commodity. In each trading period, you will have the opportunity to submit a bid for one unit of the commodity. Importantly, not only will you have this opportunity to make a bid for the commodity. In each trading period, you will be matched with another participant of this experiment. This participant will also have the opportunity to make a bid for the commodity. Importantly, you will always bid against another randomly determined participant in each trading period.
Your task is to submit bids for the commodity in competition with the other participant. The precise value of the commodity at the time you make your bids will be unknown to you. Instead, you and the other participant will receive an information signal as to the value of the item which you should find useful in determining your bid. Which kind of information you will receive, will be described below.

The value of the auctioned commodity (W^*) will always be an integer and will be assigned randomly. This value can never be below 25 Taler and never be above 225 Taler. Additionally, the commodity’s value W^* is randomly and independently determined from trading period to trading period. As such a high W^* in one period tells you nothing about the likely value in the next period.

Private Information Signals: Although you do not know the precise value of the commodity, you and the participant who is matched with you will receive an information signal that will narrow down the range of possible values of the commodity. This information signal is either $W^* - 3$ or $W^* + 3$, where both values are equally likely. In addition, it holds that when you receive the information signal $W^* - 3$, the person who is matched to you will receive the information signal $W^* + 3$. If in contrast, you receive the information signal $W^* + 3$, the other person gets the information signal $W^* - 3$.

For example, suppose that the value of the auctioned item (which is initially unknown to you) is 128.00 Taler. Then you will either receive a) the information signal $W^* - 3 = 125.00$ Taler or b) the information signal $W^* + 3 = 131.00$. In both cases, the other person will receive the opposite information signal, in case of a) the information signal $W^* + 3 = 131.00$ and in case of b) the information signal $W^* - 3 = 125.00$ Taler. The line diagram below shows what’s going on in this example.

It also holds that the commodity’s value W^* is equal to the signal – 3 or the signal + 3 with equal probability. The computer calculates this for you and notes it.

Your signal values are strictly private information and are not to be revealed to the other person. In addition, you will only be informed about the commodity’s value W^* and the other participant’s bid at the end of the whole experiment (when also the second and the third part of the experiment are completed).

It is important to note that no participant is allowed to bid less than the signal – 8 and more than the signal + 8 for the commodity. Every bid between these values (including these values) is possible. Bids have at least to be rounded to one cent. Moreover, it...
holds that the participant who submits the higher bid gets the commodity and makes a profit equal to the differences between the value of the commodity and the amount he or she bids. That is,

- Profit = \(W^* \) (128.00 Taler) – higher bid

for the higher bidding person. If this difference is negative, the winning person looses money. If you do not make the higher bid on the item, you will neither make a profit nor a loss. You will earn zero profits. If you and the other participant submit the same bid, the person who received the lower signal will get the commodity and he or she will be paid according to his or her bid.

At the beginning of part I, each individual participant will be given a starting capital credit balance of 8 Taler. Any profit earned by you in the experiment will be added to this sum. Any losses incurred will be subtracted from this sum. At the end of this part of the experiment, all gains and losses will be add up and the net balance of these transactions will be add to your captital credit balance. You are permitted to bid in excess of your capital credit balance. Even in case of a negative captial credit balance, you are still permitted to submit bids. Should your net balance at the end of this part of the experiment be zero (or less), you will not get any payoff from this part of the experiment. But even in case you make losses in this part of the experiment, you will keep your initial show-up fee of 4€.

Summary:

1. Two participants have the opportunity to submit bids for a fictitious commodity. The exact value of the commodity \(W^* \) is unknown to you. This value will, however, always be between 25 Taler and 225 Taler. Moreover, you receive a private information signal concerning the commodity’s value. This signal is either \(W^* - 3 \) or \(W^* + 3 \). The other participant will receive the other signal. No one is allowed to bid less than the signal – 8 or more than the signal + 8.

2. The higher-bidding participant gains the commodity and makes the following profit = commodity’s value - higher bid.

3. Profits will be added to your initial capital starting balance. Losses will be subtracted from your initial capital starting balance. You can always submit higher bids than your capital starting balance.

4. This part of the experiment consists of two rounds with overall 6 trading periods. These instructions describe the decision problem as it occurs in the trading periods 1-3. There will be a modification of the decision problem for rounds 4-6, about which you will be informed soon.
Modification of the decision problem

You have now entered all decisions for the trading periods 1-3. Now, trading periods 4-6 will follow for which the decision problem so far will be slightly modified. As up to now the task is to submit bids for a fictitious commodity. Importantly, the other participant who also has the opportunity to submit bids will be replaced by the computer. As the other participant in the trading periods 1-3, the computer will also receive a signal about the commodity’s value that is opposite to your own signal. The computer then decides according to the following decision rule: The computer always exactly bids his information signal. Suppose, for example, that the true value of the commodity is 128.00 Taler. If the computer receives the information signal 125.00 Taler (commodity’s value – 3), the computer’s bid is equal to 125.00 Taler. If the computer receives the information signal 131.00 Taler (commodity’s value + 3), the computer’s bid is equal to 131.00 Taler. Otherwise, everything else does not change.

If you have read everything, please click the “Ready” button, to continue with the experiment.

Part II

The second part of the experiment consists of 3 trading periods (trading periods 7-9). In this part of the experiment, you will again act as a buyer of a fictitious commodity. In each trading period, you will have the opportunity to submit a bid for one unit of the commodity. Importantly, not only you will have this opportunity to make a bid for the commodity. In each trading period, you will be matched with another participant of this experiment. This participant will also have the opportunity to make a bid for the commodity. Importantly, you will always bid against another randomly determined participant in each trading period.

Your task is to submit bids for the commodity in competition with the other participant. In general, the value of the auctioned commodity will always be an integer and will be randomly determined. This value can never be below 25 Taler and never be above 225 Taler. At the beginning of each period, you and the other participant will be informed about the commodity’s value. Importantly, however, there is a slight uncertainty about the value of the commodity. This value can take two different specifications in every period.
The commodity can either be worth W_1^* or W_2^*, where both values always differ by 6 Taler and W_1^* always indicates the lower value. Which of the two values really realizes depends on chance and your bid as well as the other participant’s bid and will be explained to you in more detail below. Both your bid and the other participant’s bid are not allowed to be lower than $W_1^* - 5$ or higher than $W_2^* + 5$. Every bid between these values (including these values) is possible. Bids have at least to be rounded to one cent.

To make the rules of the auction understandable, they will be explained in detail with the help of an example. Suppose that at the beginning of one period, you are informed that the commodity’s value is either $W_1^* = 107.00$ Taler or $W_2^* = 113.00$ Taler. You and the other participant are not allowed to bid less than $W_1^* - 5 = 102.00$ or more than $W_2^* + 5 = 118.00$ Taler. Who gets the commodity depends on your bid and the other participant’s bid. Three rules apply:

1. **Your bid is 6.00 Taler or more higher than the other participant’s bid:**
 In this case, you will get the commodity for sure. With a 50 percent chance each the commodity’s value then is either W_1^* (107.00 Taler) or W_2^* (113.00 Taler). Hence, your profit is:
 - Profit = W_1^* (107.00 Taler) – Your bid or
 - Profit = W_2^* (113.00 Taler) – Your bid
 Both scenarios are equally likely and the computer will randomly choose which scenario occurs. If one of the differences is negative and this scenario occurs, you will make a loss. The other participant will be paid according to rule 2.

2. **Your bid is 6.00 Taler or more below the other participant’s bid:**
 In this case, you will not get the commodity in any case and your profit is zero. The other participant will be paid according to rule 1.

3. **Your bid is less than 6.00 Taler above or less than 6.00 Taler below the other participant’s bid:**
 In this case, either you or the other participant get the commodity with a 50 percent chance and the computer will make this decision. The commodity’s value is in any case W_1^* (107.00 Taler). Hence, in case you get the commodity, your profit is:
 - Profit = W_1^* (107.00 Taler) – Your bid
 In this case, the other participant earns zero Taler. If on the contrary, you do not get the commodity, your profit is zero and the other participant’s profit is:
 - Profit = W_1^* (107.00 Taler) – His/her bid
In both cases, it holds for the person who gets the commodity that this person will make a loss if the difference is negative.

At the beginning of part II, each individual participant will be given a starting capital credit balance of 8 Taler. Any profit earned by you in the experiment will be added to this sum. Any losses incurred will be subtracted from this sum. At the end of this part of the experiment, all gains and losses will be add up and the net balance of these transactions will be added to your capital credit balance. You are permitted to bid in excess of your capital credit balance. Even in case of a negative capital credit balance, you are still permitted to submit bids. Should your net balance at the end of this part of the experiment be zero (or less), you will not get any payoff from this part of the experiment. But even in case you make losses in this part of the experiment, you will keep your initial show-up fee of 4€.

You will only be informed about the other participant’s bid and which value of commodity actually has realized at the end of the whole experiment (when also the third part of the experiment is completed).

Summary:

1. Two participants have the opportunity to submit bids for a fictitious commodity. The value of commodity will always be between 25 Taler and 225 Taler. Because of uncertainty, the commodity’s value can take two specifications W^*_1 and W^*_2, where the difference between both values is always 6 Taler. No one is allowed to bid less than $W^*_1 - 5$ and more than $W^*_2 + 5$.

2. If one person bids at least 6.00 Taler more than the other person, this person gets the commodity for sure and either makes the profit $= W^*_1 -$ his/her bid or the profit $= W^*_2 -$ his/her bid. If one person bids at least 6.00 Taler less than the other person, this person does not get the commodity in any case and makes a profit of zero Taler. If the difference of the bids is less than 6.00 Taler, both participants get the commodity with a 50 percent chance and make the following profit $= W^*_1 -$ his/her bid in this case.

3. Profits will be added to your initial capital starting balance. Losses will be subtracted from your initial capital starting balance. You can always submit higher bids than your capital starting balance.

4. This part of the experiment consists of 3 trading periods.

If you have read everything, please click the “Ready” button, to continue with the experiment.
Part III

The third part of the experiment consists of 3 trading periods (trading periods 10-12). These 3 trading periods are almost identical to the trading periods 7-9 of part II. In addition, your capital credit balance of the end of part II will be the starting capital credit balance of this part. Hence, the payoff you receive from part II and part III of the experiment will finally depend on the amount of the capital credit balance at the end of this part of the experiment. In part III of the experiment, the following modification of the decision problem of part II is implemented: As up to now the task is to submit bids for a fictitious commodity. Importantly, the other participant who also has the opportunity to submit bids will be replaced by the computer. As the other participant in the trading periods 7-9, the computer is informed about both possible values of the commodity. The computer then decides according to the following decision rule: The computer always exactly bids the mean value of both values of the commodity (hence $W^*_1 + W^*_2$ or $W^*_1 + 3 = W^*_2 - 3$). Suppose, for example, that the true value of the commodity is either $W^*_1 = 107.00$ Taler or $W^*_2 = 113.00$ Taler. The computer will then bid 110.00 Taler ($\frac{107+113}{2} = 107.00 + 3.00 = 113.00 - 3.00$). Otherwise, everything else does not change.

If you have read everything, please click the “Ready” button, to continue with the experiment.

A.7 Instructions: Frequently Asked Questions

Auction game

1. When I make my decision about which bid to submit, what kind of specific information do I have? Do I know the true value of the commodity?
 You do not know the commodity’s value W^*. When making your decision, you only know your private information signal. You also do not know whether you received the “high” or the “low” signal. You only receive one number. With a 50 percent chance, you have received the high signal and with a 50 percent chance you have received the low signal. All this also holds correspondingly for the other participant.

2. On what does it depend whether I get the commodity and how much do I earn should this situation arise?
 The person who submits the higher bid gets the commodity. The profit then is: $W^* -$ higher bid. If both bids are exactly the same (meaning bids are also the same on the cent-level), the person with the lower signal gets the commodity.

3. Which values am I allowed to bid?
 You are allowed to under- and overbid your personal information signal by up to
8.00 Taler. In addition, it is important that you are not only allowed to bid integers. For example, you could also bid 30.45 Taler instead of 30 Taler.

Transformed treatment

1. *When I make my decision about which bid to submit, what kind of specific information do I have? Do I know the true value of the commodity?*

When making your decision, you know about two possible specifications of the commodity’s value: W_1^* and W_2^*. Which of these values actually realizes in the end depends on your decision, the other participant’s decision and chance.

2. *On what does it depend whether I get the commodity and how much do I earn should this situation arise?*

If you at least bid 6.00 Taler more than the other person, you will get the commodity for sure. Your profit will then be $W_1^* – your bid$ or $W_2^* – your bid$, with a 50 percent chance each. Conversely it holds, that if you bid at least 6.00 Taler less than the other person, you will not get the commodity and your profit will be zero. If the difference of the bids is smaller than 6.00 Taler, either you or the other participant gets the commodity with a 50 percent chance and the computer will make this decision randomly. If the computer chooses you as the winner, your profit will be $W_1^* – your bid$.

3. *Which values am I allowed to bid?*

You are allowed to underbid the lower value of the commodity W_1^* by up to 5.00 Taler and overbid the higher value of the commodity W_2^* by up to 5.00 Taler. In addition, it is important that you are not only allowed to bid integers. For example, you could also bid 30.45 Taler instead of 30 Taler.
Figure A.13: Screenshot auction game: "Trading period 1: Your private information signal is 175.00 Taler. Hence, the true commodity’s value is either 172.00 or 178.00 Taler. How much do you want to bid?"
Figure A.14: Screenshot transformed game: "Trading period 1: The true commodity’s value is either 60.00 Taler or 66.00 Taler. The value depends on your bid, the other participant’s bid and chance. How much do you want to bid?"