Digression: Discrete-Time Optimization

[For now: As motivation for continuous time. For later: Preview of discrete-time macro.]

- Consider optimal consumption and capital accumulation problem over T periods:
 - Preferences: \(U = \sum_{t=1}^{T} \beta^{t-1} u(c_t) = u(c_1) + \beta u(c_2) + \ldots + \beta^{T-1} u(c_T) \)
 - Budget equations: \(y_t = f(k_t) = c_t + [k_{t+1} - (1-\delta)k_t] \) [Simplify: A=L=1]
 - Initial condition: Take \(k_1 > 0 \) as given.
 - Finite horizon T => Capital is useless after period T => Terminal condition \(k_{T+1} = 0 \).
 - Choice variables: \(k_2, \ldots, k_T \) and \(c_1, \ldots, c_T \). Finite number.

- Optimization: Maximize utility subject to the budget equations.
 - Define T Lagrange multipliers \(\lambda_t, t=1,\ldots,T \), for the T budget equations.
 - Standard Lagrangian expression:
 \[
 L = \sum_{t=1}^{T} \beta^{t-1} u(c_t) + \sum_{t=1}^{T} \lambda_t \{ f(k_t) - c_t + (1-\delta) \cdot k_t - k_{t+1} \}
 \]
 where \(k_{t+1} = 0 \) for \(t=T \); and \(k_1 > 0 \) is given for \(t=1 \).
 - Optimality conditions:
 (i) \(\partial L / \partial c_t = 0 \) for \(t=1,\ldots,T \); (ii) \(\partial L / \partial k_t = 0 \) for \(t=2,\ldots,T \); (iii) satisfy the budget equations.
 - Claim: These conditions are analogous to the conditions of the Maximum principle.
Discrete-time Optimality Conditions

• Repeat: \[L = \sum_{t=1}^{T} \beta^{t-1} u(c_t) + \sum_{t=1}^{T} \lambda_t \{ f(k_t) - c_t + (1 - \delta) \cdot k_t - k_{t+1} \} \]

 i. Differentiate with respect to \(c_t \) (for \(t=1,\ldots,T \)):
 \[\frac{\partial L}{\partial c_t} = \beta^{t-1} u'(c_t) - \lambda_t = 0 \Rightarrow \lambda_t = \beta^{t-1} u'(c_t) \]

 ii. Differentiate with respect to \(k_t \) (for \(t=2,\ldots,T \)):
 - Note that \(k_t \) appears twice: in the period-\(t \) constraint and in the period-(t-1) constraint.
 \[\frac{\partial L}{\partial k_t} = \frac{\partial}{\partial \beta^t \{ \lambda_t \{ f(k_t) - c_t + (1 - \delta) \cdot k_t - k_{t+1} \} \} \] + \frac{\partial}{\partial \beta^{t-1} \{ \lambda_{t-1} \{ f(k_{t-1}) - c_{t-1} + (1 - \delta) \cdot k_{t-1} - k_t \} \] \]
 \[= \lambda_t \{ f'(k_t) + (1 - \delta) \} - \lambda_{t-1} = 0 \]
 - Write as: \(\lambda_t - \lambda_{t-1} = -\lambda_t \cdot [f'(k_t) - \delta] \)

 iii. Differentiate with respect to the multipliers \(\lambda_t \) (for \(t=1,\ldots,T \)):
 \[\frac{\partial L}{\partial \lambda_t} = f(k_t) - c_t + (1 - \delta) \cdot k_t - k_{t+1} = 0 \Rightarrow k_{t+1} - k_t = f(k_t) - \delta \cdot k_t - c_t \]

 • Three parts – each analogous to the Maximum Principle:
 (i) Optimal consumption ⇒ Marginal utility = Shadow value.
 (ii) Optimal capital ⇒ Change in multiplier proportional to return on capital.
 (iii) Optimal multiplier ⇒ Recovers the budget equations

• Limiting case \(T \rightarrow \infty \) is analogous; terminal condition is \(\lambda_T k_T \rightarrow 0 \).
Important insight: Discrete-time Euler Equations

<Result worth remembering for later.>

- Derivation: combine \(\lambda_t = \beta^{t-1} u'(c_t) \Rightarrow u'(c_t) = \frac{\lambda_t}{\beta^{t-1}} \)

 and \(\lambda_{t-1} = \lambda_t \{ f'(k_t) + (1- \delta) \} = \lambda_t \{ 1 + f'(k_t) - \delta \} = \lambda_t \cdot (1 + r_t) \)

- Apply to any periods \(t \) and \(t+1 \):

 \[
 u'(c_t) = \frac{\lambda_t}{\beta^{t-1}} = (1 + r_{t+1}) \cdot \frac{\lambda_{t+1}}{\beta^{t-1}} = (1 + r_{t+1}) \cdot \beta \cdot \frac{\lambda_{t+1}}{\beta^t} = (1 + r_{t+1}) \cdot \beta u'(c_{t+1})
 \]

- Result:

 \[
 u'(c_t) = (1 + r_{t+1}) \cdot \beta u'(c_{t+1})
 \]

 or \(u'(c_t) = [1 + f'(k_{t+1}) - \delta] \cdot \beta u'(c_{t+1}) \)

=> Marginal utility now = Discounted marginal utility next period \(\times (1 + \text{interest rate}) \)

where \((1 + \text{interest rate}) = \text{gross return on capital} = 1 + \text{MPK} - \text{depreciation}. \)

- Equivalent:

 \[
 \frac{u'(c_t)}{\beta u'(c_{t+1})} = 1 + r_{t+1} = 1 + f'(k_{t+1}) - \delta
 \]

=> Marginal rate of substitution now vs. next period = Gross return on capital.

 Intuition: Slope of indifference curve = Slope of budget line.

- Equivalent:

 \[
 \frac{u'(c_t)}{u'(c_{t+1})} = \beta (1 + r_{t+1})
 \]

 Marginal utilities declining over time iff \(\beta(1 + r_{t+1}) > 1 \Leftrightarrow \text{Consumption increasing}. \)

=> Consumption growth is positive if and only if \((1 + r_{t+1}) > \frac{1}{\beta} \).
Dynamic Programming Approach

- Approach is convenient in discrete-time infinite horizon problems
- Idea of a value function: Maximum value of $U = \sum_{t=1}^{\infty} \beta^{t-1} u(c_t)$ depends on initial capital $k = k_1$.

 \[V(k) = \max \{ \sum_{t=1}^{\infty} \beta^{t-1} u(c_t) \mid k_1 = k \} = \text{maximum utility for any given } k. \]

 \[V(k_1) = \max \{ u(c_1) + \beta \sum_{t=2}^{\infty} \beta^{t-2} u(c_t) \} = \max \{ u(c_1) + \beta V(k_2) \} \]

 Defines the Bellman equation: task is to find a function that satisfies this recursion.

- Theory: under general conditions, iterating on the Bellman equation (starting with an arbitrary function) yields a sequence of functions that converges to V.

- Note: optimal capital investment reduces to a univariate problem: for given k_t at any time t, maximize $u[f(k_t) + (1 - \delta) - k_{t+1}] + \beta V(k_{t+1})$ by choice of k_{t+1}

 \[V(k_t) = \max \{ u(c_t) + \beta \sum_{t=2}^{\infty} \beta^{t-2} u(c_t) \} = \max \{ u(c_t) + \beta V(k_2) \} \]

 => Solutions define an optimal policy function $k_{t+1} = K(k_t)$; optimal c_t follows.