Problem 2.49 old edition, 2.50 new edition

Original Problem: Someone consumes a single good x and her indirect utility is

$$v(p, y) = G\left(A(p) + \frac{\bar{y}^\eta y^{1-\eta}}{1 - \eta}\right),$$

where

$$A(p) = \int_p^\phi x(\xi, \bar{y})d\xi.$$

(a) Derive the consumer’s demand for x and show that it has constant income elasticity equal to η.

(b) Suppose that the consumer has income equal to \bar{y} and the price of x rises from p to $p' > p$. Argue that the change in the consumer’s utility caused by the price change is

$$-\int_p^{p'} x(\xi, \bar{y})d\xi < 0.$$

Interpret this measure.

Critical Comment: This problem maintains that there is only one commodity, x. If there is only one commodity then from the budget it follows that $x(p, y) = \frac{y}{p}$ and if this is the case, the income elasticity of demand for x can only be 1. Moreover, the indirect utility function proposed in the problem

$$v(p, y) = G\left(A(p) + \frac{\bar{y}^\eta y^{1-\eta}}{1 - \eta}\right)$$

is not defined in a straightforward way when $\eta = 1$.

I think this becomes a much more reasonable problem if it is recast something like this.

Proposed Alternative: There are two commodities. Someone has an indirect utility function

$$v(p_1, p_2, y) = G\left(A(p_1, p_2) + \frac{\bar{y}^\eta y^{1-\eta}}{1 - \eta}\right)$$

Assume that the price of good 2 is fixed at \bar{p}_2 and that

$$A(p_1, \bar{p}_2) = \int_{p_1}^{p_2} f(\xi, \bar{p}_2, \bar{y})d\xi$$

for some continuous function f.

A) Derive the consumer’s demand for good 1 and show that it has constant income elasticity equal to η.

B) Suppose that the consumer has income \bar{y} and the price of good 1 rises from p to p'. Show that the change in the consumer’s utility can be measured by

$$\int_p^{p'} x_1(\xi, \bar{p}_2, \bar{y})d\xi.$$
Interpret this measure.

Answer to Part A: Recall that

\[x_1(p_1, p_2, y) = -\frac{\partial v(p_1, p_2, y)}{\partial p_1} - \frac{\partial v(p_1, p_2, y)}{\partial y} \]

Now

\[\frac{\partial v(p_1, p_2, y)}{\partial p_1} = \frac{\partial A(p_1, p_2)}{\partial p_1} = -f(p_1, \bar{p}_2, \bar{y}) \]

and

\[\frac{\partial v(p_1, p_2, y)}{\partial y} = \bar{y}^\eta - \eta. \]

Substituting into equation , we have

\[x_1(p_1, \bar{p}_2, y) = f(p_1, \bar{p}_2, \bar{y})\bar{y}^\eta y^\eta. \]

(1)

Then

\[\ln x_1(p_1, \bar{p}_2, y) = \ln f(p_1, \bar{p}_2, \bar{y}) - \eta \ln \bar{y} + \eta \ln y \]

and the income elasticity of demand for the good \(x \) must be

\[\frac{d \ln x_1(p, y)}{d \ln y} = \eta. \]

Answer to Part B: Define \(u^*(x) = G^{-1}(u(x)) \). Since \(G \) is an increasing function, so is \(G^{-1} \). Therefore \(u^*(x) \) represents this person’s preferences. Now

\[u^*(x(p_1', \bar{p}_2, \bar{y})) - u^*(x(p_1, \bar{p}_2, \bar{y})) = A(p_1', \bar{p}_2) + \bar{y} - A(p_1', \bar{p}_2) - \bar{y} \]

\[= A(p_1, \bar{p}_2) - A(p_1, \bar{p}_2) \]

\[= -\int_{p_1}^{p_1'} f(\xi, \bar{p}_2, \bar{y}) d\xi \]

\[= -\int_{p_1}^{p_1'} x_1(\xi, \bar{p}_2, \bar{y}) d\xi \]

(2)

where the last equality in 2 follows from Equation 1.
Thus the difference in utility as measured by u^* is equal to

$$-\int_{p_1}^{p'_1} x_1(\xi, \bar{p}_2, \bar{y}) d\xi$$

If we draw a demand curve with p_1 on the vertical axis and $x_1(p_1, \bar{p}_2, \bar{y})$ on the horizontal axis, then this integral is the “loss or consumer surplus”, which is the difference between the area under the demand curve above a horizontal line at height p' and the area under the demand curve above a horizontal line at height p. This is the traditional diagram of the change in consumers’ surplus.