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Abstract
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1 Introduction

In a typical setting, rationality entails making a choice that balances the marginal

benefits and costs along all dimensions. Consistency with rationality leaves no room

for departure from these first-order conditions (FOCs). One could imagine a more

nuanced approach, yielding an approximation of rationality that is gradated by the

extent of departure permitted. We explore this idea for consumer choices, where the

rational benchmark is captured by the workhorse formula of intermediate microeco-

nomics: opportunity cost=marginal rate of substitution. In equivalent mathematical

terms, price vectors and utility gradients must be collinear.1

We propose an axiomatically-founded measure of discrepancy for price vectors

and utility gradients, which motivates the following notion of approximate rationality

(formalized in Section 2). Given a reference class of utility functions U and some

ε ∈ [0, 1], demand data D is ε-rationalizable given U if the following inequalities hold

for some u ∈ U :

(1) 1− ε ≤ MRSu``′(x)

p`/p`′
≤ 1

1− ε
,

for all observations (p, x) ∈ D and all goods ` 6= `′. The marginal rates of substitu-

tions (MRS) and opportunity costs must match if ε = 0. The larger ε is, the more

permissive ε-Rationalizability becomes. For a given U , the FOC-Departure Index

(FDI) of demand data is the smallest ε (formally an infimum) for which the data

is ε-rationalizable given U . The advantage of considering different reference classes

of utility functions is the ability to gauge both how far away the consumer is from

simply being rational (that is, applying the definition to the largest reference class

of preferences) and the degree of misspecification when considering smaller reference

classes.

Our approach defines a new yardstick for measuring the quality of consumer choices

while remaining agnostic about the sources of departures from rationality. But the FDI

is also meaningful when considering more structured forms of bounded rationality. In

1More precisely, this formula holds for preferences that are both convex and differentiable, as
assumed throughout the introduction for simplicity. Beyond the introduction, we will drop differ-
entiability, which requires slightly more complex notation (for quasi-gradients instead of gradients).
Dropping convexity can make the first-order approach inadequate (since the second-order condition is
dropped). However, we will see that many of our ideas remain applicable to non-convex preferences,
under a related idea of price misperception.

1



Section 3, we show it measures the minimal degree of price misperception required for

rationalizing demand data, and offer a new interpretation of the measure as a money-

pump multiplier. This interpretation in terms of price misperception also provides a

way to extend most results regarding the FDI to preferences that need not be convex.

Finally, the FDI can also be understood in terms of misperception in tastes. The con-

nection is especially striking when considering additively-separable utility functions,

as we show in Section 4. For instance, the FDI given risk-averse expected utility can be

interpreted as quantifying misperception of probabilities; and the FDI given exponen-

tial discounting can be interpreted as quantifying misperception of discount factors.

Furthermore, we establish a tight connection between a central model of reference

dependence and ε-rationalizability with respect to additively-separable utility.

Starting with Afriat’s Critical Cost Efficiency Index (CCEI), multiple inconsis-

tency indices have been proposed over the years. Many of them quantify the largest

percentage of income that can be retained while restoring rationality (GARP). Afriat’s

index, by far the most prevalent, does this while applying the same income-scaling

factor to all observations. Varian (1990) and Halevy, Persitz and Zrill (2018) con-

sider alternative aggregators with observation-specific scaling. Echenique, Lee and

Shum (2011) aggregates income losses arising from revealed-preference cycles, while

Dean and Martin (2015) measures the income loss associated with deleting enough

direct revealed-preference comparisons to avoid cycles. Our approach follows an en-

tirely different route left unexplored. Instead of relying on income losses, we measure

discrepancies between price vectors and putative utility gradients.2

Yet, perhaps surprisingly, the FDI provides an upper-bound for the percent of

lost income according to the CCEI (that is, 1 − CCEI ≤ FDI for all datasets), for

any reference class of utility functions. Phrased differently, small departures from the

first-order conditions imply only small budgetary adjustments are needed to eliminate

revealed preference cycles, but not vice-versa. This would suggest that our measure

is more demanding than that of Afriat. The story is subtler, however, once power is

considered: one should take into account whether violations of rationality are likely for

the budget sets observed. Using Bronars (1987)’s well-known approach,3 for instance,

2Yet other approaches include Houtman and Maks (1985), that counts how many observations
must be dropped to restore consistency, and Apesteguia and Ballester (2015) that assesses how
‘many’ feasible alternatives are superiors to chosen options (using the Lebesgue measure in the space
of bundles when considering consumer choices).

3The idea is to compare the distribution of the index under the true data to the distribution
arising if choices were drawn uniformly from budget frontiers.
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we show that there exist datasets where the FDI suggests greater rationality than

does the CCEI, as well as datasets where the opposite is true. It is thus safer to assess

decision-making quality according to both indices.

The FDI presents some advantages. All classic tests of consistency for reference

classes of preferences immediately extend to compute the corresponding FDI (see

Section 6); the same does not hold for Afriat’s CCEI. The reason for this difference is

that demand data is fully rational for modified prices under the FDI, while consumers’

choices cease to be optimal in Afriat’s shrunken budget sets (indeed, they are not even

feasible). Thus the FDI is a flexible measure, in the sense that it is easily applied for

different classes of reference utility functions.

Another advantage of our approach is its portability to problems beyond linear

budget sets. The first-order condition characterizes optimality in numerous economic

settings. Our approach readily extends to all such settings, by bounding the discrep-

ancy between utility and opportunity-set gradients. Consider, for instance, progressive

taxation in labor and investment decisions, which yield convex but non-linear budget

sets. Our approach generalizes to this framework by comparing putative utility gra-

dients and marginal price vectors. By contrast, it is not always clear how to extend

Afriat’s CCEI (or, more generally, money-metric indices) to such settings. There may

be multiple, conflicting ways to ‘shrink’ budget sets when prices are non-linear; that

is, the general approach of the CCEI becomes ill-defined. Though we mostly focus on

textbook consumer theory, we develop this theme further in our concluding section.

We illustrate the applicability of our approach in Section 7, using the portfolio-

choice dataset of Choi, Kariv, Müller and Silverman (2014), which consists of 1,182

adults recruited from the CentERpanel sample. In their experiment, subjects make

decisions for 25 randomly-drawn, two-dimensional budget sets, where a bundle (x1, x2)

describes the monetary payment in each of two equally-likely states. We begin in

Section 7.1 by examining this data using the FDI, rather than the CCEI as in Choi

et al. (2014). Though correlated, the measures are notably different. Not only is the

FDI strictly larger than 1 − CCEI for over 75% of subjects, but the two measures

also suggest, in 15% of all subject pairings, opposite rankings of who is more rational.

Nonetheless, an exercise in the style of Bronars (1987) confirms Choi et al’s assessment

that there is a significant amount of rationality to be found.

In Section 7.2, we shed new light on this data by empirically assessing the validity

of different preference restrictions. This portion relates to, but goes beyond, some as-
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pects of a contemporaneous and independent paper, Echenique, Imai and Saito (2019).

They define a measure of departure from risk-averse expected utility maximization,

and apply it to examine the prevalence of such preferences in Choi et al.’s dataset

(among others). As it turns out, their measure is a renormalization of FDIEUr , the

FOC-Departure Index given the class of risk-averse expected utility. A first advantage

of our approach is the ability to compare apples to apples. Echenique et al. empirically

contrast their new measure against the CCEI for general preference maximization. We

can study the impact of restricting attention to risk-averse expected utility while hold-

ing constant the method by which departures are measured. A second advantage of

our approach is the opportunity to compute the FDI relative to relevant classes of

preferences beyond risk-averse expected utility. Perhaps surprisingly, we find that

the empirical departure from risk-averse expected utility maximization is mostly at-

tributable to departure from the plain maximization of a utility function defined over

lotteries.4 In the spirit of Bronars, we compute the FDI over these different classes of

preferences using randomly-generated choices for the budget sets tested in Choi et al.

This exercise makes clear that, although their dataset is well-suited for testing basic

rationality, richer data (e.g., varying the probability of states) is needed if one hopes

to disentangle risk-averse expected utility maximization from the maximization of a

quasi-concave utility function defined over lotteries. In Section 7.3, we use the nar-

rower interpretation in terms of price misperception to show these conclusions remain

valid even without requiring convex preferences (e.g., plain expected utility instead of

risk-averse expected utility).

2 Consumer Data, ε-Rationalizability and the FDI

We observe a consumer selecting consumption bundles at various price vectors. The

demand data D comprises a finite collection of pairs (p, x), where p ∈ RL
++ is a price

vector and x ∈ RL
+ is the consumption bundle demanded at p.

As usual, preference orderings will be assumed to be continuous and strictly mono-

tone. We further assume convexity (this is relaxed in Sections 3 and 7.3). Such pref-

erences are representable by a regular utility function: one that is continuous, strictly

monotone, and quasi-concave. The rational benchmark posits that the consumer se-

4With equally likely states, treating the bundles as lotteries amounts to state independence or
first-order stochastic dominance.
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lects bundles through utility maximization over budget sets. If the utility function is

differentiable at an interior choice, then price vectors and utility gradients must be

collinear (equivalently, opportunity costs must equal marginal rates of substitution at

chosen bundles). For expositional convenience, we will focus on this case in the next

two subsections, though non-differentiable utility functions and corner solutions will

be accommodated when presenting the general definitions afterwards.

2.1 Measuring the Discrepancy between a Utility Gradient

and a Price Vector

We propose quantifying departures from rationality by how “close” the consumer is

from satisfying the knife-edge collinearity condition. While there are many ways to

measure distances between vectors in general (such as the angular or the Euclidean

distance), we argue that measuring distances between price vectors and utility gradi-

ents should be done a certain way. Indeed, given their economic interpretation, such

variables are not uniquely defined. An increasing transformation of a utility function

offers another representation of the same preference, with rescaled marginal utilities;

and similarly, rescaling prices leaves budget sets unchanged. Euclidean distance, how-

ever, is sensitive to such rescaling. Moreover, a consumer’s problem is unaffected

when modifying how a good’s quantity is measured (e.g., using ounces or grams, gal-

lons or quarts, etc.), provided that prices are adjusted accordingly.5 Both angular and

Euclidean distance, however, are sensitive to measurement choice.

We start by considering the simpler case of two goods (as in most experimental

papers on the topic), and suggest further below a natural extension to accommo-

date more goods. Let � be a weak ordering over price-vector/utility-gradient pairs:6

(p, g) � (p′, g′) means that “the utility gradient g is farther apart from the price vector

p than g′ is from p′.” The ultimate goal is to assess degrees of rationality, in which

case (p, g) � (p′, g′) is interpreted as follows: a consumer who picks a bundle at which

the utility gradient is g while the price vector is p, is less rational than a consumer

5For instance, buying one gallon of milk at $4, is the same as buying 4 quarts at a quarter of the
price ($1 each). Also, the marginal utility from buying an extra η quarts, is a quarter of the marginal
utility from buying an extra η gallons (where η > 0 is small).

6While developing our ideas for assessing how far apart a utility gradient is from a price vector,
our arguments are equally meaningful for measuring how far apart two price vectors are from each
other, and for measuring how far apart two utility gradients are from each other. This will be relevant
in Sections 3 and 4 that explore alternative interpretations of the methodology we propose.
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who picks a bundle at which the utility gradient is g′ while the price vector is p′. Of

course, g and g′ are not observable (and we will consider possibilities for what they

may be), but for the moment we proceed as if we know them. The following axioms

capture the invariance properties discussed above.

Unit Invariance (p, g) � (p′, g′) if, and only if, (αp, βg) � (α′p′, β′g′), for all positive

scalars α, β, α′, β′.

Measurement Invariance (p, g) � (p′, g′) if, and only if, ((αp1, p2), (αg1, g2)) �
(α′p′1, p

′
2), (α

′g′1, g
′
2)), for all positive scalars α, α′ (and similarly for good 2).

The first axiom reflects the fact that a price vector or a utility gradient is effectively

determined only up to a positive linear transformation. It permits different transfor-

mations for the different vectors p, p′, g and g′, but requires all dimensions of the

same vector to be scaled by the same factor. The second axiom considers a different

type of transformation, whereby the same dimension is scaled by the same factor in

the pair of vectors compared. It captures invariance to the way in which we measure

a good, and thus also how we state its price.

These two invariance properties go a long way in determining the structure of �.

Indeed, adding only the following three regularity properties uniquely pins it down.

Representability � is complete, transitive and continuous.

Numbering Invariance (p, g) ∼ ((p2, p1), (g2, g1))

Monotonicity ((1, 1), (α̂, 1)) � ((1, 1), (α, 1)) for all 1 ≤ α < α̂.

The first axiom ensures existence of a numerical representation. The second means

that the distance between a utility gradient and a price vector should be independent

of which good is called good 1. The third simply requires that an increase in α ≥ 1

brings the utility gradient (α, 1) further away from the price vector (1, 1).7

Proposition 1 There is a unique ordering �∗ satisfying the five axioms: (p, g) �∗

(p′, g′) if, and only if, δ(p, g) ≥ δ(p′, g′), where

δ(p̂, ĝ) = max

{
p̂1/p̂2
ĝ1/ĝ2

,
ĝ1/ĝ2
p̂1/p̂2

}
for all price vectors p̂ and all utility gradients ĝ.

7Naturally, one would also desire the opposite relationship in the case α ∈ (0, 1). Imposing this
property would be redundant, however: the ordering we uncover in Proposition 1 satisfies it.
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Figure 1: Measuring the Discrepancy Between p and g.

Of course, �∗ admits many representations: any increasing transformation of δ.

Which gets selected is irrelevant for comparing degrees of rationality, as we do later.

To fix ideas though, we pick two reference vectors – the price vector (1, 1) and the

utility gradient (1− ε, 1) – and suggest to assess discrepancies in comparison to how

far apart these two reference vectors are from each other. These two vectors are easy

to visualize, and provide an intuitive scale where discrepancies are measured by a

number between 0 (perfect congruence) and 1 (orthogonal vectors that are in total

mismatch). By definition, g is closer to p than (1− ε, 1) is from (1, 1) if, and only if,

δ(p, g) = max{p1/p2
g1/g2

,
g1/g2
p1/p2

} ≤ 1

1− ε
.

The smallest ε satisfying this inequality – ε(p, g) – is our favored representation of �∗:
ε(p, g) = 1− 1

δ(p,g)
. This parametrization happens to be easily interpretable. Consider

the scenario depicted on the left panel of Figure 1. The consumer’s indifference curve

coincides locally with the segment that is orthogonal to g. While remaining indifferent,

the consumer could save money by decreasing his consumption of good 1 by one unit,

and increasing his consumption of good 2 by g1/g2 units. How many units of good 1

could he then recoup as a ‘freebie’, keeping his original expenditure on x but providing

additional utility? Precisely ε(p, g), since he saved $(p1 − p2 g1g2 ) and good 1 costs $p1.

The two panels on the right of Figure 1 depicts more extreme situations, where ε(p, g)

gets close to 0 or 1.

With more than two goods, we let the discrepancy between p and g be the maximal

ε-distance between the projections of p and g on any pair of distinct goods `, `′.
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2.2 Collections of Price-Vector/Utility-Gradient Pairs

Our ultimate objective is to measure how close demand data containing multiple ob-

servations is from being rational. To this end, we must extend �∗, or equivalently

our favored representation ε(·), to compare collections of price-vector/utility-gradient

pairs.8 Again, we pretend for the time being that the gradients are known.

Throughout the paper, we will focus on the extension ε(D) = max(p,g)∈D ε(p, g)

for a collection D of price-vector/utility-gradient pairs. The robust lesson from our

axiomatic analysis is that gradient ratios over price ratios are the critical objects of

study, due to the invariance properties prices and gradients satisfy. These do not imply,

however, that one must perform a worst-case analysis when aggregating across obser-

vations. Some may argue, for instance, that a consumer who makes highly irrational

decisions in rare circumstances is more rational than a consumer with intermediate

departures from rationality in a large number of circumstances. A similar aggregation

question applies to measures of rationality based on income adjustments needed to

eliminate revealed preference cycles.

On that dimension, our max-operator simply follows the worst-case scenario anal-

ysis favored by Afriat’s (1972, 1973) in his definition of the critical cost efficiency

index, which remains so far the predominant index despite alternative aggregators

proposed over the years, starting with Varian (1990); see also Halevy, Persitz and

Zrill (2018) and references therein. One could also apply those suggested aggregation

methods to our ε(p, g): for instance, letting ε(D) be a frequency-weighted average of

the measure ε(p, g) for each (p, g) ∈ D. A main reason for the empirical literature’s

bias towards Afriat’s worst-case scenario is the complexity of computation for other

aggregation methods, and the same computational issues would arise from applying

those other aggregation methods here. Having said this, we note that our notion of

ε-Rationalizability, and thus the FOC-Departure Index and Price-Misperception In-

dex, can be applied with other aggregators; and it is easy to see from the proofs that

our theoretical results either hold verbatim or easily generalize, when using any other

monotone aggregation method.9

8A collection may contain the same pair (p, g) multiple times, as the consumer may pick the same
bundle when facing a same budget set multiple times, or be assigned a same gradient at his choices
for different budget sets defined by the same price vector p.

9That is, with ε(p, g) for singleton collections defined just as above, we can construct other exten-
sions of ε to non-singleton collections D besides the max-operator. Say ε(·) is a monotone aggregation
method if whenever D = ((pi, gi)i) and D̄ = ((p̄i, ḡi)i) satisfy ε(p̄i, ḡi) ≥ (≤) ε(pi, gi) for all i, then
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2.3 ε-Rationalizability and FOC-Departure Index

Now that we understand how to measure departures of price vectors and known utility

gradients, we can dispense with the assumption that gradients are known. The notion

of ε-rationalizability given a class U of regular utility functions proceeds as follows.

Any given u ∈ U defines gradients at demanded bundles, and the question is whether

there exists u ∈ U that generates a collection D of price-vector/utility-gradient pairs

such that ε(D) is lower or equal to the parameter ε.10

For increased generality, we allow for corner solutions and non-differentiable utility

functions (for which normalized gradients are not always uniquely defined). The set

of quasi-gradients ∂u(x) is the set of strictly positive vectors defining the supporting

hyperplanes of the upper-contour set at x:11

∂u(x) = {g ∈ RL
++ | ∀y : u(y) ≥ u(x)⇒ g · y ≥ g · x}.

At any point x where u is differentiable, ∂u(x) contains a unique vector – the usual

gradient ∇u(x) = (∂u(x)
∂x1

, . . . , ∂u(x)
∂xL

) – up to positive rescaling. If U accommodates

non-differentiable utility functions (or if demand data contains corner bundles), then

one is free to pick the normalized quasi-gradient compatible with u when checking

ε-rationalizability.

Definition 1 (ε-Rationalizability) For ε ∈ [0, 1], the demand data D is ε-rationalizable

given U if there exist u ∈ U and, for each (p, x) ∈ D, a vector g ∈ ∂u(x) such that

(2) 1− ε ≤ g`/g`′

p`/p`′
≤ 1

1− ε
,

for each ` 6= `′. Then u is said to ε-rationalize the demand data.

For intuition, the ratio g`/g`′ is uniquely defined for x� 0 when u is differentiable,

ε(D̄) ≥ (≤) ε(D). Footnotes 10 and 12 describe how the main definitions generalize.
10Indeed, this description is how one would define ε-Rationalizability when using a more general

aggregation method than the max-operator; one must only stipulate that D is constructed such that
for all (p, x) ∈ D we have g ∈ ∂u(x), as in Definition 1. The further detail in Definition 1 is specific
to the max-operator.

11At the cost of heavier notation later on, one could allow g to belong to RL
+ \ {0} in the definition

of ∂u(x) (a change that matters only if some component of x is zero, by strict monotonicity). This
makes no difference in any of our results because the added vectors are always as far as it gets,
according to our measure of departure, to strictly positive price vectors.
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and corresponds to the marginal rate of substitution (MRS) associated to ` and `′:

MRSu``′(x) =
∂u(x)/∂x`
∂u(x)/∂x`′

.

The numerator in (2) simply captures tradeoffs in taste, while accommodating the

possibility of multiple implicit utility tradeoffs in case of non-differentiability. The

price ratio p`/p`′ in the denominator represents the opportunity cost. Notice then that

(2) simply boils down to the FOC that is characteristic of rationality when ε = 0.

Rationality is an all-or-nothing condition: demand data is either consistent with

it or not. In an imperfect world of actual data, it is more useful to have ways to

quantify the degree to which data complies with a theory, and ε-Rationalizability

naturally lends itself to such measurements.

Definition 2 (FOC-Departure Index) The FOC-Departure Index of D given U ,

denoted FDIU(D), is the infimum over all ε such that D is ε-rationalizable.

In applications, the reference class U may include all regular utility functions; but

analysts are often interested in special classes of non-parametric preferences, adding

requirements such as quasi-linearity, additive separability, homotheticity, expected

utility or exponential discounting. Our approach is also applicable for parameter

estimations when U is a parametric class of utility functions (as in the CES family

in Fisman, Kariv and Markovits (2007), or the β − δ CRRA class in Balakrishnan,

Haushofer and Jakiela (2019), to cite just a couple of examples). The advantage of

being able to vary the reference class is apparent from our data analysis in Section 7.

3 Misperceived Prices

Introspection and empirical evidence suggest that people rarely perceive prices per-

fectly. In the spirit of the Weber-Fechner law, consumers’ understanding of prices is

likely related to actual prices, but not necessarily a perfect match. They may round

up prices to simplify budget arithmetic, and are often subject to systematic biases

such as the left-digit effect (Thomas and Morwitz, 2005). People often underestimate

the price of add-ons, such as favoring a good with a lower tag price over an alternative

that is cheaper once shipping is included (Brown, Hossain and Morgan, 2010). Many

buyers also fail to fully incorporate sales taxes in their decisions (Chetty, Looney
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and Kroft, 2009). Research in visual perception (Frisby and Stone, 2010) suggests

that subjects in experiments who are presented with graphical budget lines can only

roughly assess the slopes. Further examples are cited in Gabaix (2014), who proposes

a theory of endogenous price misperception based on sparsity-based optimization.

For a consumer who properly optimizes given perceived prices, we would say that

the more accurately she perceives prices, the closer she is to being rational. As we

pointed out earlier (see Footnote 6), the axiomatic motivation for �∗ is equally appli-

cable when comparing price vector pairs: (p, pc) �∗ (q, qc) means that the perceived

price vector pc is farther apart from the actual price vector p than qc is from q. A

consumer who optimizes using pc instead of p would be deemed less rational than

a consumer who used qc instead of q. Of course, perceived prices are not directly

observable (the same way that utility gradients were not observable in Section 2),

but we can figure out the minimal range of ‘price twisting’ required to rationalize a

consumer’s choice. For this, fix a class U (parametric or not) of strictly monotone and

continuous utility function.

Definition 3 (Price Misperception Index) The Price Misperception Index of D given

U (denoted PMIU(D)) is the infimum over all ε for which one can find u ∈ U and

associate to all (p, x) ∈ D a price vector pc ∈ RL
++ such that

(3a) x ∈ argmax
{pc·y≤pc·x}

u(y) (demanded bundle is u-maximal under consumer prices),

(3b) 1− ε ≤ p`/p`′

pc`/p
c
`′
≤ 1

1− ε
, ∀` 6= `′ (consumer prices near true prices).12

As it turns out, the PMI and FDI coincide for any given classes of regular utility

functions.

Proposition 2 Let D be any demand data, and U be any class of regular utility

functions. Then PMIU(D) = FDIU(D).

Conceptually, this means price misperception offers a natural, alternative interpreta-

tion for the approach developed in the previous section. The result has a simple proof.

Demand data is ε-rationalizable given U if, and only if, there is u ∈ U for which ∂u

at any demanded bundle has an element that is ε-close to the associated price vector.

12For aggregation methods ε(·) besides the max, this condition should be replaced with ε(D) ≤ ε,
where D is the collection of the true-price vector/consumer-price vector pairs (p, pc).
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The result follows by interpreting these vectors as the consumer’s price vectors.

The PMI has another valuable use. As we all know, the first-order condition pro-

vides little information unless accompanied by the second-order condition to guarantee

a global optimum. For instance, the FDI with respect to the entire class of strictly

monotone and continuous utility functions is zero, as one can always draw indiffer-

ence curves to match local restrictions at finitely many bundles. Not so for the PMI,

which remains meaningful without quasi-concavity. This is useful, for instance, when

assessing degrees of consistency with expected utility maximization without imposing

risk aversion (see Section 7.3 for an illustration).

Afriat (1967) pointed out that demand data is rationalizable by a regular utility

function if, and only if, it is rationalizable by one that need not be quasi-concave.

Hence the PMI is invariant whether or not one requires utility functions to be quasi-

concave in addition to being continuous and strictly monotone. Combined with Propo-

sition 2, we get a justification for the FDI that does not rely on any quasi-concavity.

Proposition 3 Let D be any demand data, U be the class of all regular utility

functions, and U− be the larger class obtained by dropping quasi-concavity from the

requirements. Then FDIU(D) = PMIU−(D).

In addition to the axiomatic justification of δ from Section 2, which also applies

when comparing two price vectors (see Footnote 6), Equation (3b) admits another

interesting interpretation. A discrepancy between p and pc means the consumer is

susceptible to a money pump. Consider a rational trader with $M conducting the

following trade scheme once. He starts by using his $M money to buy13 any bundle

he wants from the consumer at her perceived prices pc, then trades that bundle in

any way he wants on the market given the true prices p, and finally resells whatever

goods he acquired this way back to the consumer at her perceived prices pc. To be

clear, this scheme is conducted before the consumer decides on her consumption plan;

she is not yet maximizing her preference, only accepting trades that give her a higher

perceived budget for doing so, which is always desirable. For simplicity, assume the

consumer accepts trades which leave her budget unchanged.14 What is the return on

investment that the rational trader can make in this scenario?

13The consumer’s endowment in goods is assumed to be large enough, or M is assumed to be small
enough that the consumer can provides the good that the trader wants to buy.

14If she accepts only trades that strictly increase her budget, then the rational trader can get as
close as desired from the optimal profit calculated in the next paragraph, by leaving a little bit of
surplus to the consumer in both trades involved in the money pump scheme.
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Proposition 4 The rational trader’s return on investment is δ(p, pc).

Proof. The rational trader maximizes pc · y over all bundles y such that p · y ≤ p · x,

for some bundle x such that pc · x ≤ M . To solve this optimization problem, notice

that the solution will have the bundle x maximize p · x over the set of bundles x

such that pc · x ≤ M . Indeed, making p · x larger increases the set of bundles y such

that p · y ≤ p · x. Because the objective function p · x is linear in x, an optimal

solution to this problem is to spend the $M on a good ` with the highest price ratio

when comparing true prices to perceived prices: p`/p
c
` ≥ pk/p

c
k for each good k (the

computation is analogous to that when maximizing perfect-substitutes preferences).

It remains to find a y that maximizes pc · y under the constraint p · y ≤ (p`M)/pc`.

Similar reasoning reveals that an optimal solution is to spend the $(p`M)/pc` on a

good `′ with the highest price ratio when comparing perceived prices to true prices:

pc`′/p`′ ≥ pck/pk for each good k. The profit in that case is $(pc`′/p`′)(p`M)/pc`. So

max
`,`′

p`/p`′

pc`/p
c
`′
M = δ(p, pc)M

is the trader’s maximal profit, and δ(p, pc) is the return on investment. Q.E.D.

Thus, using δ to measure how far apart the true price vector is from the perceived

one also determines the money-pump multiplier for a rational trader conducting the

simple scheme described above. In this view, (3b) amounts to placing an upper bound

( 1
1−ε) on this multiplier.

4 Misperceived Tastes

Suppose instead that the consumer is subject to errors in assessing her utility tradeoffs,

or that the modeler’s data is missing contextual information affecting these tradeoffs.

As will become clear, and contrary to Section 3, it will be important to restrict atten-

tion to convex preferences for this interpretation of ε-rationalizability.

How do consumers explore their budget sets? A rational consumer might contem-

plate all bundles at once, to find the best choice in all circumstances. Alternatively, to

save on contemplation and thinking costs, she may merely check her putative choice

has no preferable alternative nearby, thereby reaching her choice by tatonnement.

Reaching choices through a series of small adjustments may be a reasonable descrip-
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tion of the thought process in some circumstances. It is unlikely that every time some

prices change, the consumer reassesses her entire budget set, carefully introspects

about her preference relation over those bundles, and directly selects the globally

preference-maximizing bundle. Conveniently, stepwise and local thinking converges

to rational choices when preferences are convex, so long as the consumer correctly

assesses her local utility tradeoffs. This is no longer the case if the consumer imper-

fectly assesses those utility tradeoffs (or if these tradeoffs vary somewhat with factors

unobserved by the modeler). Bounding the error in assessing the utility gradient gives

rise to ε-rationalizability.

In specific classes of utility functions, our notion of ε-rationalizability can suggest

a particular channel for the consumer’s misperception (or modeler’s misspecification).

Consider, for instance, Cobb-Douglas preferences. If the consumer’s true preference

is captured by the utility function
∏
xα`
` , then a natural way to capture misperceived

tastes or parameter misspecification on the part of the modeler is that the consumer

maximizes
∏
xβ`` where the vector of exponents β may vary, but cannot be too far apart

from α. This operationalizes, in a different setting, Rubinstein and Salant (2012)’s no-

tion of a decision maker who uses only preferences that are ‘close’ to her true one. As

the next proposition shows, ε-rationalizability is equivalent to this approach, not only

for the Cobb-Douglas model,15 but also for any additively separable preference. For-

mally, say u is additively separable if u(x) =
∑

` u`(x`) for some concave,16 continuous

and strictly monotone utility functions u` : R+ → R.

Proposition 5 D is ε-rationalizable with respect to the additively separable utility

function u(·) =
∑L

`=1 u`(·) if, and only if, for all (p, x) ∈ D, there is β(p, x) ∈ RL
++

such that

(4a) x = argmax
{p·y≤p·x}

L∑
`=1

β`(p, x)u`(y`), and

(4b) 1− ε ≤ β`(p, x)

β`′(p, x)
≤ 1

1− ε
, for all `, `′ ∈ {1, . . . , L}.

15Technically, the proposition applies to Cobb-Douglas only when restricting attention to strictly
positive bundles, as log(x`) ∈ R only if x` > 0.

16Concavity of u` may seem much stronger than our usual requirement of quasi-concavity for
u. However, they are almost the same in this additive setting: in a classic result which builds on
Arrow’s earlier observation, Debreu and Koopmans (1982) show that quasi-concavity of a continuous,
additively separable utility function implies that all but one u`’s must be concave, and the last must
have features of concavity too.
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The inequalities in (4b) simply state that the vector β of modified coefficients is

not too far from the original unit vector of coefficients associated to u, using once

again the δ-function uncovered in Section 2 to measure this time discrepancies in

preference parameters. In the Cobb-Douglas example, u`(·) = α` log(·) for each `.

For intertemporal choices, with x` representing consumption at time `, exponential

discounting corresponds to the case u`(·) = δ`ũ(·) for some time-independent utility

function ũ. Proposition 5 then shows that consumer’s errors can be interpreted as

misperceived discounting. Similarly, in a setting with risk, where each ` is a state of

the world, all errors could be attributed to misperceived probabilities.

Reference-dependent choices have become central to behavioral economics since

Kahneman and Tversky (1979) and Tversky and Kahneman (1991). We conclude

this section by highlighting an interesting relationship between ε-rationalizability and

a central model of reference-dependent consumer choices. Say that D is consistent

with reference-dependent choices for gain-loss parameters γ ≥ 0 and λ ≥ 1 if one can

find continuous, concave and strictly increasing utility functions u` : R → R and a

reference bundle r(p, x) ∈ RL
+ for each (p, x) such that, for all (p, x) ∈ D, the demand

x maximizes the modified utility function v(y|r(p, x)) over all the bundles y ∈ RL
+

such that p · y ≤ p · x, where

v(y|r(p, x)) =
L∑
`=1

v`(y`|r`(p, x)),

v`(y`|r`(p, x)) =

u`(y`) + γ[u`(y`)− u`(r`(p, x))] if y` ≥ r`(p, x)

u`(y`) + γλ[u`(y`)− u`(r`(p, x))] if y` ≤ r`(p, x)

for each y ∈ RL
+ and ` = 1, . . . , L. The reader will have recognized the exact same

gain-loss utility function (over riskless choices) as in Koszegi and Rabin (2006). The

difference is that we remain agnostic as to how the reference point forms: it is viewed

as an unobserved parameter that can possibly vary each time the consumer makes a

choice. Naturally, having a theory of how reference points arise, or limiting the range

in which they may fall would give rise to stronger testable implications.

As it turns out, consistency in this sense is equivalent to ε-rationalizability given an

additively-separable utility function, with ε = γ(λ−1)
1+γλ

.17 This means that a consumer

17Notice how the above model reduces to rationality if, and only if, γ = 0 or λ = 1. In that case,
ε is indeed equal to zero.
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subject to the above form of reference dependence will appear ε-rationalizable for an

additively-separable utility function. Vice versa, any dataset that is ε-rationalizable

for an additively-separable utility function can be interpreted as data arising from a

consumer with gain-loss parameters (γ, λ). Hence our test of ε-rationalizability given

additively separable utility functions (see Section 6 on testing methods) could also be

seen as a test for consistency with the above model of reference dependence.

Proposition 6 D is consistent with reference-dependent choices for gain-loss pa-

rameters γ ≥ 0 and λ ≥ 1 if, and only if, it is ε-rationalizable given an additively

separable utility function, with ε = γ(λ−1)
1+γλ

.

5 Inequality with Afriat’s CCEI

Afriat’s Critical Cost Efficiency Index (CCEI) is the largest percentage of the con-

sumer’s budgets that can be retained while satisfying GARP (or, equivalently, elimi-

nating all Samuelson revealed-preference cycles). This notion is immediately applica-

ble when plain rationality is the benchmark model, as characterized by GARP. But

when tackling subclasses of utility functions, it is more convenient to follow a different

route initiated by Varian (1990) (see also Halevy et al. (2014)). Given any continu-

ous and increasing utility function u, let the budget efficiency ratio of an observation

(p, x) ∈ D be defined as follows:

r(p, x;u) =
min{y∈RL

+|u(y)≥u(x)} p · y
p · x

.

Then the Critical Cost Efficiency Index of D given a class U of continuous and strictly

monotone utility functions is:

CCEIU(D) = sup
u∈U

min
(p,x)∈D

r(p, x;u).

Clearly, this coincides with Afriat’s original definition when U contains all continuous

and monotone utility functions, but is defined given any smaller class as well. We now

show a perhaps surprising, systematic relation between the CCEI and FDI (or PMI).

Proposition 7 For any demand data D and any class U of continuous and strictly

monotone utility function, we have: 1 − CCEIU(D) ≤ PMIU(D). Similarly, we have

1− CCEIU(D) ≤ FDIU(D) for any class U of regular utility functions.
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After reading the proof in the Appendix, it is also easy to construct examples

where the inequality holds strictly, and others where it holds with equality. In the

next section, we explain how any Afriat-inequality test designed to check for rationality

given U extends to compute the FDIU (or PMIU). By contrast, there is no general

method for computing CCEIU . Hence a side benefit of the above proposition is to

provide an easy-to-compute lower bound on CCEIU .

Of course, whether consistency with rationality is remarkable depends, at least to

some extent, on the combination of budget sets being tested. For instance, rationality

is impossible to refute when all budget sets are related by inclusion. By contrast,

a WARP violation becomes possible in intersecting budget sets that are not related

by inclusion. In that sense, the specific value of the CCEI or the FDI derived from a

consumer’s actual choices is not that informative without being contrasted against the

distribution of those indices arising under some alternative, behavioral hypothesis.

While different criteria have been proposed over the years to capture power, we

focus here on the approach that is most often applied in experimental papers. This

method, suggested by Bronars (1987) and inspired by Becker (1962), proposes to

use as a reference point the distribution of CCEI’s arising from a random collection

of choices, under the assumption that each bundle on the frontier of a budget set is

equally likely. Most experimental papers argue that the rational choice model captures

observed choices rather well, because the distribution of CCEIs arising from the data

is a significant FOSD shift towards lower values of Afriat’s index.

Such an approach can be replicated using the FDI (or PMI) instead. Interestingly,

while we have established that 1 − CCEI ≤ FDI, this does not mean that subjects

will necessarily appear less rational when applying Bronars’ methodology to the FDI.

Indeed, the distribution of FDI’s for the randomly-generated demand data used as

the reference point will itself shift towards higher values compared to 1-CCEI. In

the Appendix (see Example 1), we construct demand data that would appear more

rational when applying Bronar’s criterion to the CCEI instead of the FDI, as well as

demand data that would appear more rational when applying Bronars’ criterion to

the FDI instead of the CCEI. Thus, when judging the quality of consumer choices, it

is more prudent to assess it according to both measures. This is precisely what we do

in Section 8, when analyzing Choi et al.’s (2014) portfolio demand data.
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6 Computing the PMI and the FDI

Tests of rationalizability have been proposed over the years for many standard classes

U of preferences. A typical test amounts to checking whether a certain set of (often-

times linear or bilinear) Afriat-like inequalities admit a solution.18 In this section, we

show how all inequality-based rationalizability tests can be repurposed for computing

the corresponding PMIU and FDIU . By contrast, this is not true for the CCEI. The

difference is that demand data is fully rational for modified prices under the PMI and

the FDI, while consumers’ choices cease to be optimal in Afriat’s shrunk budget sets

(indeed they are even infeasible).19

More precisely, an inequality-based test of rationalizability can be described as

follows. There is a set SU of inequalities whose coefficients are determined by the

demand data, with the property that D is rationalizable given U if, and only if,

the set of inequalities SU(D) given D has a solution. The next result then follows

at once from the very definition of the PMI, and from the FDI-PMI coincidence

identified in Proposition 2. To state it, we need some additional notation. For any

demand data D and consumer perceived price vectors pc(p, x) for each (p, x) ∈ D, let

Dc = {(pc(p, x), x)|(p, x) ∈ D} be the modified demand data derived from D by using

perceived prices instead of actual prices.

Proposition 8 Let SU be a test of rationalizability given U . Then PMIU is the

infimum over all ε ∈ [0, 1] such that there exists a solution to the system of inequalities

listed in (3b) and in SU(Dc), with an extra variable pc(p, x) ∈ RL
++ for each (p, x) ∈ D.

The same result applies to the FDI when all utility functions in U are quasi-concave.

For each ε, one simply checks a more permissive system of inequalities than re-

quired for the rational benchmark: the true price vector in each observation (p, x)

is replaced with a perceived price vector pc(p, x), which must be close to p. Conve-

niently, the added inequalities stemming from (3b) are linear in the relevant exogenous

18See Diewert (2012) for an overview of Afriat-inequality tests of rationalizability applied to quasi-
linear, homothetic or additively separable utility functions, and expected or non-expected utility.
Polisson, Quah and Renou (2020) extend this approach to important classes of non-convex prefer-
ences, including expected utility without risk aversion.

19Alternatively, one could view a consumer’s choice as optimal in the nonconvex budget set obtained
by first shrinking the original budget set, and then adding back the chosen bundle. Grounded in
first-order conditions, typical rationalizability tests use prices as proxies for marginal utilities (see e.g.
all tests in Diewert (2012)’s survey), and cannot be adapted to such general nonconvex budget sets
(in the hope of computing the CCEI). Polisson et al. (2020)’s approach can accommodate general
budget sets for certain classes of preferences, and thus compute the CCEI in those cases.
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Figure 2: The construction of o(x, x′) for proving the two-good formula.

variables (prices).20 The PMI and FDI can then be identified to any desired degree

of precision by following the usual dictionary-search method: first test whether the

system of inequalities has a solution for ε = 1/2; then do the same for ε = 1/4 if a

solution was found, or for ε = 3/4 otherwise; and iterate the procedure (identifying

the index with ± 1
2n

precision in n steps).

We also found a closed-form formula to compute the FDI (PMI) given the reference

class U∗ of all regular utility functions when there are only two goods (L = 2). Though

considering only two goods is restrictive, notice that a majority of experiments in

consumer theory share that feature, and that we are not aware of a closed-form formula

for the CCEI even in the two-good case. As a start, consider demand data D =

{(p, x), (p′, x′)} comprising only two observations. There is a WARP violation if x

and x′ are distinct and each of these bundles is affordable when the other is chosen

(i.e. p · x′ ≤ p · x and p′ · x ≤ p′ · x′). Assume p′1/p
′
2 ≥ p1/p2 without loss of generality.

Then,

FDIU∗(D) =

min{ p·(x−x′)
p2(x2−x′2)

, p
′·(x′−x)

p′1(x
′
1−x1)

} if D violates WARP;

0 otherwise.

20All rationalizability tests we are aware of are linear in prices, and hence the tweaked system
in Proposition 8 is bilinear. In many cases, including expected utility or quasi-linearity, a simple
change of variable makes the system linear. Even when not reducible this way, bilinearity means
that tractable or efficient computation methods are oftentimes available.
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Graphically, FDIU∗(D) = min{ε(p, o(x, x′)), ε(p′, o(x, x′))} where o(x, x′) that is or-

thogonal to the line passing through x and x′ (see Figure 2), from which the above

formula follows. To extend this result to any demand data D′, we showed that, with

two goods, FDIU∗(D′) is the maximum of the FDI’s associated to each pair of obser-

vations in D′. Details to prove this appear in the earlier working paper version (de

Clippel and Rozen, 2019).

7 Illustration Using Portfolio Demand Data

We now illustrate our methodology in the setting of recent lab experiments on risky

portfolio choices. Given two equally-likely states, subjects face multiple linear budget

sets and decide how to allocate money across states given these constraints. There are

thus two commodities: money in state 1, and money in state 2. This is the setting of

Choi et al. (2014), whose demand data we revisit through the lens of our theoretical

results.

We will see how our approach is easily applied to assess decision-making quality

and preference misspecification, covering classic subclasses of state-independent pref-

erences, plain expected utility and risk-averse expected utility. Differences between

the CCEI and the FDI/PMI will become apparent, but a Bronars’ analysis using the

FDI reinforces Choi et al. (2014)’s conclusion regarding the overall decision-making

quality of their data. This section also offers further insights regarding some results

appearing in an independent and contemporaneous paper on risk-averse expected util-

ity (see Echenique, Imai and Saito (2019)).

7.1 Decision-Making Quality

We begin our analysis by focusing on the class U∗ of all regular utility function in

this subsection. For notational simplicity, we will drop the index U∗. The FDI is

computed using the simple closed-form formula we provide towards the end of Section

6 for the special case of two goods. Proposition 7 tells us that 1− CCEI ≤ FDI, and

the histogram of FDI − (1 − CCEI) in Figure 3(a) reveals the extent by which these

two measures actually differ in the data. For just under one-quarter of subjects, the

FDI = 1− CCEI; among those for whom these differ, the modal difference is around

0.2. As they both measure departure from rationality, the FDI and 1 − CCEI are
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(a) Illustration of Proposition 7. (b) Taking power into account.

Figure 3: Illustration using data from Choi et al. (2014).

correlated: the Spearman correlation is 0.8481, and the null hypothesis that the two

are independent is strongly rejected (p-value of 0.0000). One index is not simply a

monotone transformation of the other. In fact, for around 15% of all pairs of subjects

in the experiment, the CCEI and the FDI offer opposite rankings of departure from

rationality: that is, Anne is considered more rational than Bob under one index, but

Bob is considered more rational than Anne under the other.

To take power into account, we perform a Bronars exercise by repeatedly drawing

random choices for each sequence of 25 budget sets tested in Choi et al. (2014), for a

total of 23,640 ‘random consumers’ making 25 choices each. We compute the associ-

ated measures FDI and 1−CCEI for the Bronars data. The empirical CDFs for both

the true and Bronars data are plotted in Figure 3(b). Consistent with Proposition 7,

for both the true and Bronars data we see the empirical CDFs first-order stochasti-

cally improve when moving from 1−CCEI to the FDI. Thus, following our discussion

of power in Section 4.3, data need not appear less rational under the FDI than the

CCEI. As it turns out, both the FDI and 1−CCEI exhibit a large, first-order stochas-

tic shift down when moving from the true data to the Bronars data. This confirms

the robustness of Choi et al. (2014)’s preliminary finding that there is a significant

amount of rationality in their data.
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7.2 FOSD and Risk-Averse Expected Utility

In a contemporaneous and independent paper, Echenique et al. (2019) define and

study what we would call ε-rationalizability for a risk-averse expected utility max-

imizer, except for the use of a different scale to measure departures from expected

utility (the parameter e they use is equal to ε/(1−ε)). In addition to their theoretical

characterizations, they perform the important exercise of applying the new measure

to a wide array of previously collected experimental data, which so far had been ana-

lyzed using the rational benchmark and/or a parametric approach. Our development

of ε-rationalizability and the FDI for any class of regular utility functions allows us

to add further layers of insight to some of the fundamental questions they study.

Echenique et al. empirically examine the relation between Afriat’s CCEI and

the new measure of goodness-of-fit for expected utility. Let EU r denote the class of

continuous, strictly monotone and risk averse expected utility functions. Of course,

as they point out, one expects subjects with a small FDIEUr to have a large CCEI, as

being close to expected utility maximization implies a fortiori being almost rational.

The relationship is more precise and general than this. As we showed, the FDI is

larger or equal to 1−CCEI (see Section 4), and FDIEUr ≥ FDI since expected utility

preferences are rational. Hence FDIEUr ≥ 1− CCEI.21

By changing both the reference class of preferences and the way departures are

measured, FDIEUr is conceptually two steps away from the CCEI. Using the FDI in-

stead of the CCEI (which makes a difference, as seen in Figure 3(a)) has the advantage

of comparing apples to apples and placing the spotlight on the dimension of interest:

assessing how much more stringent expected utility is from rationality.

In fact, it is also important to assess how much more stringent expected utility is

from the plain maximization of a utility function over lotteries. Notice that states have

no meaning to subjects beyond the monetary amounts received. Though not required

by rationality itself, subjects should view bundles simply as lotteries, which means

their preferences should be state independent. Let SI denote the class of regular

preferences that are state independent.22

21Translating this inequality for their parametrization gives CCEI ≥ e/(1 + e).
22With equally likely states, state independence is equivalent to symmetry, or being indifferent

between (x1, x2) and (x2, x1). With equally likely states and monotone preferences, state indepen-
dence is also equivalent to first-order stochastic monotonicity, or preferring a lottery that is first-order
stochastically superior to an alternative. If states were not equally likely, then symmetry would be
unappealing, and first-order stochastic monotonicity would further restrict state independence by
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To improve our understanding of FDIEUr , we can decompose it as follows:23

(5) FDIEUr = FDI + [FDISI − FDI] + [FDIEUr − FDISI ].

Thus the degree of misspecification FDIEUr −FDI in using an expected utility prefer-

ence is decomposed into the degree of misspecification from using a state independent

preference, a very mild requirement that is common to all preferences recognizing that

the bundles are lotteries, and the further misspecification from using the much more

demanding expected utility form.

One can show that, for two equally likely states, demand data D is ε-rationalizable

by a regular preference that is state independent if, and only if, the mirror-extended

dataset

(6) D = D ∪ {((p2, p1), (x2, x1)) | (p, x) ∈ D}

is ε-rationalizable by a regular preference.24 Thanks to this observation, we can eas-

ily compute FDISI by applying once again the simple closed-form formula provided

towards the end of Section 6.

Figure 4(a) depicts the empirical CDF’s of the FDI, FDISI , and FDIEUr for the

data,25 where FDIEUr is computed using Proposition 8, by repurposing the classic test

of Green and Srivavastra (1986) for risk-averse expected utility. It may come as a

surprise that adding the mild requirement of state independence has a big impact,

while the much more substantial restriction of adding expected utility on top of state

independence has a much smaller impact. In fact, for roughly 65% of subjects in the

actual experiment, we have that FDIEUr ≈ FDISI > FDI. For each subject, consider

imposing an extra restriction on the preference over lotteries. The idea of approximately rationaliz-
ing the data with utility functions satisfying such properties was studied by Choi et al. (2014) using
the CCEI. Echenique et al. (2019) show that there is a positive relationship between the frequency
with which such properties are violated and their version of FDIEUr .

23See Halevy et al. (2018) for similar decompositions with the CCEI for parametric classes.
24Necessity is obvious. Sufficiency is trickier. Suppose a regular u ε-rationalizes D. There is

no reason to believe that u is state independent. One can easily modify u to symmetrize it (e.g.,
û(x) = u(x) if x2 ≤ x1, and = u(x2, x1) if x2 ≥ x1), but the resulting preference is typically not
convex anymore. Convexity would be preserved if any g ∈ ∂u(x) with x2 < x1 is such that g1 < g2;
that is, ensuring that below the diagonal, indifference curves are flatter than lines of slope −1. A
key step of the proof is then to show the existence of such a utility function that ε-rationalizes D,
see earlier working paper version (de Clippel and Rozen (2019)) for details.

25Polisson et al. (2020, Figure 7) use their GRID method to construct an analogue of Figure 4(a)
for the CCEI.
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(a) For the true data. (b) For the Bronars data.

Figure 4: Empirical CDF’s of the FDI with respect to the class of regular utility
functions and the subclasses of state-independent utility SI and risk-averse expected
utility EU r.

the EU-misspecification ratio:

FDIEUr − FDISI
FDIEUr − FDI

,

which is the proportion of misspecification of imposing expected utility instead of

any regular preference over bundles, that is attributable to the misspecification for

imposing expected utility instead of any regular preference over lotteries. Figure 5

suggests the empirical CDF of the misspecification ratio for the true data is not much

better than that for the randomly-generated, Bronars data.26

This feature reflects the experiment’s limited power to detect the relative validity

of expected utility beyond plain preference maximization over lotteries. To gain some

intuition, suppose a subject were to randomly choose a bundle on the frontier of a

budget set p1x1 + p2x2 = 1, with p1 > p2. The probability that she appears rational

(FDI = 0) is 1: there is too little information to refute rationality. However, FDISI is

strictly positive with probability p2/(p1 + p2) (as any choice below the diagonal would

violate it), and FDISI = FDIEUr with probability 1. This is because rationalization

by an expected utility preference comes for free once the price vector has been twisted

enough to get rationalization by a state-independent preference.

26For comparability, we use the same, realized Bronars dataset throughout.
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Figure 5: Empirical CDFs of the EU-misspecification ratio.

Of course, the experiment tests subjects in many more budget sets, which makes

the comparison more complex. Figure 4(b) depicts the same objects as in Figure

4(a), this time for the randomly-generated Bronars dataset. Though specific numbers

change, of course, a similar general pattern arises: relatively speaking, imposing state

independence is a larger leap from rationality, than expected utility is from state

independence. This confirms our intuition that subjects would have to answer more

complex questions (e.g., varying the probabilities of states) if we wish to gain a deeper

understanding of the adequacy of expected utility beyond more general preferences

over lotteries.

7.3 Plain Expected Utility

We just found out that the empirical departure from risk-averse expected utility max-

imization is mostly attributable to departures from plain preference maximization

with regular utility functions that are state independent, and that only richer data

could disentangle risk-averse expected utility on top of state independence. Did quasi-

concavity play an important role in reaching this conclusion? While there is not ev-

idence of risk-loving behavior in the data,27 accommodating non-convex preferences

27A risk-loving consumer would pick a corner solution in each budget set she faces. More than 80%
of the subjects never pick a corner solution, more than 95% of the subjects pick a corner solution in
less than half the budget sets they face, and only 6 subjects (out of 1182) picked a corner solution
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remains important. For instance, considering a parametric class of Gul (1991) pref-

erences capturing disappointment aversion, Halevy et al. (2018) finds in a similar

dataset that some subjects are best described via a negative parameter of disappoint-

ment aversion (in which case they are elation loving). Such preferences are state

independent, but neither convex nor concave.

We can assess the impact of quasi-concavity in our analysis of the Choi et al. data

by investigating how the curves in the two panels of Figure 4 move when applying

the PMI (instead of the FDI), after dropping quasi-concavity in each reference class

of utility functions. First, it follows from Proposition 3 that the top curves (blue)

remain unchanged. Second, we show in the Appendix (Proposition 9) that dropping

quasi-concavity makes no difference for state-independent utility functions either: the

middle curve (red) remains unchanged as well. Third, dropping quasi-concavity can

make a difference when it comes to expected utility.28 But of course, the bottom

curve (green) cannot move above the middle one (red) since expected utility is more

demanding that state independence. At the same time, the green curve can only move

up: adding risk aversion on top of expected utility increase the PMI, and the PMI

coincides with the FDI on any class of regular utility functions (including the class

of risk-averse expected utility). Thus our view of the data from Section 7.2 remains

valid in the absence of quasi-concavity.

8 Beyond Linear Budget Sets

In an empirical study of nonlinear pricing in electricity markets, Ito (2014) points

out that while optimization requires understanding marginal prices, “nonlinear pric-

ing and taxation complicate economic decisions by creating multiple marginal prices

for the same good.” Indeed, the empirical literature on non-linear pricing, with ap-

plications to labor and taxation (see the survey of Saez, Slemrod and Giertz (2012))

and utilities markets (see Ito (2014) and references therein) provides evidence that

consumers respond to nonlinear pricing in a manner inconsistent with classic theo-

in more than 90% of the budget sets they faced.
28See Section A4.1 in the online appendix of Polisson et al. (2020). As discussed earlier, their test

can be repurposed along the lines of Proposition 8 to compute the PMI given risk-averse expected
utility (both for the true data and the randomly-generated Bronars choices). We did not perform
these computations, as we are proving in this paragraph that the PMI’s CDF must be squeezed
between the green and red curves in Figure 4, which happen to be very close to each other.
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Figure 6: Illustration of the taxation example.

ries. These studies illustrate the importance of relaxing the assumption of perfect

collinearity between marginal prices and the utility gradient.

Consider for instance labor supply decision with progressive taxation. There are

two goods: good 1 corresponds to leisure (as opposed to work); good 2 represents con-

sumption. Normalizing the price of consumption to 1, the price of leisure corresponds

to the real hourly wage. The consumer is endowed with H waking hours (for instance,

over the course of a year), and decides how many hours to work. Progressive taxation

means that there is a succession of income thresholds 0 < w1 < w2 < . . . with an

increasing marginal tax rate t1 < t2 < . . . applying to successive income brackets (ti

applying to the bracket [wi−1, wi]). Thus the tax on a yearly wage W ∈ [wk−1, wk] is

tk(W − wk−1) +
∑k−1

j=1 tj(wj−1 − wj). Clearly, this leads to convex budget sets with

piecewise-linear frontiers, which will change as the tax code and hourly wages vary.

Figure 6 provides a simple illustration. With H = 4, 000 for a year, the consumer

faces a different tax system on two different years, while her wage remains constant,

at $25 an hour. In year 1, income up to $25K is taxed at a 20% marginal rate, while

the marginal tax rate for higher incomes is 331
3
%. In year 2, income up to $25K is not

taxed, while higher incomes face a marginal tax rate of 662
3
%. Selecting x = (3K, 20K)

in year 1 and x′ = (1.5K, 37.5K) in year 2 is inconsistent with rationality (a WARP

violation).
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How does one measure the extent of departure from rationality? It is unclear what

the CCEI might be in this case, as there are multiple conflicting ways to ‘shrink’ bud-

get sets. One option is to pull budget frontiers proportionally towards zero. While

seemingly close in spirit to Afriat’s original idea, preserving the shape of budget sets

may be at odds with the source of non-linearity. For instance, shrinking the first bud-

get set by one half (as depicted by the orange budget set) would implicitly mean that

the consumer faces a marginal tax rate of 20% only on the first $10K, which is not the

case. Alternatively, one could shrink the endowment H which, in this case, amounts

to shifting the budget frontier to the left instead of towards 0. While both methods are

equivalent should prices be linear, which is the ‘right’ one to pick otherwise is unclear

with non-linear prices. By contrast, the notion of the FDI straightforwardly applies

to all problems where choices are characterized by a first-order condition. With pro-

gressive taxation as above, one simply measures the discrepancy between the utility

gradient and the marginal price vector at chosen bundles. It is not difficult to check

that the FDI for the above demand data is then roughly 28.5% (details available in

our earlier working paper version, see de Clippel and Rozen (2019)).

Given the prevalence of first-order conditions, the FDI can shed light on decision-

making quality and misspecification in numerous other situations in economics and

game theory. Here are just a few examples. One may be interested, for instance, in

better understanding people’s rationality and preferences (regarding say altruism, risk

or time) by collecting data in experiments with general convex budget sets instead of

restricting attention to linear ones, which have been the norm so far.

One may also be interested in producers instead of consumers. Consider a firm

selling its output in a competitive market, and deciding its employees’ work hours. The

profit maximization benchmark corresponds to the following maximization problem:

max
L≥0

[pf(L)−W (L)],

Demand data {(pk,Wk, Lk) | k = 1, . . . , K} comprises combinations of exogenous

output price (pk), exogenous wage function (Wk), and endogenous labor demand

(Lk). The wage could be linear: Wk(L) = wkL, for some observable hourly wage

wk. But more realistically, the firm may have to factor in overtime wages, leading to

a piecewise-linear convex function Wk. The production function f is unknown, and

simply assumed to be strictly increasing, concave and differentiable (non-parametric
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approach). ε-Rationalizability given this benchmark model is simply characterized by

the relaxed first-order conditions:

1− ε ≤ pkf
′(Lk)

W ′
k(Lk)

≤ 1

1− ε
.

The FDI is the infimum over all ε for which one can find a production function f

satisfying the above inequalities for all k. As in the rest of the paper, solving this

non-parametric problem may seem daunting at first since the infimum is computed

over a large class of functions. But, as often happens (see Section 6), the problem

reduces to a linear-programming problem. Indeed, we just need to find marginal

product parameters βk = f ′(Lk), with the key property that they are decreasing

in the labor input. It is straightforward to check29 that the FDI is the infimum of

1−minKk=1{
pkβk

W ′k(Lk)
,
W ′k(Lk)

pkβk
} over all vectors β ∈ RK

++ such that (a) βi > βj if Li < Lj,

and (b) βi = βj if Li = Lj (for all 1 ≤ i, j ≤ K). For instance, the data is consistent

with profit maximization (FDI = 0) if, and only if, (a’) W ′
i (Li)/pi > W ′

j(Lj)/pj

if Li < Lj, and (b’) W ′
i (Li)/pi = W ′

j(Lj)/pj if Li = Lj. Indeed, βk must equal

W ′
k(Lk)/pk in that case. Violations of this co-monotonicity property leads to larger

FDIs, letting β take a wider range of values in order to satisfy (a) and (b) above.

In some cases, the modeler observes output, but not labor. Even when labor is also

observed, the modeler might not observe the wage function. Our methodology applies

here too. Demand data {(pk, yk) | k = 1, . . . , K} comprises combinations of exogenous

output price (pk), and endogenous production level (yk). As before, the production

function f is unknown, and simply assumed to be strictly increasing, concave and

differentiable. But now the wage function W is also unknown, and assumed to be

strictly increasing, convex and differentiable. ε-Rationalizability given this benchmark

model is simply characterized by the relaxed first-order conditions:

1− ε ≤ pkf
′(f−1(yk))

W ′(f−1(yk))
≤ 1

1− ε
.

The FDI is the infimum over all ε for which one can find a production function f

and a wage function W satisfying the above inequalities for all k. We can simplify

this once again, to finding parameters γk = f ′(f−1(yk))
W ′(f−1(yk))

satisfying the inequalities and

29The reasoning in the text establishes necessity. For sufficiency, one simply constructs a valid
function f whose derivative at Lk is βk, which is always possible if the vector β satisfies (a) and (b).
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decreasing in yk: as output and thus labor increases, the marginal product of labor

decreases while the marginal wage increases. It is then easy to check that the FDI is

the infimum of 1−minKk=1{pkγk, 1
pkγk
} over all vectors γ ∈ RK

++ such that (a) γi > γj

if yi < yj, and (b) γi = γj if yi = yj (for all 1 ≤ i, j ≤ K). For instance, the data is

consistent with profit maximization (FDI = 0) if, and only if, (a’) pj > pi if yj > yi,

and (b’) pi = pj if yi = yj. Violations of this co-monotonicity property leads to larger

FDIs, letting γ take a wider range of values in order to satisfy (a) and (b) above.
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Appendix

Proof of Proposition 1 (Ordering satisfying the axioms from Section 2.1)

Let α = 1/x2, β = 1/y2, α
′ = 1/x′2 and β′ = 1/y′2. Then, Unit Invariance tells us that

(x, y) � (x′, y′)⇔ ((x1/x2, 1), (y1/y2, 1)) � ((x′1/x
′
2, 1), (y′1/y

′
2, 1)) .

Using Measurement Invariance with α = y2/y1 and α′ = y′2/y
′
1, this means

(x, y) � (x′, y′)⇔
((

x1/x2
y1/y2

, 1

)
, (1, 1)

)
�
((

x′1/x
′
2

y′1/y
′
2

, 1

)
, (1, 1)

)
.

Representability implies the existence of a function f : R2
++ × R2

++ → R such that

(x, y) � (x′, y′) if and only if f(x, y) ≥ f(x′, y′). Defining g(γ) := f((γ, 1), (1, 1)), we

have (x, y) � (x′, y′) if and only if g(x1/x2
y1/y2

) ≥ g(
x′1/x

′
2

y′1/y
′
2
). By Monotonicity, g strictly

increases for γ ≥ 1. By Numbering and Unit Invariance, g(γ) = g(1/γ) and thus

g(γ) = g(max{γ, 1/γ}). As max{γ, 1/γ} ≥ 1, inverting g gives the result. Q.E.D.
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Proof of Proposition 5 (ε-Rationalizability and additively separable utility)

A preliminary observation will prove useful. Fix β ∈ RL
++. As easily checked, x ∈ RL

+

maximizes
∑

` β`u`(y`) over the set of bundles y ∈ RL
+ such that p · y ≤ p · x if, and

only if, it maximizes
∑

` u`(y`) over the set of bundles y ∈ RL
+ such that p

β
· y ≤ p

β
· x,

where p
β

is the vector defined by ( p
β
)` = p`/β` for each `.

Fix (p, x) ∈ D. Remember from the proof of Proposition 2 that u ε-rationalizes

(p, x) if, and only if, there exists pc ∈ RL
++ satisfying (3b) such that x maximizes∑

` u`(y`) over the set of bundles y ∈ RL
+ such that pc · y ≤ pc · x. The result then

follows from the above observation by defining β by β` = p`
pc`

(so that p
β

= pc). Q.E.D.

Proof of Proposition 6 (Reference Dependence)

Notice that xmaximizes v(y|r(p, x)) over the set of bundles y ∈ RL
+ such that p·y ≤ p·x

if, and only if, there exists β(p, x) ∈ RL
++ such that x maximizes

∑L
`=1 β`(p, x)u`(y)

over the same set of bundles, β`(p, x) = 1 + γ if x` > r`(p, x), β`(p, x) = 1 + γλ if

x` < r`(p, x), and β`(p, x) ∈ [1 + γ, 1 + γλ] if x` = r`(p, x).

For necessity, suppose that D is consistent with reference-dependent choices for

gain-loss parameters γ ≥ 0 and λ ≥ 1. By Proposition 5,
∑

` u` ε-rationalizes D for ε

equal to 1 minus the smallest ratio of β`(p, x)/β`′(p, x) over all `, `′, and (p, x) ∈ D.

This minimum is at least 1+γ
1+γλ

, and hence ε is lower or equal to γ(λ−1)
1+γλ

, as desired.

For sufficiency, suppose that D is ε-rationalizable given
∑

` u`. By Proposition 5,

for all (p, x) ∈ D, there is β(p, x) ∈ RL
++ such that (i) x maximizes

∑L
`=1 β`(p, x)u`(y)

over the set of bundles y ∈ RL
+ such that p · y ≤ p · x, and (ii) 1+γ

1+γλ
≤ β`(p,x)

β`′ (p,x)
≤

1+γλ
1+γ

, for all `, `′ ∈ {1, . . . , L}. Renormalizing β(p, x), if needed,30 we have that

β(p, x)’s components are all between 1 + γ and 1 + γλ. By the first paragraph of

this proof, D is consistent with reference-dependent choices for gain-loss parameters

γ ≥ 0 and λ ≥ 1, simply by taking r(p, x) = x for all (p, x) ∈ D. Q.E.D.

Proof of Proposition 7 (Relation to CCEI)

Take any ε > PMIU(D). One can find u ∈ U and associate to all (p, x) ∈ D a price

vector pc(p, x) ∈ RL
++ such that conditions (3a) and (3b) hold. Take any (p, x) ∈ D,

and consider the indifference curve of u passing through x. As illustrated in Figure 7

30Multiplying β(p, x) by (1 + γ) over β(p, x)’s smallest component, which does not change (i).
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Figure 7: Construction for the proof of Proposition 7.

(see the dashed line), (3a) means the perceived budget line associated to pc(p, x) (and

going through x) separates the upper contour set of x from those bundles below the

hyperplane. We claim that p·y
p·x ≥ 1 − ε for any bundle y above this hyperplane, i.e.,

any y such that pc(p, x) ·y ≥ pc(p, x) ·x. This holds trivially if pc(p, x) = p, so suppose

they are different and consider the optimization problem

min
{y | pc(p,x)·y≥pc(p,x)·x}

p · y.

The constraint must bind at the optimum, else the objective could be further reduced.

As seen in Figure 7, linearity of the objective and constraint imply the objective

function is minimized at a bundle y with only one positive component: that is, there

is ` such that y` = pc(p,x)·x
pc`(p,x)

and yi = 0 for all i 6= `. Using (3b), the minimal expenditure

satisfies:

p · y = p`y` = p`

L∑
i=1

pci(p, x)

pc`(p, x)
xi ≥ (1− ε)p`

L∑
i=1

pi
p`
xi = (1− ε)p · x.

By quasi-concavity of u, any bundle z with u(z) ≥ u(x) must satisfy pc(p, x) · z ≥
pc(p, x) · x. Hence, the above inequality shows that if (1 − ε)-percent of income is

retained, the choice x from the original budget set is strictly preferred under u to all

bundles in the remaining budget set. Hence CCEIU(D) ≥ 1 − ε. This proves the

result since the inequality holds for all ε > PMIU(D). Q.E.D.

Example 1 (Data Not Systematically More Rational under CCEI or FDI) Consider

demand data D = {(p, x), (p′, x′)} with two observations and a WARP violation, where

the price vectors are p = (1, 2) and p′ = (2, 1) and the demanded bundles are x = (3, 6)
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and x′ = (6, 3). We first observe that the largest possible FDI (in this example we focus

on the reference class of all regular utility functions), for any pairs of choices on the

boundary of these two budget sets, is 1/2. To see this, let y, y′ be two distinct bundles

such that y is on the p-budget line, y′ is on the p′-budget line, and there is a WARP

violation: p · y′ ≤ p · y = p · x and p′ · y ≤ p′ · y′ = p′ · x′. By the simple closed-form

forumla given at the end of Section 6, the FDI of such choices is

1− 1

2
max{γ, 1

γ
}, with γ =

y′1 − y1
y2 − y′2

.

Hence the largest FDI is reached with γ = 1, which occurs with probability zero when

drawing uniformly from bundles on the boundary of the two budget sets. Hence, the

probability that the FDI of a randomly drawn demand data is larger or equal to that

of the demand data above, which achieves that maximum FDI, is zero. By contrast,

there is a strictly positive probability that the Afriat inefficiency of a randomly drawn

demand data will be bigger than that of D.

For an example where the comparison is opposite, consider the demand data D′ =
{(p, x), (p′, z)} where p, p′, x are as above, but z amounts to spending the budget under

p′ entirely on good 1, i.e., z = (7.5, 0). Notice that the Afriat inefficiency of demand

data picked on the budget lines associated to p and p′ is smaller or equal to that of D′

if and only if the bundle picked on the p-budget line is strictly to the left of x and the

bundle picked on the p′-budget line is strictly to the right of x′ (defined above). It is

easy to check that any such demand data also has a FDI larger than that of D′, but

also that there is a positive mass of other bundle combinations leading to a larger FDI

than that of D′.31 Thus, this time, the probability that the FDI of a randomly drawn

demand data is larger than that of D′, is larger than the probability that the Afriat

inefficiency of a randomly drawn demand data is larger than that of D′.

Proposition 9 Consider any portfolio demand data D as in Section 7. Let SI−

be the class of utility functions derived from SI by dropping quasi-concavity. Then

PMISI−(D) = FDISI(D).

Proof. Note that: FDISI(D) = FDIU(D̄) = PMIU−(D̄) = PMISI−(D), where D̄ is the

mirror-extended dataset from (6), U is the class of regular utility functions, and U− is

31For instance, for all ẑ halfway between x′ and z on the p′-budget line, there is a positive mass of
bundles x̂ to the right of x on the p-budget line for which FDI({(p, x̂), (p′, ẑ)}) > FDI(D′).
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derived from U by dropping quasi-concavity. The first equality was already mentioned

earlier (see footnote 24), and the second was established in Proposition 3. As for the

third equality, observe that if demand data is rationalizable by a utility function in

SI−, then its mirror-extended version is rationalizable by a continuous and strictly

increasing utility function. Applying this fact to the modified demand data in the

definition of the PMI, it follows that PMI(D̄) ≤ PMISI−(D). The reverse inequality

also holds, since if a mirror-extended dataset is rationalizable by a continuous and

strictly increasing u, then the original data is rationalizable by a utility function

v ∈ SI−, where v(x) = u(x) if x2 ≤ x1 and v(x) = u(x2, x1) if x2 ≥ x1. Q.E.D.
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